2-, 3- and 4-point functions in 2, 3 and 4 dimensions

Markus Q. Huber

Institute of Theoretical Physics, Giessen University Institute of Physics, University of Graz

666. WE-Heraeus-Seminar - From correlation functions to QCD phenomenology

Bad Honnef, Germany

April 3, 2018

NAWI Graz

Markus Q. Huber

Giessen University, University of Graz

April 3, 2018

Introduction

Hadronic bound states

Bound state equations:

• Interaction kernel K

Hadronic bound states

Bound state equations:

• Interaction kernel K

Approaches:

 Phenomenological: Model interactions

• From first principles: Piecing together the pieces

Hadronic bound states

Bound state equations:

• Interaction kernel K

• Quark propagator S

K(k, q, P)

Approaches:

 Introduction

QCD phase diagram

Questions:

- Phases and transitions between them, critical point
- Experimental signatures

Theoretical challenges:

- Model description
- Mathematical, e.g., complex action for lattice QCD
- Complexity, e.g., truncations of function eqs.

• . . .

Introduction

QCD phase diagram

Questions:

- Phases and transitions between them, critical point
- Experimental signatures

Theoretical challenges:

- Model description
- Mathematical, e.g., complex action for lattice QCD
- Complexity, e.g., truncations of function eqs.

• . . .

• Influence of higher correlation functions?

qualitative? quantitative? negligible?

• Influence of higher correlation functions?

qualitative? quantitative? negligible?

 Hierarchy of diagrams/correlation functions? negligible diagrams? irrelevant correlation functions for specific questions?

• Influence of higher correlation functions?

qualitative? quantitative? negligible?

- Hierarchy of diagrams/correlation functions?
 negligible diagrams? irrelevant correlation functions for specific questions?
- Model dependence ↔ Self-contained truncation? conflicting requirements for models? parameter-free solution?

• Influence of higher correlation functions?

qualitative? quantitative? negligible?

- Hierarchy of diagrams/correlation functions?
 negligible diagrams? irrelevant correlation functions for specific questions?
- Model dependence ↔ Self-contained truncation? conflicting requirements for models? parameter-free solution?
- How to realize resummation?

higher loop contributions?

• Influence of higher correlation functions?

qualitative? quantitative? negligible?

- Hierarchy of diagrams/correlation functions?
 negligible diagrams? irrelevant correlation functions for specific questions?
- Model dependence ↔ Self-contained truncation? conflicting requirements for models? parameter-free solution?
- How to realize resummation?

higher loop contributions?

• Equivalence between different functional methods? FRG, DSEs, nPI, Hamiltonian approach

Dyson-Schwinger equations

Markus Q. Huber

Giessen University, University of Graz

Coupled systems of Dyson-Schwinger equations

quark propagator + 3-point functions: [Williams, Fischer, Heupel '15] \rightarrow application to bound states

Markus Q. Huber

Giessen University, University of Graz

April 3, 2018

6/34

Introduction

Coupled systems of Dyson-Schwinger equations

Markus Q. Huber

Giessen University, University of Graz

Coupled systems of Dyson-Schwinger equations

Markus Q. Huber

Giessen University, University of Graz

April 3, 2018

3PI system of equations

Three-loop expansion of PI effective action [Berges '04]:

UV behavior of the gluon propagator

Resummed one-loop order: anomalous dimension $\gamma=-13/22$

$$\left(1+\frac{\alpha(s)11N_c}{12\pi}\ln\frac{p^2}{s}\right)^{\gamma}$$

One-loop anomalous dimension

Origin in resummation of higher order diagrams.

However, one-loop truncation discards some terms.

$$\max_{i=1}^{\infty} \sum_{j=1}^{\infty} \frac{1}{2} \max_{i=1}^{\infty} \sum_{i=1}^{\infty} \sum_{i=1}^{\infty} \frac{1}{2} \max_{i=1}^{\infty} \sum_{i=1}^{\infty} \frac{1}{2} \max_{i=1}^{\infty} \sum_{i=1}^{\infty} \frac{1}{2} \max_{i=1}^{\infty} \sum_{i$$

UV behavior of the gluon propagator

Resummed one-loop order: anomalous dimension $\gamma = -13/22$

$$\left(1+\frac{\alpha(s)11N_c}{12\pi}\ln\frac{p^2}{s}\right)^{\gamma}$$

One-loop anomalous dimension

Origin in resummation of higher order diagrams.

