From correlation functions to glueballs Markus Q. Huber

Institute of Theoretical Physics, Giessen University

Under some attractive force, constituents form a "state" that behaves like a single object (under certain conditions).

Constituents bound by some force.

- Localized
- Attractive force
- Behaves as a single object (under certain conditions)
- Discrete spectrum (as opposed to free constituents)
- 2 or more constituents

Under some attractive force, constituents form a "state" that behaves like a single object (under certain conditions).

Constituents bound by some force.

- Localized
- Attractive force
- Behaves as a single object (under certain conditions)
- Discrete spectrum (as opposed to free constituents)
- 2 or more constituents

2 fermions in QED:

• Example: Hydrogen atom

- one-photon exchange
- Coulomb potential $\propto 1/r$
- spin-orbit coupling: fine splitting
- spin-spin coupling: hyperfine splitting

Under some attractive force, constituents form a "state" that behaves like a single object (under certain conditions).

Constituents bound by some force.

- Localized
- Attractive force
- Behaves as a single object (under certain conditions)
- Discrete spectrum (as opposed to free constituents)
- 2 or more constituents

2 fermions in QED:

• Example: Hydrogen atom

- one-photon exchange
- Coulomb potential $\propto 1/r$
- spin-orbit coupling: fine splitting
- spin-spin coupling: hyperfine splitting

Caveat: Many QCD bound states are not stable and decay. \rightarrow Resonances.

Bound states in the standard model

Standard model: matter + exchange particles, electroweak and strong forces

(Elementary) particles form bound states:

• QED: proton + electron \rightarrow hydrogen atom

Alexander Gorfer (quant.uni-graz.at), CC-BY-SA 4.0, mod.

Bound states in the standard model

Standard model: matter + exchange particles, electroweak and strong forces

(Elementary) particles form bound states:

- QED: proton + electron \rightarrow hydrogen atom
- QCD: 3 quarks \rightarrow baryon

Alexander Gorfer (quant.uni-graz.at), CC-BY-SA 4.0, mod.

Bound states in the standard model

Standard model: matter + exchange particles, electroweak and strong forces

(Elementary) particles form bound states:

- QED: proton + electron \rightarrow hydrogen atom
- QCD: 3 quarks \rightarrow baryon
- Standard model: FMS mechanism

Alexander Gorfer (quant.uni-graz.at), CC-BY-SA 4.0, mod.

Mesons and baryons

Proton, neutron (1932), pion (1947)

Explosion of discoveries of new hadrons in 50s, 60s \to "particle zoo" Pauli: "Had I foreseen that, I would have gone into botany."

Quark model:

Classification in multiplets of mesons (quark+antiquark) or baryons (3 quarks) ("eightfold way"):

- (Elementary) theory
- Non-Abelian gauge theory
- Built on prototype of QED

Quarks: matter fields

- (Elementary) theory
- Non-Abelian gauge theory
- Built on prototype of QED

Quarks: matter fields

$$\mathcal{L}_{\text{QED}} = \overline{\psi} (-\not{D} + m)\psi$$

 $+ \frac{1}{2} \operatorname{Tr} \{F_{\mu\nu}F^{\mu\nu}\}$

- (Elementary) theory
- Non-Abelian gauge theory
- Built on prototype of QED

Quarks: matter fields

$$\mathcal{L}_{ ext{QCD}} = \sum_{ ext{flavor } f} \overline{\psi}_f (- D + m) \psi_f + rac{1}{2} \operatorname{Tr} \{F_{\mu
u} F^{\mu
u}\}$$

- (Elementary) theory
- Non-Abelian gauge theory
- Built on prototype of QED

Quarks: matter fields

$$\mathcal{L}_{\text{QCD}} = \sum_{\text{flavor } f} \overline{\psi}_f (-\not{D} + m) \psi_f \\ + \frac{1}{2} \operatorname{Tr} \{ F_{\mu\nu} F^{\mu\nu} \}$$

Introduction G

Glueballs

Beyond mesons and baryons

Introduction Glueballs

Beyond mesons and baryons

More than 3 quarks?

 \rightarrow Tetraquarks, pentaquarks

Exotics:

Introduction Glueballs

Beyond mesons and baryons

- More than 3 quarks?
 - \rightarrow Tetraquarks, pentaquarks
- Bound states of gluons? \rightarrow Glueballs

Exotics:

Markus Q. Huber (Giessen University)

Introduction

Glueballs

Beyond mesons and baryons

- More than 3 quarks?
 - \rightarrow Tetraquarks, pentaquarks
- Bound states of gluons? \rightarrow Glueballs
- Quarks and gluons?
 - $\rightarrow \text{Hybrids}$

Exotics:

Non-Abelian nature of QCD \rightarrow self-interaction of force fields.

Mass dynamically created from massless (due to gauge invariance) gluons.

Glueballs

Non-Abelian nature of QCD \rightarrow self-interaction of force fields.

Mass dynamically created from massless (due to gauge invariance) gluons.

Theory: Glueballs from gauge inv. operators, e.g., $F_{\mu\nu}F^{\mu\nu}$.

 \rightarrow Mixing of operators with equal quantum numbers.

