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Contents of the talk

@ Maximally Abelian gauge: Why do we need this complicated gauge,
anyway? And what is its IR behavior?

o Landau gauge: Does (partly) solving the Gribov problem change the
infrared behavior?

@ Non-perturbative tool: Dyson-Schwinger equations; is there an easy
way to derive them?
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Confinement of quarks and gluons

@ Confinement is a long-range <> IR phenomenon: We do not see
individual ~ infinitely separated quarks or gluons.

@ One expects that the property of being confined is encoded in the
particles’ propagators.
o Different confinement criteria for the propagators:
o Positivity violations: negative norm contributions — not a particle of
the physical state space
o Kugo-Ojima: quartet mechanism, e. g. Gupta-Bleuler formalism in
QED: timelike and longitudinal photon cancel each other.
o Gribov-Zwanziger (Landau gauge, Coulomb gauge): IR suppression
of the gluon propagator — no long-distance propagation.
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Infrared regime of Yang-Mills theory in Landau gauge

Scaling SOIUtion [Alkofer, Fischer, Maas, Pawlowski, von Smekal, ...]
@ Dressing functions obey power laws.
Qualitative IR solution of ALL correlation functions is known.

Horizon condition < IR enhanced ghost.

Picture of confinement: IR vanishing gluon (— gluon confinement)
and IR enhanced ghost propagator (— long-range force to confine
quarks).

@ Method easily transferable to some other gauges.

Decou pllng solution [Boucaud, Fischer, Papavassiliou, Pawlowski, Sorella, .. .]

o Different renormalization of the ghost propagator = tree-level like.
— boundary condition for DSEs [Fischer et al., Ann. Phys. 324; Maas,
0907.5185]

@ Seen in most lattice calculations [Cucchieri, ligenfritz, Mendes,
Mueller-Preussker, Sternbeck, . ..]. UNI
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Hypothesis of Abelian dominance

Dual superconductor picture of confinement
(Mandelstam, 't Hooft)

@ Picture a conventional superconductor, where the electric charges
condense and force the magnetic flux into vortices.

@ Change "electric" and "magnetic" components and you get a dual
superconductor, where condensed magnetic monopoles sqeeze the
electric flux into flux tubes.

@ QCD: No free chromoelectric charges. Are they confined by
condensed magentic monopoles?

Ezawa and Iwazaki [PRD 25 (1981)]: Magnetic monopoles live in Abelian
part of the theory. — Abelian part dominates in the IR?
= Hypothesis of Abelian dominance

c
z
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Lattice results on Abelian dominance

@ String tension calculated from the Abelian part is almost the same
as the one from the full theory. Even more, the string tension from
the monopole part is almost the same, too.

@ Suzuki et al. [PRD 80]: Without gauge fixing the string tension was
extracted and agreed to 100%. Maybe MAG is a simple way to get
monopoles?

@ Available lattice results of MAG [Cucchieri, Mendes, Mihara, 2008]: all
propagators massive, Abelian fields have lowest mass
= other fields decouple
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Definition of the maximally Abelian gauge

Look for dominance of Abelian part. What is the Abelian part?
Gauge field components:

Ap=AT +BIT? i=1,...,N-1, a=N,. . N -1

Abelian subalgebra: [T', T/] = 0, can be written as diagonal matrices
= Abelian < diagonal fields A,
non-Abelian « off-diagonal fields B.

1 1
Eg T!= 5)&, T? = §>\8 for SU(3).
Which interactions are possible?
fik =0, fi7=0, f*#0
SU(2): f*° =0, SUN>2): fc+£0

= 2 off-diagonal and 1 diagonal field can interact; 3 off-diagonal fields
can only interact in S(N > 2) NI
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Gauge fixing condition

Stress role of diagonal fields = minimize norm of off-diagonal field B:

[|Byll = J dx B{;B{; — minimize wrt. gauge transformations U

DbeBS = (0.50,—8 fabiAL)Bg =0 non-linear gauge fixing condition!

Remaining symmetry of diagonal part: U(1)N~!

Fix gauge of diag. gluon field A by Landau gauge condition: 0,A, =0
= diagonal ghosts decouple (like in QED).
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Lagrangian for the MAG

diagonal gluon off-diagonal gluon ghost

XX KK X

AABB AAcc BBcc BBBB cccc

SU(N > 2)
BBB Bcc ABBB ABcc
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Deriving Dyson-Schwinger equations

Integral of a total derivative vanishes:

d _siso _ S sijo
j[an]%e + J[Dqﬂ(J 5¢)e e _g)

= DSEs for all Green functions (full, connected, 1PI) by further
differentiations.