However, one-loop truncation discards some terms.

$$\max_{i=1}^{\infty} \sum_{j=1}^{\infty} \max_{i=1}^{\infty} \sum_{j=1}^{\infty} \max_{i=1}^{\infty} \max_{j=1}^{\infty} \sum_{j=1}^{\infty} \max_{i=1}^{\infty} \max_{j=1}^{\infty} \max_{j=1}^{\infty} \max_{i=1}^{\infty} \max_{j=1}^{\infty} \max_{i=1}^{\infty} \max_{j=1}^{\infty} \max_{j=1}^{\infty} \max_{i=1}^{\infty} \max_{j=1}^{\infty} \max_{i=1}^{\infty} \max_{j=1}^{\infty} \max_{i=1}^{\infty} \max_{j=1}^{\infty} \max_{i=1}^{\infty} \max_{j=1}^{\infty} \max_{i=1}^{\infty} \max_{j=1}^{\infty} \max_{j=1}^{\infty} \max_{j=1}^{\infty} \max_{i=1}^{\infty} \max_{j=1}^{\infty} \max_{j$$

 \rightarrow Puts constraints on UV behavior of vertices [von Smekal, Hauck, Alkofer '97]. Way out: Include in models (for now).

Markus Q. Huber

Giessen University, University of Graz

Propagators and ghost-gluon vertex with three-gluon vertex model

One-loop truncation of gluon propagator with an optimized effective model (contains zero crossing) [MQH, von Smekal '13]:

Good quantitative agreement for ghost and gluon dressings.

Propagators and ghost-gluon vertex with three-gluon vertex model

One-loop truncation of gluon propagator with an optimized effective model (contains zero crossing) [MQH, von Smekal '13]:

Good quantitative agreement for ghost and gluon dressings.

$$\mathcal{L} = -\frac{1}{2} \prod_{r} \left(F_{\mu\nu} F^{\mu\nu} \right) + \sum_{j} \overline{\varphi}_{j} [i \, y^{\mu} D_{\mu} - m_{j}] \varphi_{j}$$

$$WOBEI \qquad F_{\mu\nu} = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu} + ig [A_{\mu}, A_{\nu}]$$

$$WND \qquad D_{\mu} = \partial_{\mu} + ig A_{\mu}$$

Markus Q. Huber

Giessen University, University of Graz

Resummed behavior

Minimal requirements to obtain one-loop resummed behavior:

- Squint diagram
- Correct anomalous dimensions of three-point functions
- Correct renormalization (constants)

Resummed behavior

Minimal requirements to obtain one-loop resummed behavior:

- Squint diagram
- Correct anomalous dimensions of three-point functions
- Correct renormalization (constants)

Lower dimensional Yang-Mills theories as testing ground

Advantages:

- UV finite: no renormalization, no anomalous running
- Spurious divergences easier to handle
- UV behavior 'easier': $\propto \frac{g^2}{p^n}$ instead of resummed logarithm
- \rightarrow Many complications from d = 4 absent.
- \rightarrow Disentanglement of UV easier.

 \Rightarrow 'Cleaner' system \rightarrow Focus on truncation effects.

Lower dimensional Yang-Mills theories as testing ground

Advantages:

- UV finite: no renormalization, no anomalous running
- Spurious divergences easier to handle
- UV behavior 'easier': $\propto \frac{g^2}{p^n}$ instead of resummed logarithm
- \rightarrow Many complications from d = 4 absent.
- \rightarrow Disentanglement of UV easier.

 \Rightarrow 'Cleaner' system \rightarrow Focus on truncation effects.

Historically interesting because cheaper on the lattice \rightarrow easier to reach the IR.

Vertices in two dimensions

Vertices numerically cheaper. \rightarrow Good start for solving vertices self-consistently.

Vertices in two dimensions

Vertices numerically cheaper. \rightarrow Good start for solving vertices self-consistently.