Non-Abelian nature of QCD \rightarrow self-interaction of force fields.

Mass dynamically created from massless (due to gauge invariance) gluons.

Theory:

Glueballs from gauge inv. operators, e.g., $F_{\mu\nu}F^{\mu\nu}$.

 \rightarrow Mixing of operators with equal quantum numbers.

Experiment:

Production in glue-rich environments, e.g., $p\bar{p}$ annihilation (PANDA), pomeron exchange in pp (central exclusive production), radiative J/ψ decays

Reviews on glueballs: [Klempt, Zaitsev, Phys.Rept.454 (2007); Mathieu, Kochelev, Vento, Int.J.Mod.Phys.18 (2009); Crede, Meyer, Prog.Part.Nucl.Phys.63 (2009); Ochs, J.Phys.G40 (2013); Llanes-Estrada, EPJST 230 (2021); Vadacchino, 2305.04869]

• Fritzsch, Minkowski, 1975: "glue mesons", states of two gluons [Fritzsch, Minkowski, Nuovo Cim. A 30 (1975) 393]

- Fritzsch, Minkowski, 1975: "glue mesons", states of two gluons [Fritzsch, Minkowski, Nuovo Cim. A 30 (1975) 393]
- Hamiltonian many body methods [e.g., Szczepaniak, Swanson, Ji, Cotanch, PRL 76 (1996); Szczepaniak, Swanson, Phys. Lett. B 577 (2003)]
- Sum rules [e.g., Zhang, Steele, Nucl.Phys.A728 (2003); Narison, Phys.Rev.D73 (2006)]
- Chiral Lagrangians [e.g., Janowski, Parganlija, Giacosa, Rischke, Phys. Rev. D 84 (2011); Eshraim, Janowski, Giacosa, Rischke, Phys. Rev. D 87 (2013)]
- Holographic QCD [e.g., Brower, Mathur, Tan, Nucl. Phys. B 587 (2000); Colangelo, De Fazio, Jugeau, Nicotri, Phys. Lett. B 652 (2007); Brünner, Parganlija, Rebhan, Phys. Rev. D 93 (2016); Hechenberger, Leutgeb, Rebhan, Phys. Rev. D 107 (2023)]
- Gribov-Zwanziger framework: [Dudal, Guimaraes, Sorella, Phys. Lett. B 732 (2014)]

- Fritzsch, Minkowski, 1975: "glue mesons", states of two gluons [Fritzsch, Minkowski, Nuovo Cim. A 30 (1975) 393]
- Hamiltonian many body methods [e.g., Szczepaniak, Swanson, Ji, Cotanch, PRL 76 (1996); Szczepaniak, Swanson, Phys. Lett. B 577 (2003)]
- Sum rules [e.g., Zhang, Steele, Nucl.Phys.A728 (2003); Narison, Phys.Rev.D73 (2006)]
- Chiral Lagrangians [e.g., Janowski, Parganlija, Giacosa, Rischke, Phys. Rev. D 84 (2011); Eshraim, Janowski, Giacosa, Rischke, Phys. Rev. D 87 (2013)]
- Holographic QCD [e.g., Brower, Mathur, Tan, Nucl. Phys. B 587 (2000); Colangelo, De Fazio, Jugeau, Nicotri, Phys. Lett. B 652 (2007); Brünner, Parganlija, Rebhan, Phys. Rev. D 93 (2016); Hechenberger, Leutgeb, Rebhan, Phys. Rev. D 107 (2023)]
- Gribov-Zwanziger framework: [Dudal, Guimaraes, Sorella, Phys. Lett. B 732 (2014)]
- Early Lattice QCD [e.g., Berg, Billoire, Nucl. Phys. B. 221 (1983)]: results for a 0⁺⁺ state
- Lattice QCD [Morningstar, Peardon, Phys. Rev. D60 (1999)]: quantitative spectrum of pure gauge theory
- Lattice QCD [e.g., Gregory et al., JHEP10 (2012); Brett et al., AIP Conf.Proc. 2249 (2020); Chen et al., Chin.Phys.C 47 (2023)]: quarks complicate things...
- Functional studies \rightarrow This talk

- Fritzsch, Minkowski, 1975: "glue mesons", states of two gluons [Fritzsch, Minkowski, Nuovo Cim. A 30 (1975) 393]
- Hamiltonian many body methods [e.g., Szczepaniak, Swanson, Ji, Cotanch, PRL 76 (1996); Szczepaniak, Swanson, Phys. Lett. B 577 (2003)]
- Sum rules [e.g., Zhang, Steele, Nucl.Phys.A728 (2003); Narison, Phys.Rev.D73 (2006)]
- Chiral Lagrangians [e.g., Janowski, Parganlija, Giacosa, Rischke, Phys. Rev. D 84 (2011); Eshraim, Janowski, Giacosa, Rischke, Phys. Rev. D 87 (2013)]
- Holographic QCD [e.g., Brower, Mathur, Tan, Nucl. Phys. B 587 (2000); Colangelo, De Fazio, Jugeau, Nicotri, Phys. Lett. B 652 (2007); Brünner, Parganlija, Rebhan, Phys. Rev. D 93 (2016); Hechenberger, Leutgeb, Rebhan, Phys. Rev. D 107 (2023)]
- Gribov-Zwanziger framework: [Dudal, Guimaraes, Sorella, Phys. Lett. B 732 (2014)]
- Early Lattice QCD [e.g., Berg, Billoire, Nucl. Phys. B. 221 (1983)]: results for a 0⁺⁺ state
- Lattice QCD [Morningstar, Peardon, Phys. Rev. D60 (1999)]: quantitative spectrum of pure gauge theory
- Lattice QCD [e.g., Gregory et al., JHEP10 (2012); Brett et al., AIP Conf.Proc. 2249 (2020); Chen et al., Chin.Phys.C 47 (2023)]: quarks complicate things...
- Functional studies \rightarrow This talk

