# The puzzle of confinement: putting together some pieces

#### Markus Q. Huber

in collaboration with Reinhard Alkofer, Kai Schwenzer, Silvio S. Sorella

Institute of Nuclear Physics, Technical University Darmstadt

Nov. 10, 2011

#### Darmstadt, IKP Theorie-Seminar

Unterstützt von / Supported by

onterstutzt von / supported by

Alexander von Humboldt Stiftung/Foundation



## Our view of the world in terms of particles

#### The standard model:





## Our view of the world in terms of particles



## Confinement

Inelastic scattering: Atoms  $\rightarrow$  constituents Hadrons  $\rightarrow$  more hadrons

"Absence of free quarks and gluons."

"Quarks and gluons are not part of the physical state space."

Quarks: no fractional charges have been found

We observe hadrons but use (unobservable) quarks and gluons as elementary fields.

Several confinement scenarios/mechanisms

View the problem from different perspectives  $\rightarrow$  not mutually exclusive but different aspects emphasized.

see e.g. [Alkofer, Greensite, JPG34 (2007)] for a short review

#### Confinement scenarios: a selection





## Dual superconductor picture of confinement

Conventional type-II superconductor:

- magnetic flux squeezed into vortices
- condensation of Cooper pairs





't Hooft 1976, Mandelstam 1976

Dual superconductor:

- electric flux squeezed into vortices
- condensation of magnetic monopoles



## Dual superconductor picture of confinement

Conventional type-II superconductor:

- magnetic flux squeezed into vortices
- condensation of Cooper pairs



Theories where confinement was proven: compact U(1), Georgi-Glashow model, deformed  $\mathcal{N} = 2$  SUSY Yang-Mills

't Hooft 1976, Mandelstam 1976

Dual superconductor:

- chromoelectric flux squeezed into vortices
- condensation of chromomagnetic monopoles



 $\rightarrow$  In all condensation of magnetic monopoles!

#### Abelian infrared dominance

Hypothesis of Abelian infrared dominance [Ezawa, Iwazaki, PRD25 (1981)]: based on dual superconductor picture



### Abelian infrared dominance

Hypothesis of Abelian infrared dominance [Ezawa, Iwazaki, PRD25 (1981)]: based on dual superconductor picture



What is the Abelian part?

$$[A^a_{\mu}, A^b_{\nu}] = 0?$$

## Gauge actions

Action is invariant under gauge transformations.  $\rightarrow$  (Infinitely) Many equivalent configurations. Space of field configurations  $\mathcal{A}$  is not the physical space!

Gauge transformations connect physically equivalent configurations.  $\rightarrow$  Physical space is the quotient space over the gauge group G:

$$\mathcal{A}_{phys} = \mathcal{A}/G$$

Realization: Fix a gauge.





Faddeev and Popov: Restriction of integration to single representative of each gauge orbit possible? Gauge symmetry replaced by BRST symmetry!



Restriction to Gribov horizon: almost unique gauge fixing. Can be implemented in action.

## Gauge fixing

Restriction of integration, e.g. to a hypersurface  $\Gamma : f[A] = 0$  (gauge fixing condition, e.g.,  $\partial A = 0$ )

# Gauge fixing

Restriction of integration, e.g. to a hypersurface  $\Gamma: f[A] = 0$  (gauge fixing condition, e.g.,  $\partial A = 0$ )

Freedom to choose any gauge!

- Perturbation theory: Feynman gauge convenient, propagator simple  $(g_{\mu\nu}/p^2)$
- Dyson-Schwinger equations: Landau gauge, simplification of calculations. Helped us learn the method.
- Deep inelastic scattering: light-cone gauge
- Dual superconductor scenario: Abelian gauges

# Gauge fixing

Restriction of integration, e.g. to a hypersurface  $\Gamma : f[A] = 0$  (gauge fixing condition, e.g.,  $\partial A = 0$ )

Freedom to choose any gauge!

- Perturbation theory: Feynman gauge convenient, propagator simple  $(g_{\mu\nu}/p^2)$
- Dyson-Schwinger equations: Landau gauge, simplification of calculations. Helped us learn the method.
- Deep inelastic scattering: light-cone gauge
- Dual superconductor scenario: Abelian gauges

(All these gauges are non-perturbatively not complete: There are still equivalent configurations on  $\Gamma$ .  $\rightarrow$  Gribov problem Physical space  $\mathcal{A}_{phys}$  is topological not trivial!

Theorem of Singer 1978:

No unique gauge fixing with a continuous gauge fixing condition.)

## Hypothesis of Abelian IR dominance

Choose a gauge suitable for investigating hypothesis of Abelian IR dominance.

## Hypothesis of Abelian IR dominance

Choose a gauge suitable for investigating hypothesis of Abelian IR dominance.