Doing it by hand?
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MQH

Deriving Dyson-Schwinger equations

Integral of a total derivative vanishes:

d _siso _ S sijo
j[an]%e + J[Dqﬂ(J 5¢)e e _g)

= DSEs for all Green functions (full, connected, 1PI) by further
differentiations.

Doing it by hand?

For example: Landau gauge, only 2 propagators (AA, cc), 3 interactions
(Acc, AAA, AAAA)
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Landau Gauge: Propagators

Gluon propagator:

S i2 sy E) 2y i2 : i : i1
i1 i2
L 02 i1 N
6 —@— -z

Ghost propagator: D e oy
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DoDSE

= DoDSE [Alkofer, M.Q.H., Schwenzer, CPC 180 (2009)]

Given a structure of interactions, the DSEs are derived symbolically using
Mathematica.

Example (Landau gauge):

@ only input: interactions in Lagrangian (AA, AAA, AAAA, cc, Acc)
o Which DSE do | want?

o Step-by-step calculations possible.
e Can handle mixed propagators (then there are really many diagrams
— Gribov-Zwanziger action).

Upgrade: Symb2Alg produces algebraic from the symbolic expressions.
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DSEs of the MAG

— ety _ O - _O PO
O —— e —
_e_ \W/+\W/+\W/
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Infrared power counting

Generic propagator

D 2
Tomy - 227)
p
IR exponent
assume power law behavior at low p? /
D'R(p? 2)6

@ Vertices also assume power law behavior [Alkofer, Fischer, Llanes-Estrada,
PLB 611 (2005) (skeleton expansion)].

@ Limit of all momenta approaching zero simultaneously.

@ Upon integration all momenta converted into powers of external
momenta. = Counting of IR exponents
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System of inequalities

@ IR exponent for every diagram

o lhs is dominated by at least one diagram on rhs and rhs cannot be
more divergent than |hs. — 8hs <d/hs any diagram-

@ Not knowing which diagram is leading on the rhs, we can write
inequalities from all diagrams.

VAV AVAVEEEAVIVAVAVAVER>) 5 +W e TG 5

8 < 2gn+ Oggy  —Og < 25 + O3,

That's the basic idea. Still, for a large system a lot of work.
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System of inequalities

@ IR exponent for every diagram

o lhs is dominated by at least one diagram on rhs and rhs cannot be
more divergent than |hs. — 8hs <d/hs any diagram-

@ Not knowing which diagram is leading on the rhs, we can write
inequalities from all diagrams.

VAV AVAVEEEAVIVAVAVAVER>) 5 +W e TG 5

—0g1 < 204 + Ogg, —0g1 < 284 + 034,
That's the basic idea. Still, for a large system a lot of work.
All inequalities relevant? NI
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Relevant inequalities

A closed form for all relevant inequalities can be derived
from DSEs and RGEs.

2 types:
type derived from #
dressed vertices C1 = bvertex + % Z d; >0 | RGEs infinite
legs j of
vertex
prim. div. vertices | C = % Z 5 >0 DSEs/RGEs | finite
legs j of
prim. div.
vertex

Some inqualities are contained within others.
E. g. in MAG: g > 0 and 6. > 0 render g + 6. > 0 useless.

NB: These inequalities explicitly show that the skeleton expansion used in
previous studies is a consistent expansion. However, the skeleton
expansion is now obsolete. mitl
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Infrared exponent for an arbitrary diagram

Having so many diagrams, isn't there a shorter way than writing all
expressions down explicitly?

Arbitrary Diagram v
Numbers of vertices and propagators related = possible to get a formula

for the IR exponent by pure combinatorics in terms of:

@ propagator IR exponents by, @ number of external legs m®

@ number of vertices

o, = -1 ,-mi5; -+
+ Z (# of dressed vertices),C{ + Z (# of bare vertices),Cj

1 1
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Infrared exponent for an arbitrary diagram

Having so many diagrams, isn't there a shorter way than writing all
expressions down explicitly?
Arbitrary Diagram v

Numbers of vertices and propagators related = possible to get a formula
for the IR exponent by pure combinatorics in terms of:

@ propagator IR exponents by, @ number of external legs m®

@ number of vertices

5, = —1 imi&-/;\,lower bound on IRE

+ Z (# of dressed vertices),C{ + Z (# of bare vertices),Cj

1 1

Only depends on the external legs — equal for all diagrams in a
DSE/RGE [M.Q.H., Schwenzer, Alkofer, arXiv:0904.1873].
[Similar formula for Landau gauge with slightly different arguments: Fischer, Pawlowski, UNI

arXiv:0903.2193]
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Scaling relations

General analysis of propagator DSEs

At least one inequality from a prim. divergent vertex has to be saturated,

i. e. | Ci =0 for at least one i |

Necessary condition for a scaling solution.
Related to bare vertices in DSEs: Fischer-Pawlowski consistency
condition DSEs <+ RGEs [Fischer, Pawlowski, PRD 75 (2007)].