 \rightarrow Consensus: 0⁺⁺ is lightest state; (next 0⁻⁺, 2⁺⁺, 0^{++*})

Glueball calculations: Lattice

Nonperturbative first-principles method: discretized space-time, continuum limit, computationally expensive

- [Gregory et al., JHEP10 (2012)]
- [Brett et al., AIP Conf.Proc. 2249 (2020)]
- [Chen et al., 2111.11929]
- [Vadacchino, Lattice2022, 2305.04869]

• . . .

Challenges [Gregory et al., JHEP10 (2012)]:

- Much higher statistics required (poor signal-to-noise ratio)
- Continuum extrapolation and inclusion of fermionic operators still to be done
- $m_{\pi}=360\,{
 m MeV}$
- Mixing with $\bar{q}q$ challenging
- Small unquenching effects found

Glueball calculations: Lattice

Nonperturbative first-principles method: discretized space-time, continuum limit, computationally expensive

- [Gregory et al., JHEP10 (2012)]
- [Brett et al., AIP Conf.Proc. 2249 (2020)]
- [Chen et al., 2111.11929]
- [Vadacchino, Lattice2022, 2305.04869]

• . . .

Challenges [Gregory et al., JHEP10 (2012)]:

- Much higher statistics required (poor signal-to-noise ratio)
- Continuum extrapolation and inclusion of fermionic operators still to be done
- $m_{\pi}=360\,{
 m MeV}$
- Mixing with $\bar{q}q$ challenging
- Small unquenching effects found

No quantitative results yet.

Glueballs: Quenched lattice calculations

Make quarks infinitely heavy

- \rightarrow no quark dynamics
- \rightarrow no mixing
- \rightarrow pure gauge theory, Yang-Mills theory
- \rightarrow "Pure" glueballs
 - [Morningstar, Peardon, Phys. Rev. D60 (1999)]: standard reference
 - [Athenodorou, Teper, JHEP11 (2020)]: improved statistics, more states

 $Quantitative \ results \rightarrow Benchmark$

[Morningstar, Peardon, Phys. Rev. D60 (1999)]

Scalar sector

 $J^{ extsf{PC}} = 0^{++} o qar{q}$ mesons, tetraquarks and glueballs

 $m_u \sim m_d < m_s$

$m_u \sim m_d < m_s$

[Jaffe, Phys. Rev. D 15 (1977)]

Markus Q. Huber (Giessen University

From correlation functions to glueballs

June 6, 2024

11/46

Glueballs from J/ψ decay

Scalar glueball candidate: Coupled-channel analyses of exp. data (BESIII)

- +add. data, largest overlap with $f_0(1770)$
- largest overlap with $f_0(1710)$

Pseudoscalar glueball candidate:

• X(2370)

[Ablikim et al. (BESIII). PRL132 (2024)]

[JPAC Coll., Rodas et al., Eur.Phys.J.C 82 (2022)]

[Sarantsev, Denisenko, Thoma, Klempt, Phys. Lett. B 816 (2021)]

Methods: Bound state equations

Functional bound state equations

Elements of a BSE

Г = **К G**0 Г

Input:

- Propagators G₀
- Kernel K

Output:

- Mass M: $M^2 = -P^2$
- Bethe-Salpeter amplitudes Γ

(quark-antiquark state)

Functional bound state equations

Elements of a BSE

Γ = **Κ G**₀ Γ

Input:

- Propagators G₀
- Kernel K

Output:

- Mass M: $M^2 = -P^2$
- Bethe-Salpeter amplitudes Γ

(quark-antiquark state)

Approximations: bottom-up \longleftrightarrow top-down

Truncations

Bottom-up approximation: Rainbow

Need the gluon propagator ($Z(k^2)$) and the quark-gluon vertex ($h_i(k; p, q)$).

Truncations

Bottom-up approximation: Rainbow

Need the gluon propagator ($Z(k^2)$) and the quark-gluon vertex ($h_i(k; p, q)$).

Bottom-up approximation: Ladder

Scattering kernel: "all interactions which are two-particle irreducible with respect to two horizontal quark lines"

Same model \rightarrow Rainbow+ladder approximation respects chiral symmetry (axial-vector WTI).