Landau gauge?  $\rightarrow$  no monopoles, meaning of Abelian component of the gauge field?

Need a gauge where meaning of Abelian component is clear.

## Hypothesis of Abelian IR dominance

Choose a gauge suitable for investigating hypothesis of Abelian IR dominance.

Landau gauge?  $\rightarrow$  no monopoles, meaning of Abelian component of the gauge field? Need a gauge meaning of Abelian component is also.

Need a gauge where meaning of Abelian component is clear.  $\Rightarrow$  maximally Abelian gauge

## The maximally Abelian gauge I

Dual superconductor picture based on Abelian symmetry. What is it for SU(3)?

Approach here: Split the gauge field into diagonal and off-diagonal parts.

#### The maximally Abelian gauge II

Gauge field components:

$$A_{\mu} = A^{i}_{\mu}T^{i} + B^{a}_{\mu}T^{a}, \quad i=1,\ldots,N-1, \quad a=N,\ldots,N^{2}-1$$

Abelian subalgebra:  $[T^i, T^j] = 0$ , can be written as diagonal matrices

Abelian  $\leftrightarrow$  diagonal fields A, non-Abelian  $\leftrightarrow$  off-diagonal fields B.

E.g. 
$$T^1 = \frac{1}{2}\lambda^3$$
,  $T^2 = \frac{1}{2}\lambda^8$  for  $SU(3)$ .  
Which interactions are possible ( $[T^r, T^s] = i f^{rst}T^t$ )?

#### The maximally Abelian gauge II

Gauge field components:

$$A_{\mu} = A^{i}_{\mu}T^{i} + B^{a}_{\mu}T^{a}, \quad i = 1, ..., N - 1, \quad a = N, ..., N^{2} - 1$$

Abelian subalgebra:  $[T^i, T^j] = 0$ , can be written as diagonal matrices

Abelian  $\leftrightarrow$  diagonal fields A, non-Abelian  $\leftrightarrow$  off-diagonal fields B.

E.g. 
$$T^1 = \frac{1}{2}\lambda^3$$
,  $T^2 = \frac{1}{2}\lambda^8$  for  $SU(3)$ .

Which interactions are possible  $([T^r, T^s] = i f^{rst} T^t)$ ?

|                   | <i>SU</i> (2) | <i>SU</i> ( <i>N</i> > 2) |
|-------------------|---------------|---------------------------|
| f <sup>ijk</sup>  | 0             | 0                         |
| f <sup>ij a</sup> | 0             | 0                         |
| f <sup>iab</sup>  | $\checkmark$  | $\checkmark$              |
| f <sup>abc</sup>  | 0             | $\checkmark$              |

 $\rightarrow$  SU(2) and SU(3) different?

## Gauge fixing condition

Stress role of diagonal fields  $\Rightarrow$  minimize norm of off-diagonal field **B**:

$$||B_U|| = \int dx \ B_U^a B_U^a \to \text{minimize wrt. gauge transformations } U$$

$$\begin{split} D^{ab}_{\mu}B^{b}_{\mu} &= (\delta_{ab}\partial_{\mu} - g\,f^{abi}A^{i}_{\mu})B^{b}_{\mu} = 0 \qquad \text{non-linear gauge fixing condition!} \\ \text{Gauge fixing introduces off-diagonal ghost fields.} \end{split}$$

Remaining symmetry of diagonal part:  $U(1)^{N-1}$ 

Fix gauge of diag. gluon field **A** by Landau gauge condition:  $\partial_{\mu} A_{\mu} = 0$  $\Rightarrow$  diagonal ghosts decouple (like in QED).

### Lagrangian for the MAG



### Functional equations

<u>Green functions:</u> Propagators and vertices  $\leftrightarrow$  describe how fields propagate and interact.

Exact relations between Green functions given by, e.g., Dyson-Schwinger and functional renormalization group equations.



#### Valid non-perturbatively:

dressed propagators and vertices!

Infinite tower of coupled equations: every eq. contains higher Green functions.

## Landau Gauge: Propagators



Ghost propagator:



### Functional equations of the maximally Abelian gauge

#### Partial DSE of the diagonal propagator:



#### DSEs of the MAG

diagonal, off-diagonal, ghost





#### DSEs of the MAG

diagonal, off-diagonal, ghost



Complete analysis of all diagrams!

## Analysis of big systems of functional equations

Big systems require shortcuts!

Two important methods/tools:

Automatization of calculations

- DoFun: derive DSEs and FRGEs in Mathematica [Alkofer, MQH, Schwenzer, CPC180 (2009); MQH, Braun, 1102.5307]
- *CrasyDSE*: provides framework for calculating DSEs, e.g. creates kernels automatically [MQH, Mitter, arXiv:111x.yzuv]

Combination of DSEs and FRGEs

- introduced by Fischer, Pawlowski for Landau gauge [Fischer, Pawlowski, PRD75 (2007)]
- scaling analysis can be generalized to generic systems [MQH, Schwenzer, Alkofer, EPJC68 (2010)]
   →Understanding of the generic structure of the equations with closed formulae for all important information.