Aspects of two-dimensional Yang-Mills theory:

- Only scaling solution exists
 - [Cucchieri, Dudal, Vandersickel '12; MQH, Maas, von Smekal '12; Zwanziger '12]
- Perturbation theory is ill-defined due to IR divergences.
- Different momentum regimes mix.

Vertices in two dimensions

Vertices numerically cheaper. \rightarrow Good start for solving vertices self-consistently.

Aspects of two-dimensional Yang-Mills theory:

- Only scaling solution exists
 - [Cucchieri, Dudal, Vandersickel '12; MQH, Maas, von Smekal '12; Zwanziger '12]
- Perturbation theory is ill-defined due to IR divergences.
- Different momentum regimes mix.

Markus Q. Huber

Three dimensions

- Four-point functions numerically cheaper.
- Perturbation theory works.

Continuum results:

- Coupled propagator DSEs: [Maas, Wambach, Grüter, Alkofer '04]
- (R)GZ: [Dudal, Gracey, Sorella, Vandersickel, Verschelde '08]
- DSEs of PT-BFM: [Aguilar, Binosi, Papavassiliou '10]
- YM + mass term: [Tissier, Wschebor '10, '11]

Gluon propagator: Single diagrams

- \rightarrow Clear hierarchies identified.
 - UV: as expected perturbatively
 - non-perturbative: squint important, sunset small (d=4:

[Mader, Alkofer '13; Meyers, Swanson '14])

Cancellations in gluonic vertices

Three-gluon vertex:

[MQH '16] Four-gluon vertex:

- Individual contributions large.
- Sum is small!

Cancellations in gluonic vertices

Three-gluon vertex:

[MQH '16] Four-gluon vertex:

- Individual contributions large.
- Sum is small!

 \Downarrow

Higher contributions:

- Higher vertices close to 'tree-level'? \rightarrow Small.
- If pattern changes (higher vertices large): cancellations required.

Markus Q. Huber

Giessen University, University of Graz

Results: Propagators

Markus Q. Huber

Giessen University, University of Graz

April 3, 2018

16/34

Comparison of three-point functions with lattice results

- Deviation from tree-level 'small'
- Position of maximum shifted (as observed with other continuum methods for SU(2), e.g., [Pelaez, Matthieu, Wschebor '13; Cyrol, Fister, Mitter, Pawlowski, Strodthoff '15; Corell '18]).

- Close to tree-level above 1 GeV
- Good agreement with lattice data.
- Linear IR divergence [Pelaez, Tissier,

Wschebor '13; Aguilar et al. '13]

Four-gluon vertex

[MQH '16]

Four-gluon vertex:

• Close to tree-level down to 1 GeV

Markus Q. Huber

Solution from the 3PI effective action

Different set of functional equations: Equations of motion from 3PI effective action (at three-loop level)

Solution from the 3PI effective action

Different set of functional equations: Equations of motion from 3PI effective action (at three-loop level)

Introduction

Testing truncations

Extending truncations

Summary and conclusions

Solutions from the FRG

FRG calculations by Corell, Cyrol, Mitter, Pawlowski, Strodthoff, arXiv:1803.10092

NB: Scaling (FRG) and decoupling (DSEs)

- FRG has 'additional' diagrams (tadpoles).
- Equivalence of truncations not trivial.

[Cucchieri, Maas, Mendes '08; MQH '16; Corell et al. '18; Maas, unpublished]

Conclusions from three dimensions

- Hierarchy of correlation functions and diagrams
- Cancellations lead to small deviations from the perturbative behavior above 2 *GeV*.
- Some degree of stability (but no complete list of checks done) when
 - varying *system* of equations.
 - varying *equations* of system.
- Discrepancies with lattice results:
 - Nonperturbative gauge fixing?
 - Missing diagrams for vertices?
 - Incomplete tensor bases for some vertices?

Extending truncations

Various ways to extend truncations:

- Vertex tensors beyond tree-level
- Neglected diagrams
- Neglected correlation functions

Extensions also test the previous truncations!