Functional spectrum calculations: Bottom-up

Models, qualitative insight, quantitative results for some cases

Functional spectrum calculations: Bottom-up

Models, qualitative insight, quantitative results for some cases

Workhorse for more than 20 years: Rainbow-ladder truncation with an effective interaction, e.g., Maris-Tandy (or similar).

Functional spectrum calculations: Bottom-up

Models, qualitative insight, quantitative results for some cases

Workhorse for more than 20 years: Rainbow-ladder truncation with an effective interaction, e.g., Maris-Tandy (or similar).

[Eichmann, Sanchis-Alepuz, Williams, Alkofer, Fischer, Prog.Part.Nucl.Phys. 91 (2016); Eichmann,

Few Body Syst. 63 (2022)]

Markus Q. Huber (Giessen University)

From correlation functions to glueballs

June 6, 2024

17/46

Example for a model: Maris-Tandy interaction

[Maris, Roberts, Tandy, Phys. Rev. C 56 (1997); Maris, Tandy, Phys. Rev. C 60 (1999)]:

- Scale \wedge from f_{π}
- Quark masses $m_u = m_d$, m_s from m_π , m_K
- Parameter η : window of small sensitivity (for meson masses and decay constants)
- α_{UV}: Phenomenologically irrelevant, provides correct perturbative running to quark propagator

Markus Q. Huber (Giessen University)

Functional glueball calculations

Glueballs? Rainbow-ladder?

Functional glueball calculations

Glueballs? Rainbow-ladder?

There is no rainbow for gluons!

Functional glueball calculations

Glueballs? Rainbow-ladder?

There is no rainbow for gluons!

<u>Model based</u> BSE calculations (J = 0):

- [Meyers, Swanson, Phys.Rev.D87 (2013)]
- [Sanchis-Alepuz, Fischer, Kellermann, von Smekal, Phys.Rev.D92, (2015)]
- [Souza et al., Eur.Phys.J.A56 (2020)]
- [Kaptari, Kämpfer, Few Body Syst.61 (2020)]

Functional glueball calculations

Model based BSE calculations (J = 0):

Glueballs? Rainbow-ladder?

- [Mevers, Swanson, Phys.Rev.D87 (2013)] •
- [Sanchis-Alepuz, Fischer, Kellermann, von Smekal, Phys.Rev.D92, (2015)]
- Souza et al., Eur.Phys.J.A56 (2020)]
- [Kaptari, Kämpfer, Few Body Syst.61 (2020)]

Alternative: Calculated input [MQH, Phys.Rev.D 101 (2020)]

- J = 0: [MQH, Fischer, Sanchis-Alepuz, Eur.Phys.J.C80 (2020)]
- J = 0, 2, 3, 4: [MQH. Fischer, Sanchis-Alepuz, Eur.Phys.J.C81 (2021)]

Extreme sensitivity on input!

Bound state equations for QCD

• Require scattering kernel *K* and propagator.

Bound state equations for QCD

- Require scattering kernels *K* and propagators.
- Quantum numbers determine which amplitudes Γ couple.

Bound state equations for QCD

- Require scattering kernels *K* and propagators.
- Quantum numbers determine which amplitudes Γ couple.
- Ghosts from gauge fixing

One framework

- Natural description of mixing.
- Similar equations for hadrons with more than two constituents

Bound state equations for QCD

Focus on pure glueballs.

- Require scattering kernels *K* and propagators.
- Quantum numbers determine which amplitudes Γ couple.
- Ghosts from gauge fixing

One framework

- Natural description of mixing.
- Similar equations for hadrons with more than two constituents

Kernels

Systematic derivation from 3PI effective action: [Berges, Phys. Rev. D 70 (2004); Carrington, Gao, Phys. Rev. D 83 (2011)]

Self-consistent treatment of 3-point functions requires 3-loop expansion.

[Fukuda, Prog. Theor. Phys 78 (1987); McKay, Munczek, Phys. Rev. D 40 (1989); Sanchis-Alepuz, Williams, J. Phys: Conf. Ser. 631 (2015); MQH. Fischer, Sanchis-Alepuz, Eur, Phys.J.C80 (2020)]

Markus Q. Huber (Giessen University)

Correlation functions

Equations of motion

Equations of motion

From 3-loop 3PI effective action

- Conceptual and technical challenges: nonperturbative renormalization, two-loop diagrams, convergence, size of kernels, ...
- Self-contained: Only parameters are the strong coupling and the quark masses!
- Long way, e.g., ghost-gluon vertex, three-gluon vertex, four-gluon vertex, ...
- \rightarrow MQH, Phys.Rev.D 101 (2020)

Equations of motion

Equations of motion

From 3-loop 3PI effective action

- Conceptual and technical challenges: nonperturbative renormalization, two-loop diagrams, convergence, size of kernels, ...
- Self-contained: Only parameters are the strong coupling and the quark masses!
- Long way, e.g., ghost-gluon vertex, three-gluon vertex, four-gluon vertex,
- \rightarrow MQH, Phys.Rev.D 101 (2020)

Start with pure gauge theory.

Equations of motion

Equations of motion

Early attempts very simple, e.g., gluon propagator with one diagram only [Mandelstam, Phys. Rev. D20 (1979)].