= One primitively divergent vertex is not IR enhanced.
This does not necessarily mean that it is bare:

@ Dependence on momentum configuration.

o Consider different dressing functions: Vanishing or constant.
The non-enhancement of at least one primitively divergent vertex

is now established for all scaling type solutions. [M.Q.H., Schwenzer, Alkofer,
arXiv:0804.1873]
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IR scaling solution of the MAG

@ The Abelian fields are IR enhanced. — realization of Abelian
dominance?

o Off-diagonal fields are IR suppressed.
@ SU(2) and SU(N > 2) have the same solution.

@ Qualitative solutions for tower of all Green functions.

@ Abelian configurations transformed to Landau gauge lie on Gribov
horizon [Greensite, Olejnik, Zwanziger, PRD78].

@ Gribov region of MAG unbounded in diagonal direction [Capri et al.,
PRD79].

@ Two-loop diagrams are IR leading (sunset, squint). — UV/IR
preserving truncation?
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Gauge orbits and Gribov copies

A

A

A
[A]

Gauge equivalent configurations (gauge orbit [A]) = integra-
tion in path integral is overcomplete.

MQH KFU Graz Jan. 18, 2010 22/33



Gauge orbits and Gribov copies

A

/ Agpe

AH
[A]

%A, — 0

Faddeev and Popov: Restriction of integration to single rep-
resentative of each gauge orbit possible? Gauge symmetry
replaced by BRST symmetry!
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Gauge orbits and Gribov copies

A

/ Agy

Gribov region

A(r
[A]

0uAu =0

Restriction to Gribov horizon: almost unique gauge fixing.
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Gauge orbits and Gribov copies

A

/ Agy

Gribov region

AH
[A]

%A, — 0

Restriction to Gribov horizon: almost unique gauge fixing.

Restriction to Gribov region is done via adding a non-local term to the
Lagrangian. — New parameter 7y, determined by horizon condition. un
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How do DSEs usually deal with this?

Integral of a total derivative vanishes:

6 —S+JD 65 —S+JO __
J[ch]@e + _J [Dd)](J&b)e o g,

= DSEs for all Green functions (full, connected, 1PI) by further
differentiations.
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How do DSEs usually deal with this?

Integral of a total derivative vanishes [zwanziger, PRD65]:

b sise_ ( 7
L[Dqﬂwe L[Dd)] J

§ —S+JD _
6(1))6 =0.

= DSEs for all Green functions (full, connected, 1PI) by further
differentiations.
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How do DSEs usually deal with this?

Integral of a total derivative vanishes [zwanziger, PRD65]:

) 5S
D o 75+J(D: D o0 7S+J(D: )
L}[ Blore L[ o] (J 5¢)e 0

= DSEs for all Green functions (full, connected, 1PI) by further
differentiations.

J (D] (J— 65) 5(d- A)det(M)e Sm+J® — g
o o
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Local renormalizable action

Non- Iocal term can be localized with auxiliary fields

b b . . .
((pu , (Pu , a , wfl) — local Gribov-Zwanziger action:

EGZ _(pacMab o aCMabwbc+Y gfabcAa( bc (pu ) 'Y4d(N2*1)
Horizon condition in local form:

(g FPA% (@Pf — @PF)) = 2y* d(N* — 1),

@ Restriction breaks BRST invariance.
e Mixing at the level of two-point functions, e. g. (Aflcpf,‘:).
= (3x3)-matrix relation between propagators and two-point

functions:
Dé® = (ro®)~1 b e{A 0,0}
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More fields . ..

Simplify to (2x2)-matrix relation by splitting into real and imaginary part
[Zwanziger, 0904.2380]:

1 . L
@ZE(UHV), @—ﬁ(U V).

L&z =Ly+Ly+ Lyy — 0 MPwbe,

‘CU = %USC Mab Uﬁc’

Ly = %v;c M vbe 1 i gy?V2f e A7 vEe,
Luyv = %igf"chid Vo AS o,
Simplify even further:
c,c, U w,w—n,n a2
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Truncation of tensors

Propagators (A, vbey and <Vib V<) can have many tensors with

different dressing functions,
e g. color space: 7c‘abc. éabécd 6ac6bd 6ad5bc 7¢'abef'cde f‘acefbde'

Truncation: Take only tree-leel tensors of two-point functions.

b FAA rAV
r = VA rw )
e = 5% p%cy (p7) P + 5‘“(i ca(P?)pyupy,
rp\é\//,abcd _ 5ac5bdp2CV( 2)gu\/»