Three-gluon vertex: Kinematic dependence

• In the following: One-momentum approximation

Markus Q. Huber

Three-gluon vertex DSE

Three-gluon vertex DSE

Perturbative one-loop truncation [Blum, MQH, Mitter von Smekal '14; Eichmann, Alkofer, Vujinovic '14]:

Three-gluon vertex DSE

Perturbative one-loop truncation [Blum, MQH, Mitter von Smekal '14; Eichmann, Alkofer, Vujinovic '14]:

Markus Q. Huber

Giessen University, University of Graz

Introduction

Influence of two-ghost-two-gluon vertex

Introduction

Influence of two-ghost-two-gluon vertex

Coupled system of ghost-gluon, three-gluon and four-gluon vertices with and without two-ghost-two-gluon vertex [MQH '17]:

Influence of two-ghost-two-gluon vertex

Coupled system of ghost-gluon, three-gluon and four-gluon vertices with and without two-ghost-two-gluon vertex [MQH '17]:

- Small influence on ghost-gluon vertex (< 1.7%)
- Negligible influence on three- and four-gluon vertices.

Markus Q. Huber

Giessen University, University of Graz

April 3, 2018

• Two-loop truncation: All diagrams except the one with a five-point function.

- Difference between two-loop DSE and 3PI smaller than lattice error.
- Resolves ambiguity in zero crossing due to RG improvement [Blum et al. '14; Eichmann et al. '14; Williams et al. '16]
- Zero crossing in agreement with other approaches, e.g., [Pelaez et al. '13; Aguilar et al. '13; Athenodorou et al. '16; Duarte et al. '16; Sternbeck et al. '17]

Markus Q. Huber

Giessen University, University of Graz

April 3, 2018

q [GeV]

β=5.8, L=48 (Wilson new

B=5.6.L=52 (Wilson new

Four-point functions: Color space

15 possibilities:

- $\delta \delta$: 3 combinations
- f f: 3 combinations
- d d: 3 combinations
- df: 6 combinations

Four-point functions: Color space

15 possibilities:

9/8/3 linearly independent in SU(N/3/2), N > 3 [Pascual, Tarrach '80].

- $\delta \delta$: 3 combinations
- f f: 3 combinations
- d d: 3 combinations
- df: 6 combinations

SU(3): $\{\sigma_1, \ldots, \sigma_8\}$ chosen with these symmetries:

	σ_1	σ_2	σ_3	σ_4	σ_5	σ_6	σ_7	σ_8
$a\leftrightarrow b$	+	+	+	-	-	-	-	+
$c\leftrightarrow d$	+	+	+	-	-	+	-	-

 $\{\sigma_1, \ldots, \sigma_5\}$ orthogonal to $\{\sigma_6, \sigma_7, \sigma_8\}$. $\rightarrow \{\sigma_6, \sigma_7, \sigma_8\}$ decouple.

Four-point functions: Color space

15 possibilities:

9/8/3 linearly independent in SU(N/3/2), N > 3 [Pascual, Tarrach '80].

- $\delta \delta$: 3 combinations
- f f: 3 combinations
- d d: 3 combinations
- df: 6 combinations

SU(3): $\{\sigma_1,\ldots,\sigma_8\}$ chosen with these symmetries:

	σ_1	σ_2	σ_3	σ_4	σ_5	σ_6	σ_7	σ_8
$a\leftrightarrow b$	+	+	+	-	-	-	-	+
$c\leftrightarrow d$	+	+	+	-	-	+	-	-

 $\{\sigma_1, \ldots, \sigma_5\}$ orthogonal to $\{\sigma_6, \sigma_7, \sigma_8\}$. $\rightarrow \{\sigma_6, \sigma_7, \sigma_8\}$ decouple.

Four-ghost vertex

$$\Gamma^{\bar{c}\bar{c}cc,abcd}(p,q,r,s) = \mathbf{g}^{4} \sum_{k=1}^{8} \sigma^{k,abcd} E_{k}^{\bar{c}\bar{c}cc}(p,q,r,s).$$

Markus Q. Huber

Giessen University, University of Graz

April 3, 2018

The two-ghost-two-gluon vertex: Lorentz space

Non-primitively divergent correlation function \to No guide from tree-level tensor. \to Use full basis.