Successive calculation and inclusion of vertices, e.g.,

- ghost-gluon vertex [MQH, von Smekal, JHEP 04 (2013)]
- three-gluon vertex [Blum, MQH, Mitter, von Smekal, PRD89 (2014)]
- four-gluon vertex [Cyrol, MQH, von Smekal, EOJC 75 (2015)]
- \rightarrow [Review: MQH, Phys.Rept. 879 (2020)]

The importance of self-consistency

Propagators from modeled three-gluon vertex [MQH, von Smekal, JHEP 04 (2013)]: Optimize parameters so that propagators match lattice results.

Agreement with lattice is not sufficient!

The importance of self-consistency

Propagators from modeled three-gluon vertex [MQH, von Smekal, JHEP 04 (2013)]: Optimize parameters so that propagators match lattice results.

Agreement with lattice is not sufficient!

- Vertex couplings show violations of gauge invariance.
- \bullet Model optimized for one quantity. \rightarrow Restricted applicability to other quantities, e.g., glueballs.

Interlude: Derivation of equations

Automatized derivation with DoFun: Derivation of functional equations

[Alkofer, MQH, Schwenzer, '08; MQH, Braun, '11; MQH, Cyrol, Pawlowski, '19]

Interlude: Derivation of equations

Automatized derivation with DoFun: Derivation of functional equations

[Alkofer, MQH, Schwenzer, '08; MQH, Braun, '11; MQH, Cyrol, Pawlowski, '19]

 \rightarrow https://github.com/markusqh/DoFun/

$$\begin{array}{c} \underline{i2} \\ \underline{i1} \\ \underline{-1} \\$$

Works in two steps:

- Symbolic derivation (no Feynman rules, just types of fields)
- Algebraic: Plug in Feynman rules

doDSE

 doDSE[ac, flis, [opts]] derives the DSE from the action ac for the fields contained in flis.
 doDSE[ac, flis, props, [opts]] derives the DSE only with propagators contained in prop

doDSE[*ac*, *flist*, *vtest*, [*opts*]] derives the DSE only with vertices allowed by *vtest*. Allowed propagators will be taken from *ac* if the *props* argument is not given.

- Details
 - The following options can be given:

Landau gauge propagators

Self-contained: Only external input is the coupling! \rightarrow Ab-initio!

[MQH, Phys.Rev.D 101 (2020)]

Landau gauge propagators

Solutions

Correlation functions

Self-contained: Only external input is the coupling! \rightarrow Ab-initio!

Gluon dressing function:

Family of solutions [von Smekal, Alkofer, Hauck, PRL79 (1997); Aguilar, Binosi, Papavassiliou, Phys.Rev.D 78 (2008); Boucaud et al., JHEP06 (2008); Fischer, Maas, Pawlowski, Ann.Phys. 324 (2008); Alkofer, MQH, Schwenzer, Phys. Rev. D 81 (2010)]

Nonperturbative completions of Landau gauge [Maas, Phys. Lett. B 689 (2010)]?

Gluon propagator:

Ghost dressing function:

[MQH, Phys.Rev.D 101 (2020)]

Markus Q. Huber (Giessen University)

From correlation functions to glueballs

Three-gluon vertex I

• Good agreement with lattice results

Three-gluon vertex I

- Good agreement with lattice results
- Simple kinematic dependence of three-gluon vertex (only singlet variable of S₃), "planar degeneracy" confirmed by lattice [Pinto-Gómez et al., Phys.Lett.B838 (2023)]
 First observation: [Eichmann, Williams, Alkofer, Vujinovic, Phys.Rev.D89 (2014)], but already in old data [Blum, Huber, Mitter, von Smekal, Phys.Rev.D89 (2014)] → stable property

Markus Q. Huber (Giessen University)

From correlation functions to glueballs

Three-gluon vertex II

- Family of solutions
- Cancellations between diagrams important

Gauge invariance

Couplings can be extracted from each vertex.

- Slavnov-Taylor identities (gauge invariance): Agreement perturbatively (UV) necessary.
 [Cyrol et al., Phys.Rev.D 94 (2016)]
- Difficult to realize: Small deviations → Couplings cross and do not agree.
- Here: Vertex couplings agree down to GeV regime (IR can be different).

10 10⁰ 10^{-1} $\chi(p^2)$ 10^{-2} α_{aha} 10^{-3} α_{3a} 10^{-4} α_{4a} 10-5 10^{-2} 10^{-1} 10⁰ 10¹ 10^{2} p[GeV]

[MQH, Phys. Rev. D 101 (2020)]

Stability of the solution

• Agreement with lattice results.

