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Motivation

A Possible Mechanism for Confinement
Dual superconductor scenario
(electric <> magnetic components)
Magnetic monopoles condense and the electric flux is squeezed into

vortices ("strings").

Classical configurations of monopoles are constructed within the
maximal (Cartan subalgebra), i.e. its generators
commutate:

[T, T =0.

Hypothesis of Abelian Dominance
= Abelian part should dominate in the infrared part of the theory
(Ezawa, Iwazaki, 1981)

Use maximally Abelian gauge (MAG). e
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Motivation

Landau gauge:

Fischer, Alkofer
Phys. Lett. B 536, 2002

@ Gluon propagator vanishes
at zero momentum
= gluon confinement.

@ Ghost diverges.

e Gribov-Zwanziger, Kugo-Ojima
scenarios

@ Quark-gluon vertex
= quark confinement

Maximally Abelian Gauge:

@ All propagators have finite values
at zero momentum (extended
Gribov-Zwanziger framework)
[Capri et al., Phys. Rev. D77, 2008].

@ Where does confinement come
from?

@ What about vertex functions?
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The Maximally Abelian Gauge
(MAG)
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The Maximally Abelian Gauge (MAG)

The Maximally Abelian Gauge (MAG)

Split the gauge field in color space

Al T aTa
Ay =A, T +B,T off-diagonal generators T2

In total: 4 fields
Fortunate: Diagonal ghosts decouple = 3 fields (A, B, c)

"Additional" interactions
[overview e.g. Capri et al., Phys. Rev. D77, 2008]

o Gauge fixing: Minimize the off-diagonal gluon components
abpb __
= DH Bu = 0.

@ Renormalizability: quartic ghost interaction
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The Maximally Abelian Gauge (MAG)

Interactions in the MAG

Number depends on the gauge group:

| SU(2) SU(3) SU(N >2) | Landau gauge
components 3 8 N? —1
1 2 N—-1
three-point vertices 2 4 4
four-point vertices 5 7 7 1

= There are considerably more interactions in MAG than in
Landau gauge!!!

Is it a good idea to choose an approach whose intricacy depends on
the number of interactions?
— Having the right technique at hand, yes. .
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The Maximally Abelian Gauge (MAG)

Dyson-Schwinger Equations (DSEs)

e Equations of motion of propagators and vertices

@ Describe non-perturbatively the propagation of a particle, i.e.
all interactions included.

o Compare perturbation theory: propagation of a particle at
small coupling.

@ DSEs at small coupling = perturbation series

The more possibilities to interact, the more terms in the DSEs!
Compare Landau gauge (2 three-point, 1 four-point)
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MAG DSEs for SU(2)

diagonal gluon:

off-diagonal gluon: R

- - O -3 O +
L —O— 4
off-diagonal ghost: ST vl S v il o
+_0O -+ _0O
[DoDSE: Alkof L—O— it o b S -}
(o] : oter, ) o
,1 .
M.Q.H., Schwenzer, \W/ : /'&\ W/

arXiv:0808.2939]
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Infrared Analysis

Huber M. Q. IR Behavior of YM Green Functions in MAG 30.9.08 10/19



Infrared (IR) Analysis

Investigation of the Infrared

@ Dressing functions in the IR can be described by power laws,
e.g. for ghost propagator

2_)0
Dg=—-—5>  G(p*) =" ()

@ IR exponent: dgp > 1 — propagator vanishes,
dgh < 0 — propagator IR enhanced.

@ If external momenta small, integral dominated by small
momenta.

@ Upon integration loop momenta are transformed into external

momenta.
@ Uniform limit, i.e. p?,¢%,r> — 0 20 220
@ Kinematic limit, i.e. p?, ¢° /‘\ /‘\
2
const., r© — 0 [Alkofer, M.Q.H., #70 L0 o 220 NI
Schwenzer, arXiv:0801.2762] —
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Infrared (IR) Analysis

Power Counting

DSEs are an infinitely big set of coupled equations — solvable?

