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ACHT 2015

Preliminary results for d = 3 dimensional Yang-Mills theory:

0.5

T e s w0z PV mQH, AcHT2015)

Today: Final results [MQH, PRD93, 1602.02038; MQH, 1606.02068].
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Goal: QCD phase diagram
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Goal: QCD phase diagram
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o Challenges for all methods at > T, e.g.

o Lattice QCD: complex action problem
o Models: parameters
o Functional methods: reliability of truncations
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QCD phase diagram from functional equations

241 flavor QCD from DSEs

[Fischer, Liicker, Welzbacher '14]:
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QCD phase diagram from functional equations

2+1 flavor QCD from DSEs 2 flavor QCD from PQM with FRG
[Fizs&)her, Liicker, Welzbacher '14]: [Herbst, Pawlowski, Schaefer '10]:
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QCD phase diagram from functional equations

Input for DSEs (see also talk by Contant):
o model for quark-gluon vertex (parameters fixed at = 0)
o fits for gluon and ghost propagators at = 0 from the lattice
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QCD phase diagram from functional equations

Input for DSEs (see also talk by Contant):
o model for quark-gluon vertex (parameters fixed at = 0)
o fits for gluon and ghost propagators at = 0 from the lattice

Possible improvements:

o fully dynamical propagators — require other vertices

o fully dynamical quark-gluon vertex — requires propagators & other vertices

Ultimately, full control over Yang-Mills part required!
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Landau gauge Yang-Mills theory

Gluonic sector of quantum chromodynamics: Yang-Mills theory

1
L= §F2+£gf+£gh
Fuw = (9,“4,, — 8VAH +ig [AH’ Al,]

Landau gauge

DAAA
o simplest one for functional equations P Y
1
0 0 A =0: Lg==(0,A.)° £¢-0 DAAAA
2¢ ~
o requires ghost fields: Lg =c(—O0+gAX)c ‘S; pAze
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Truncation of Yang-Mills system

Neglect all non-primitively divergent Green functions.
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Truncation of Yang-Mills system

Introduction

Neglect all non-primitively divergent Green functions.

Full propagator equations (two-loop diagrams!):
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Truncation of Yang-Mills system

Summary & conclusions

Neglect all non-primitively divergent Green functions.

Full propagator equations (two-loop diagrams!):
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Truncated three-point functions: Truncated four-gluon vertex:
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Truncation of Yang-Mills system

Neglect all non-primitively divergent Green functions.

Full propagator equations (two-loop diagrams!):

i i ‘1: i O -1 - sl
727 J_e_ A

I O deyead

Truncated three-point functions: Truncated four-gluon vertex:

NNy >< >< L ,
Yoy Ny
- 4y DR ¢

Technical questions: spurious divergences in gluon propagator, RG resummation

Markus Q. Huber University of Graz Oct. 6, 2016 7/17



Introduction Dyson-Schwinger equations YM in d=3 Summary & conclusions

Yang-Mills theory in 3 dimensions: Why again?

Historically interesting because cheaper on the lattice — easier to reach the IR.

However: Numerically not cheaper for functional equations of 2- and 3-point
functions.
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Yang-Mills theory in 3 dimensions: Why again?

Historically interesting because cheaper on the lattice — easier to reach the IR.

However: Numerically not cheaper for functional equations of 2- and 3-point
functions.

Advantages:
o UV finite: no renormalization, no anomalous running

o Spurious divergences easier to handle

= Many complications from d = 4 absent. — Focus on truncation effects.
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Results: Propagators
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Non-perturbative gauge fixing

Gribov copies: Gauge equivalent configurations that fulfill the Landau gauge
condition 0A = 0.

Up to here the minimal Landau gauge was shown for lattice data.
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Non-perturbative gauge fixing

Summary & conclusions

Gribov copies: Gauge equivalent configurations that fulfill the Landau gauge
condition 0A = 0.

Up to here the minimal Landau gauge was shown for lattice data.

Another possibility: Absolute Landau gauge (global minimum of gauge fixing
functional)

— Different solutions on the lattice,
€.g. [Maas '09, '11; Cucchieri '97; Bogolubsky et al. '05; Sternbeck, Miiller-Preussker '12].

Ghost dressinE function with type 1 wa\!hl\n!

[ ® Winimal Landau gauge
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T
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05 1 15

[Maas '13]

pice
NB: Different solutions also from functional equations [Boucaud et al. '08; Fischer,
Maas, Pawlowski '08].
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Non-perturbative gauge fixing

Gribov copies: Gauge equivalent configurations that fulfill the Landau gauge
condition 0A = 0.

Up to here the minimal Landau gauge was shown for lattice data.