Stability of the solution

- Agreement with lattice results. \checkmark
- Concurrence between functional methods: 3PI vs. 2-loop DSE:

DSE vs. FRG:

Stability of the solution

- Agreement with lattice results. \checkmark
- Concurrence between functional methods: ✓

3PI vs. 2-loop DSE:

[Cucchieri, Maas, Mendes, Phys.Rev.D77 (2008); Sternbeck et al., Proc.Sci. LATTICE2016 (2017); Cyrol et al., Phys.Rev.D 94 (2016); MQH, Phys.Rev.D101 (2020)]

Markus Q. Huber (Giessen University)

Stability of the solution: Extensions

• Three-gluon vertex: Tree-level dressing dominant, others subleading [Eichmann, Williams, Alkofer,

Vujinovic, Phys.Rev.D89 (2014); Pinto-Gómez et al., 2208.01020]

Stability of the solution: Extensions

- Three-gluon vertex: Tree-level dressing dominant, others subleading [Eichmann, Williams, Alkofer, Vujinovic, Phys.Rev.D89 (2014); Pinto-Gómez et al., 2208.01020]
- Four-gluon vertex: Influence on propagators tiny for d = 3 [MQH, Phys.Rev.D93 (2016)]

Stability of the solution: Extensions

- Three-gluon vertex: Tree-level dressing dominant, others subleading [Eichmann, Williams, Alkofer, Vujinovic, Phys.Rev.D89 (2014); Pinto-Gómez et al., 2208.01020]
- Four-gluon vertex: Influence on propagators tiny for d = 3 [MQH, Phys.Rev.D93 (2016)]
- Two-ghost-two-gluon vertex [MQH, Eur. Phys.J.C77 (2017)]:
 (FRG: [Corell, SciPost Phys. 5 (2018)])

nctions Solutions

The two-ghost-two-gluon vertex DSE

2 DSEs, choose the one with the ghost leg attached to the bare vertex \rightarrow Truncation discards only one diagram.

Results for the two-ghost-two-gluon vertex

Kinematic approximation: one-momentum configuration

 \rightarrow Two classes of dressings: 13 very small, 12 not small

[MQH, Eur.Phys.J.C77 (2017)]

Markus Q. Huber (Giessen University)

June 6, 2024

34/46
Glueballs

Correlation functions for complex momenta

(pseudoscalar glueball)

 $\boldsymbol{\lambda(P)}\boldsymbol{\Gamma(P)} = \mathcal{K} \cdot \boldsymbol{\Gamma(P)}$

 \rightarrow Eigenvalue problem for $\Gamma(P)$:

• Solve for $\lambda(P)$.

Find *P* with
$$\lambda(P) = 1$$
.
 $\Rightarrow M^2 = -P^2$

Input for BSEs

Correlation functions for complex momenta

(pseudoscalar glueball)

However:

Propagators are probed at
$$\left(q \pm \frac{P}{2}\right)^2 = \frac{P^2}{4} + q^2 \pm \sqrt{P^2 q^2} \cos \theta = -\frac{M^2}{4} + q^2 \pm i M \sqrt{q^2} \cos \theta$$

 \rightarrow Complex for $P^2 < 0$

Time-like quantities ($P^2 < 0$) \rightarrow Correlation functions for complex arguments.

 $\lambda(P)\Gamma(P) = \mathcal{K} \cdot \Gamma(P)$

 \rightarrow Eigenvalue problem for $\Gamma(P)$:

Find P with $\lambda(P) = 1$. $\Rightarrow M^2 = -P^2$

• Solve for $\lambda(P)$.

Correlation functions in the complex plane

Extrapolation of $\lambda(P^2)$

Extrapolation method

- Extrapolation to time-like *P*² using Schlessinger's continued fraction method (proven superior to default Padé approximants) [Schlessinger, Phys.Rev.167 (1968)]
- Average over extrapolations using subsets of points for error estimate

$$f(x) = \frac{f(x_1)}{1 + \frac{a_1(x - x_1)}{1 + \frac{a_2(x - x_2)}{1 + \frac{a_3(x - x_3)}{\dots}}}}$$

Coefficients a_i can be determined such that f(x) exact at x_i .

Input for BSEs

Extrapolation of $\lambda(P^2)$

Extrapolation method

- Extrapolation to time-like *P*² using Schlessinger's continued fraction method (proven superior to default Padé approximants) [Schlessinger, Phys.Rev.167 (1968)]
- Average over extrapolations using subsets of points for error estimate

Test extrapolation for solvable system:

Heavy meson [MQH, Sanchis-Alepuz, Fischer, Eur.Phys.J.C 80 (2020)]

$$f(x) = \frac{f(x_1)}{1 + \frac{a_1(x-x_1)}{1 + \frac{a_2(x-x_2)}{1 + \frac{a_2(x-x_2)}{1 + \frac{a_3(x-x_3)}{1 + \frac{a_3(x$$

Coefficients a_i can be determined such that f(x) exact at x_i .

From correlation functions to glueballs

Glueball results J=0

Gauge-variant correlation functions:

Glueball results J=0

Glueball results J=0

Spectrum independent! \rightarrow Family of solutions yields the same physics.

All results for $r_0 = 1/418(5)$ MeV.

[MQH, Fischer, Sanchis-Alepuz, Eur.Phys.J.C80 (2020)]

Markus Q. Huber (Giessen University)

From correlation functions to glueballs

June 6, 2024

39/46

Amplitudes

Information about significance of single parts.

 \rightarrow Amplitudes have different behavior for ground state and excited state. Useful guide for future developments.

 \rightarrow Meson/glueball amplitudes: Information about mixing.