Ways to obtain information about the IR exponents
@ Non-renormalization of the ghost-gluon vertex in Landau
gauge [v. Smekal, Hauck, Alkofer, Ann. Phys. 267, 1998]
@ Include the functional renormalization group equations (RGEs)
[Fischer, Pawlowski, Phys. Rev. D 75, 2006].
@ Assumptions about skeleton expansion [Alkofer, M.Q.H.,
Schwenzer, arXiv:0801.2762]
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Infrared (IR) Analysis

Constraints from DSEs

Still, at the end there is a big system of inequalities that has to be
solved, e.g. gluon propagator in Landau gauge:

—dg=min( 0,20, +0638,205h + 0gg, Og ,405 + 203g,305 + Oag)
N e — N ——— ——

bare prop. gh loop gl loop tadpole squint sunset

—1 ~1 N
T =T v eve— ‘l’n'wézsrmf ;T@mi l,m@ﬂ\ L,A—K%Tr
) 2 2 2 6

min-function = set of inequalities,
e.g. from sunset —d, < 385 + dag.
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Infrared (IR) Analysis

IR Exponent for Arbitrary Diagram

System difficult to solve. Look for alternatives or shortcuts.

Arbitrary Diagram v Function of:
Numbers of vertices and propagators @ propagator IR exponents Ox;
related = possible to get a formula @ number of external legs m”Xi

for the IR exponent.

1 :
oy =— EZmX'(SXﬁL
1

@ number of vertices.

+ Z (# of dressed vertices),C; + Z (# of bare vertices),Cj

Bounds for coefficients C/ and C}:

¢l >0, Ci>0

= Maximally IR divergent solution: 4, = —% S mXidx, mll)
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Infrared (IR) Analysis

MAG Constraints, SU(2)

Instead of large system of inequalities, we use constraints:

5BBBB + 255 2 0; 5cccc + 25c Z 07
0aaBB + 04 +0p > 0, dAAcc + 04+ 6c >0,
58 2 07 (5C 2 07
dp+0g >0, 0a+ e >0,
0BBcc + 0B +6c > 0, o +6c >0,
1 1
0aBB + §5A +6p > 0, §6A +dp >0,
1 1
5Acc+§5A+5c207 §5A+5c20
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Infrared (IR) Analysis

MAG Constraints, SU(2)

Instead of large system of inequalities, we use constraints:

5BBBB + 255 > 0; 5cccc + 25c > 07
daaBB + 04+ >0, dAAcc + 04+ 0c > 0,
o >0, dc >0,
dp+0g >0, 0a+ e >0,
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Infrared (IR) Analysis

Results for the MAG

Leading Diagrams in Propagator DSEs

All sunsets with 2 diagonal & 2 off-diagonal fields

~— ~_ ~— ~—/

possibly some squints

@ IR enhanced diagonal gluon:
0p =0, =1k >0, oa = —kK
@ Supports

@ Vertices with 2 diagonal & 2 off- dlagonal fields do NOT scale,

i.e. 04aBB = 6aAcc = 0.
@ Several solutions for vertex functions possible,
e.g. 5ABB = —K Or 0 GRAZ
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Infrared (IR) Analysis
SU(2) vs. SU(3)

Even more diagrams in SU(3)

Inequalities from additional terms in SU(3)

3 3
5BBB+§55207 55520’
2 1
6BCC+7 +5CZO7 7554_56207
0B 2
) —1—15 —1—15 +6c>0 2 +15 + 6. >0
ABcc 2 A 2 B cZ VY, 5A 2 B c Z Y,
1 3 1 3
- 25g > - 265 >
0ABBB + 25A+ 253 >0, 25A+ 2(53 >0

c
z
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Motivation The Maximally Abelian Gauge (MAG) Infrared (IR) Analysis
SU(2) vs. SU(3)

Even more diagrams in SU(3)

Inequalities from additional terms in SU(3)

All inequalities less restrictive

= color SU(3) has the same qualitative IR behavior
as color SU(2).
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Infrared (IR) Analysis

Summary: General Results from Power Counting

e Maximally IR divergent solution depends on number of legs
and propagator IR exponents:

(SV = —;me"éxi.

e All diagrams scale equally in functional RGEs.
e Leading diagrams in DSEs determined by their bare vertices.

@ At least one vertex does not scale.

e Self-interacting fields (e.g. gluon in Landau gauge) have
non-negative IR exponents = no IR enhancement.

Huber M. Q. IR Behavior of YM Green Functions in MAG 30.9.08 18/19



Infrared (IR) Analysis

Summary: Results for the MAG

0p =0, =: k>0, 0pa=—kK

= supports Abelian dominance
hypothesis.
Off-diagonal fields (B, c) are IR suppressed (compared to

tree-level).

Four-point functions with 2 diagonal and 2 off-diagonal fields
do not scale = 2-loop diagrams IR leading.

For other vertices several solutions possible (for now...).

No qualitative difference between SU(2) and SU(3).
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