Another possibility: Absolute Landau gauge (global minimum of gauge fixing
functional)
— Different solutions on the lattice

€.g. [Maas '09, '11; Cucchieri '9%

golubsky et al. '05; Sternbeck, Miiller-Preussker '12].

Ghost dressinE function with lype 1 w!\!hl\n!
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NB: Different solutions also from functional equations [Boucaud et al. '08; Fischer,
Maas, Pawlowski '08].
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Family of solutions

Cf. FRG results: Bare mass parameter from modified STls [Cyrol, Fister, Mitter,
Pawlowski, Strodthoff '16].

DSEs: Enforce family of solutions by fixing the gluon propagator at p® = 0.

Simple toy system with bare vertices [MQH, 1606.02068]:
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= Possibility of family of solutions.

NB: Effect overestimated here since vertices are fixed.
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Results: Three-point functions

Introduction

Dressings:

AP*P%P%) \'
14

o Maximum position shifted.
o Bump height ok.
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[lattice: Maas, unpublished]

DMA(p?.p?.p%)
15 I
1.0
HTH
05 Ii I ‘
0ot 1 y 12 4 5 p[GeV]
08 H o Good agreement with lattice data.
-1.0
s o Linear IR divergence.
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[lattice: Cucchieri, Maas, Mendes '08]
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Varying the four-gluon vertex

How stable is the truncation? ‘
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Varying the four-gluon vertex

Introduction

How stable is the truncation? ‘
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Varying the four-gluon vertex

How stable is the truncation? ‘

tree-level

Compare: v |1

o full four-gluon vertex

o bare four-gluon vertex pGeV?]

2%
151
or : ; PIGeV]
05k dyn. 4-gluon vertex 10 dyn. 4-gluon vertex
----- bare 4-gluon vertex 45 =====bare 4-gluon vertex
Ty e

— Very similar results.
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Solution from the 3Pl effective action

Different set of functional equations:
equations of motion from 3Pl effective action (at three-loop level)
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Solution from the 3Pl effective action

Different set of functional equations:
equations of motion from 3Pl effective action (at three-loop level)
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— Very similar results.
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Dyson-Schwinger equations YM in d=3

Gluon propagator: Single diagrams

Summary & conclusions

-, i
e

o Squint important in midmomentum

regime.
< tadpolepf o Sunset contribution small.
ghost loop x p? sunset x p? /Q\
10+ P?[GeV?]
0.01 0.10 1 10 100 1000
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YM in d=3 Summary & conclusions

Cancellations in gluonic vertices

Three-gluon vertex:

2 2 2
DM p? 0% p%)
0.6 ghost tr.
o4t mm=e—— gluon tr.
,/\\ stat. swordf.
02 - AN
[ I —— - N, dyn.swordf.
\~~~
0.10 1 0 100p[GeV]
-0.2
-04
-06
Four-gluon vertex:
D™ (pc)
1.0 e ghOSt bOX
_____ gluon box
........ static triangle
0.5 e sWordfish
..... dynamic triangle
\_-.-""“
L e e P T A = -
0.010 0100 =7 10 100 p[GeV]
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o Individual contributions large.

o Sum is small.
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Cancellations in gluonic vertices

Three-gluon vertex:

DMMP? p%p°)
0.6 ghost tr.
o4t mm=== gluon tr.
Ve ”\ stat. swordf.
02 ’/ N\
) N - e dyn.swordf. Individual ibuti |
Se~_ @ Individual contributions large.
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-02] o Sum is small.
-04 /
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Four-gluon vertex: Higher contributions:

o Higher vertices close to 'tree-level’ ?

DAAAA10 (pc) — Small.
R e ghostbox
----- gluon box o If pattern changes (higher vertices
-------- static triangle . .
05 swordsh large): cancellations required.
1-“‘. « =« = dynamic triangle
0010 0100 -1 10 0 PIGEV]
-0.5
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Summary and conclusions

Test truncation effects in d = 3, where spurious divergences and RG
resummation are understood:

o Used a self-contained truncation — no model parameters.

o Truncation stable under all tested variations:

o comparison with 3Pl
o changing the four-gluon vertex
o different DSEs for the ghost-gluon vertex

o Hierarchy of diagrams identified.

o Direct relation between different solutions in continuum and on the lattice
to be understood.
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Summary and conclusions

Test truncation effects in d = 3, where spurious divergences and RG
resummation are understood:

o Used a self-contained truncation — no model parameters.

o Truncation stable under all tested variations:

o comparison with 3Pl
o changing the four-gluon vertex
o different DSEs for the ghost-gluon vertex

o Hierarchy of diagrams identified.

o Direct relation between different solutions in continuum and on the lattice
to be understood.

Thank you for your attention.
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