Markus Q. Huber (Giessen University)

From correlation functions to glueballs

Glueball amplitudes for spin J

[MQH, Fischer, Sanchis-Alepuz, Eur.Phys.J.C81 (2021)]

$$\Gamma_{\mu\nu
ho\sigma...}(p_1,p_2) = \sum \tau^i_{\mu
u
ho\sigma...}(p_1,p_2)h_i(p_1,p_2)$$

Numbers of tensors:

J	P = +	P = -
0	2	1
1	4	3
>2	5	4

Increase in complexity:

- 2 gluon indices (transverse)
- *J* spin indices (symmetric, traceless, transverse to *P*)

Low number of tensors, but high-dimensional tensors!

 \rightarrow Computational cost increases with *J*.

J = 1 glueballs

Landau-Yang theorem

Two-photon states cannot couple to $J^{P} = 1^{\pm}$ or $(2n + 1)^{-}$

[Landau, Dokl.Akad.Nauk SSSR 60 (1948); Yang, Phys. Rev. 77 (1950)].

(\rightarrow Exclusion of J = 1 for Higgs because of $h \rightarrow \gamma \gamma$.)

Applicable to glueballs?

- \rightarrow Not in this framework, since gluons are not on-shell.
- \rightarrow Presence of J = 1 states is a dynamical question.

J = 1 not found here.

Glueball results

[MQH, Fischer, Sanchis-Alepuz, Eur.Phys.J.C81 (2021)]

- Agreement with lattice results
- New states: 0^{**++}, 0^{**-+}, 3⁻⁺, 4⁻⁺

Higher order diagrams

Testing an extension of the bound state equation: more diagrams in kernels

One-loop diagrams only:

[MQH, Fischer, Sanchis-Alepuz, Eur.Phys.J.C80 (2020); MQH, Fischer, Sanchis-Alepuz, Eur.Phys.J.C81 (2021)]

Higher order diagrams

Testing an extension of the bound state equation: more diagrams in kernels

One-loop diagrams only:

[MQH, Fischer, Sanchis-Alepuz, Eur.Phys.J.C80 (2020); MQH, Fischer, Sanchis-Alepuz, Eur.Phys.J.C81 (2021)]

Two-loop diagrams: subleading effects

• 0^{-+} : none

[MQH, Fischer, Sanchis-Alepuz, EPJ Web Conf. 258 (2022)]

• $0^{++} < 2\%$

[MQH, Fischer, Sanchis-Alepuz, HADRON2021, arXiv:2201.05163]

• 2⁺⁺: none

[MQH, Fischer, Sanchis-Alepuz, HADRON2023, arXiv:2312.12029]

Functional bound state equations

• Tool for hadron physics: From qualitative insights to quantitative results

- Tool for hadron physics: From qualitative insights to quantitative results
- From first principles (top down) by direct calculation of input

- Tool for hadron physics: From qualitative insights to quantitative results
- From first principles (top down) by direct calculation of input
- Extensive tests

- Tool for hadron physics: From qualitative insights to quantitative results
- From first principles (top down) by direct calculation of input
- Extensive tests
 - Agreement between different methods (lattice and continuum)

- Tool for hadron physics: From qualitative insights to quantitative results
- From first principles (top down) by direct calculation of input
- Extensive tests
 - Agreement between different methods (lattice and continuum)
 - Stable under extensions (input and bound state equations)

- Tool for hadron physics: From qualitative insights to quantitative results
- From first principles (top down) by direct calculation of input
- Extensive tests
 - Agreement between different methods (lattice and continuum)
 - Stable under extensions (input and bound state equations)
- Glueballs of pure gauge theory

• QCD:

• Quark sector

- Quark sector
- Mixing

- Quark sector
- Mixing
- Three-body bound state equation:

- QCD:
 - Quark sector
 - Mixing
- Three-body bound state equation:
 - C = -1 glueballs

- QCD:
 - Quark sector
 - Mixing
- Three-body bound state equation:
 - C = -1 glueballs
 - Hybrids

- Quark sector
- Mixing
- Three-body bound state equation:
 - C = -1 glueballs
 - Hybrids
- Correlation functions in the complex plane:

- Quark sector
- Mixing
- Three-body bound state equation:
 - C = -1 glueballs
 - Hybrids
- Correlation functions in the complex plane:
 - No extrapolation for masses

- Quark sector
- Mixing
- Three-body bound state equation:
 - C = -1 glueballs
 - Hybrids
- Correlation functions in the complex plane:
 - No extrapolation for masses
 - Inclusion of decay channels
 - \rightarrow resonances

• QCD:

- Quark sector
- Mixing
- Three-body bound state equation:
 - C = -1 glueballs
 - Hybrids
- Correlation functions in the complex plane:
 - No extrapolation for masses
 - Inclusion of decay channels
 - \rightarrow resonances

Thank you for your attention!