The two-ghost-two-gluon vertex: Lorentz space

Non-primitively divergent correlation function \to No guide from tree-level tensor. \to Use full basis.

<u>Lorentz basis</u> transverse wrt gluon legs \rightarrow 5 tensors $\tau^{i}_{\mu\nu}(p,q;r,s)$, (anti-)symmetric under exchange of gluon legs.

The two-ghost-two-gluon vertex: Lorentz space

Non-primitively divergent correlation function \to No guide from tree-level tensor. \to Use full basis.

<u>Lorentz basis</u> transverse wrt gluon legs \rightarrow 5 tensors $\tau^i_{\mu\nu}(p,q;r,s)$, (anti-)symmetric under exchange of gluon legs.

Two-ghost-two-gluon vertex

$$\Gamma^{AA\bar{c}c,abcd}_{\mu\nu}(p,q;r,s) = \mathbf{g}^{4} \sum_{k=1}^{40} \rho^{k,abcd}_{\mu\nu} D^{AA\bar{c}c}_{k(i,j)}(p,q;r,s)$$

$$ho_{\mu
u}^{k,abcd}=\sigma_i^{abcd} au_{\mu
u}^j,\qquad k=k(i,j)=5(i-1)+j$$

The two-ghost-two-gluon vertex DSE

2 DSEs, choose the one with the ghost leg attached to the bare vertex \rightarrow Truncation discards only one diagram.

Markus Q. Huber

Giessen University, University of Graz

The two-ghost-two-gluon vertex DSE

2 DSEs, choose the one with the ghost leg attached to the bare vertex \rightarrow Truncation discards only one diagram.

Results for the two-ghost-two-gluon vertex

Kinematic approximation: one-momentum configuration

→ Two classes of dressings: 13 very small, 12 not small → No nonzero solution for { $\sigma_6, \sigma_7, \sigma_8$ } found.

[MQH '17]

Markus Q. Huber

Giessen University, University of Graz

April 3, 2018

The four-ghost vertex DSE

The four-ghost vertex DSE

Results for the four-ghost vertex

Kinematic approximation: one-momentum configuration

 \rightarrow All dressings very small. [MQH '17]

$E_6, E_7, E_8 (\{\sigma_6, \sigma_7, \sigma_8\})$

Decouple into a homogeneous, linear equation. \to Trivial solution always exists. Nontrivial one? \to None found.

(Same applies to two-ghost-two-gluon vertex.)

Markus Q. Huber

Giessen University, University of Graz

April 3, 2018

32/34

Towards a systematic understanding of truncations of functional equations to establish them as a first principles method.

Towards a systematic understanding of truncations of functional equations to establish them as a first principles method.

- Hierarchy of correlation functions exists.
- Negligible diagrams identified.
- Cancelations between diagrams.

Towards a systematic understanding of truncations of functional equations to establish them as a first principles method.

- Hierarchy of correlation functions exists.
- Negligible diagrams identified.
- Cancelations between diagrams.

Outlook and possibilities:

- Non-classical tensors in gluonic vertices
- Fully coupled systems
- Add quarks
- Finite temperature
- Bound states
- Finite density

۲

Markus Q. Huber

Towards a systematic understanding of truncations of functional equations to establish them as a first principles method.

- Hierarchy of correlation functions exists.
- Negligible diagrams identified.
- Cancelations between diagrams.

Outlook and possibilities:

- Non-classical tensors in gluonic vertices
- Fully coupled systems
- Add quarks
- Finite temperature
- Bound states
- Finite density

Thank you for your attention!

0

Markus Q. Huber

Giessen University, University of Graz

Family of solutions in three dimensions

Cf. FRG results: Bare mass parameter from modified STIs [Cyrol, Fister, Mitter, Pawlowski, Strodthoff '15].

DSEs: Enforce family of solutions by fixing the gluon propagator at $p^2 = 0$.

Simple toy system with bare vertices [MQH, 1606.02068]:

 \Rightarrow Possibility of family of solutions.

NB: Effect overestimated here since vertices are fixed.

Markus Q. Huber