AV ,cab __ rcab: 2
ru’v =f Ip CAV( )guv»
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Propagators of the GZ action

2
n n C
D?;Iyab — (r;’ll;l,ab)fl — _gabged ﬂl()g )

DYV has two tensors — non-trivial truncation:

DAA,ab _ éabip CV(p2)
= v ,
Y 2 M ex(pPev(p?) +2N 2, (p?)
1 1

DVX,abcd _ = ac6bdg —

. P? cv(p?) g

_ l/:abefcdeip v QCiv(p2)
p? "t (p?) el (p?) +2N cky, (p?)ev(p?)’
DAV,abe _ f‘abcip \ﬁcAV(p2)

p? "l (p?)ev(p?) +2N ¢k, (p?)
Appearance of the determinant ¢z (p?)cy (p?) + 2N cay (p?)
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The four possibilities

Which part of the determinant cx (p?)cy (p?) + 2N c3y (p?) dominates in
the IR?

cij(p?) = djj - (p?)*0

I: CE\V > CACy & Ka + Ky > 2Kay
Il: cacy > C%v — 2Kay > Ka + Ky
Il cf\v ~ CACY & Ka + Ky = 2Kay, ho cancellations

IV: cf\v ~ CACy & Ka + Ky = 2Kay, cancellations

Cancellations: Leading contributions cancel and some less dominant term
takes over.
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The four possibilities

Which part of the determinant cj(p2)cv(p2) + 2N 3y (p?) dominates in
the IR?

5(p?) = di - (p?)

I: Civ > cac A Ky > 2Ky
Il: cacy > Cﬁv & 2Kay > Ka + Ky

I cf\v ~ CACYy & Ka + Ky = 2Kay, no cancellations
IV: cf\v ~ caC A F Ky = 2Kay, cancellations

Cancellations: Leading contributions cancel and some less dominant term
takes over.

Two solutions lead to inconsistencies.
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Case Il: Recovery of standard Landau gauge solution

CACy > Civ & 2Kay > Ka + Ky

@ The VV-propagator becomes

1 1

- ac5bd
p? cv(p?)

Euv

= VV-propagator could be integrated out in the IR and the FP
theory is recovered.

@ All contributions containing an AV-propagator are suppressed. =
DSEs reduce in the IR to the same system as in FP theory.

@ Formula for IR exponent of arbitrary n-point functions is obtained.

@ IR exponent of AV-propagator is not fixed by scaling relation;
calculated numerically.
Several solutions: 0.0668776, 0.981386 and higher.

In the IR this is completely the same as FP theory! =
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Case Ill: The "strict" scaling solution

All IR exponents are connected by the scaling relations (k := ky = ky):

Ka+ 2k =K+ 2kay =0

= Mixed propagator IR suppressed.

The determinant remains as it is. = Non-linear relations between the
coefficients of the dressing functions.

MQH KFU Graz Jan. 18, 2010 30/33



Summary Gribov-Zwanziger action

Explicitly restricted integration to Gribov region by using the
Gribov-Zwanziger action.
Mixed propagators complicate the analysis. Two candidates remain:

@ Scaling relation between FP ghost and gluon unaltered:
Ka + 2. = 0.

@ All solutions have the same qualitative behavior.

@ Maybe mixed propagator contributions IR suppressed?
— Completely the same solution as for FP theory.

@ Input for numerical solution of the equations.
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Summary maximally Abelian gauge

@ Existence and form of scaling solutions can easily be obtained
directly from the interactions.

o Fischer-Pawlowski consistency condition <> one vertex remains bare
in the IR.

@ Scaling solution may exist in MAG

o Abelian gluon field is IR enhanced. — Support of hypothesis of
Abelian dominance.

o Complete numerical solution required.

e Two-loop terms are IR leading <+ UV/IR preserving truncation?

o Relation to chromomagnetic monopoles?

MQH KFU Graz Jan. 18, 2010 32/33



IR Scaling solutions for other gauges

The analysis can be used also for other gauges. Beware: This
corresponds to a naive application!

Linear covariant gauges Ghost-antighost symmetric gauges

scaling solution only, if the longitudinal
part of the gluon propagator gets
dressed, but gauge fixing condition =
longitudinal part bare

quartic ghost interaction — dg4 > 0
— with non-negative IREs only the
trivial solution can be realized

This is valid for all possible dressings and agrees with the results from
[Alkofer, Fischer, Reinhardt, v. Smekal, PRD 68 (2003)], where only certain dressings

were considered.

o Either the existence of a
= scaling solution is something special (?) or

@ a more refined analysis is needed in these cases. un
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