Charge parity

Transformation of gluon field under charge conjugation:

$${m A}^{m a}_{\mu}
ightarrow -\eta({m a}) {m A}^{m a}_{\mu}$$

where

$$\eta(a) = \left\{ egin{array}{cc} +1 & a = 1, 3, 4, 6, 8 \ -1 & a = 2, 5, 7 \end{array}
ight.$$

Color neutral operator with two gluon fields:

$$\mathcal{A}^a_\mu \mathcal{A}^a_
u o \eta(a)^2 \mathcal{A}^a_\mu \mathcal{A}^a_
u = \mathcal{A}^a_\mu \mathcal{A}^a_
u.$$

 $\Rightarrow C = +1$

Negative charge parity, e.g.:

$$egin{aligned} d^{abc} A^a_\mu A^b_
u A^c_
ho &
ightarrow - d^{abc} \eta(a) \eta(b) \eta(c) A^a_\mu A^b_
u A^c_
ho &= \ - d^{abc} A^a_\mu A^b_
u A^c_
ho. \end{aligned}$$

Only nonvanishing elements of the symmetric structure constant d^{abc} : zero or two indices equal to 2, 5 or 7.

Landau gauge propagators in the complex plane

Simpler truncation:

Landau gauge propagators in the complex plane

Simpler truncation:

 \rightarrow Opening at $q^2 = p^2$.

Landau gauge propagators in the complex plane

Appearance of branch cuts for complex momenta forbids integration directly to cutoff.

Extrapolation for glueball eigenvalue curves

Several curves: ground state and excited states.
Bound state equations for hybrids

[Münster, Fischer, MQH]

- (Anti)quarks + gluonic excitation
- $\bullet \ \text{Meson} \rightarrow \text{three-body equation}$
- $\bullet \ \, \text{Baryon} \rightarrow \text{four-body equation}$

Bound state equations for hybrids

[Münster, Fischer, MQH]

- (Anti)quarks + gluonic excitation
- Meson \rightarrow three-body equation
- $\bullet \ \, \text{Baryon} \rightarrow \text{four-body equation}$

- π₁(1600) (1⁻⁺): 48 tensors
- Leading order of 3PI effective action: dressed quark-gluon and three-gluon interactions
- Preliminary results: diagrams with three-gluon vertices leading

Hadron masses from correlation functions of color singlet operators (confinement!).

Hadron masses from correlation functions of color singlet operators (confinement!).

Examples:

$$J^{PC} = 0^{-+} \operatorname{meson} \to O(x) = \overline{\psi}(x)\gamma_5\psi(x)$$

$$J^{PC} = 0^{++} \operatorname{glueball} \to O(x) = F_{\mu\nu}(x)F^{\mu\nu}(x)$$

$$D(x - y) = \langle O(x)O(y) \rangle$$

Hadron masses from correlation functions of color singlet operators (confinement!).

Examples:

$$J^{PC} = 0^{-+} \text{ meson} \rightarrow O(x) = \overline{\psi}(x)\gamma_5\psi(x)$$

 $J^{PC} = 0^{++} \text{ glueball} \rightarrow O(x) = F_{\mu\nu}(x)F^{\mu\nu}(x)$
 $D(x - y) = \langle O(x)O(y) \rangle$

Lattice: Mass from exponential Euclidean time decay

$$\lim_{t\to\infty} \langle O(x)O(0)
angle \sim e^{-tM}$$

Hadron masses from correlation functions of color singlet operators (confinement!).

Examples:

$$J^{PC} = 0^{-+} \operatorname{meson} \rightarrow O(x) = \overline{\psi}(x)\gamma_5\psi(x)$$

 $J^{PC} = 0^{++} \operatorname{glueball} \rightarrow O(x) = F_{\mu\nu}(x)F^{\mu\nu}(x)$
 $D(x - y) = \langle O(x)O(y) \rangle$

MQH, Alkofer, Phys.Rev.D87 (2013)]

Functional spectrum calculations: Top-down

Derivation of kernels and correlation functions from *n*Pl effective actions [Fukuda, Prog.Theor.Phys. 78 (1987); Sanchis-Alepuz, Williams, J.Phys.Conf.Ser. 631 (2015)].

Loop expansion of *n*PI effective actions as reliable expansion in terms of nonperturbative quantities?

Functional spectrum calculations: Top-down

Derivation of kernels and correlation functions from *n*Pl effective actions [Fukuda, Prog.Theor.Phys. 78 (1987); Sanchis-Alepuz, Williams, J.Phys.Conf.Ser. 631 (2015)].

Loop expansion of *n*PI effective actions as reliable expansion in terms of nonperturbative quantities?

Example: 3-loop 3PI effective action [Berges, Phys. Rev. D 70 (2004); Carrington, Gao, Phys. Rev. D 83 (2011)]

$$\Gamma^{3l}[\Phi, D, \Gamma^{(3)}] = \Gamma^{0,3l}[\Phi, D, \Gamma^{(3)}] + \Gamma^{int,3l}[\Phi, D, \Gamma^{(3)}]$$

Markus Q. Huber (Giessen University)

Functional bound state equation

[Review: Eichmann, Sanchis-Alepuz, Williams, Alkofer, Fischer, Prog.Part.Nucl.Phys. 91 (2016)]

Ghost-gluon vertex

Ghost-gluon vertex:

- Nontrivial kinematic dependence of ghost-gluon vertex
- Qualitative agreement with lattice results, though some quantitative differences (position of peak!).