### Infrared power counting



- Vertices also assume power law behavior [e.g., Alkofer, Fischer, Llanes-Estrada, PLB 611 (2005) (skeleton expansion)].
- Limit of all momenta approaching zero simultaneously.
- Upon integration all momenta converted into powers of external momenta.

 $\Rightarrow$  counting of IR exponents

### System of inequalities

• Ihs is dominated by at least one diagram on rhs and rhs cannot be more divergent than lhs:

 $\rightarrow \delta_{\textit{lhs}} {\leq} \delta_{\textit{rhs},\textit{any diagram}}$ 

• Not knowing which diagram is leading on the rhs, we can write inequalities from all diagrams.

### System of inequalities

 Ihs is dominated by at least one diagram on rhs and rhs cannot be more divergent than lhs:

$$ightarrow \delta_{lhs} {\leq} \delta_{rhs,any} \, {\it diagram}$$

• Not knowing which diagram is leading on the rhs, we can write inequalities from all diagrams.

$$-\frac{1}{2} + \frac{1}{2} - \frac{1$$

 $-\delta_{gl} \leq 2\delta_{gl} + \delta_{3g}, \qquad -\delta_{gl} \leq 2\delta_{gh} + \delta_{gg}, \qquad \ldots$ 

That's the basic idea.

Still, for a large system a lot of work.

#### System of inequalities

 Ihs is dominated by at least one diagram on rhs and rhs cannot be more divergent than lhs:

$$ightarrow \delta_{lhs} {\leq} \delta_{rhs,any} \, {\it diagram}$$

• Not knowing which diagram is leading on the rhs, we can write inequalities from all diagrams.

$$-\frac{1}{2} + \frac{1}{2} - \frac{1$$

 $-\delta_{gl} \leq 2\delta_{gl} + \delta_{3g}, \qquad -\delta_{gl} \leq 2\delta_{gh} + \delta_{gg}, \qquad \ldots$ 

That's the basic idea. All inequalities relevant?

Still, for a large system a lot of work.

MQH

### IR analysis of large systems

#### Combining DSEs and FRGEs

 $\Rightarrow$  All relevant inequalities can be written down in closed form.

We obtain the IR exponents of all Green functions!

 $\rightarrow$  Qualitative behavior of all Green functions known for low momenta without truncations.

Typically all IR exponents exponents can be expressed with one variable. for the MAG:  $\kappa_{MAG}$ 

#### Infrared solution for the maximally Abelian gauge

Qualitative behavior of propagators at low momentum p ( $\kappa_{MAG} \ge 0$ ): [MQH, Schwenzer, Alkofer, EPJC68 (2010)]

- Off-diagonal gluon propagator is IR suppressed ~  $(p^2)^{\kappa_{MAG}-1}$
- Ghost propagator (off-diag.) is IR suppressed  $\sim (p^2)^{\kappa_{MAG}-1}$ .
- Diagonal gluon propagator is IR enhanced  $\sim (p^2)^{-\kappa_{MAG}-1}$ .  $\rightarrow$  Diagrams with most diagonal gluons dominate in DSEs.
- Qualitative solution for the whole tower of Green functions.

 $\rightarrow$  IR dominance of diagonal/"Abelian" degrees of freedom.

canonical dim.

#### Infrared solution for the maximally Abelian gauge

Qualitative behavior of propagators at low momentum p ( $\kappa_{MAG} \ge 0$ ): [MQH, Schwenzer, Alkofer, EPJC68 (2010)]

- Off-diagonal gluon propagator is IR suppressed ~  $(p^2)^{\kappa_{MAG}-1}$
- Ghost propagator (off-diag.) is IR suppressed  $\sim (p^2)^{\kappa_{MAG}-1}$ .
- Diagonal gluon propagator is IR enhanced  $\sim (p^2)^{-\kappa_{MAG}-1}$ .  $\rightarrow$  Diagrams with most diagonal gluons dominate in DSEs.
- Qualitative solution for the whole tower of Green functions.

 $\rightarrow$  IR dominance of diagonal/"Abelian" degrees of freedom.

(SU(N > 2) has more interactions than SU(2), but the IR solution is the same.) canonical dim.

### Value of the infrared exponent $\kappa_{MAG}$

Solution for  $\kappa_{MAG}$  is <u>necessary but not sufficient</u>. Dressing functions of gluons and ghosts:

 $\begin{aligned} c_A(p^2) \stackrel{p^2 \to 0}{=} d_A \cdot (p^2)^{-\kappa_{MAG}} & c_c(p^2) \stackrel{p^2 \to 0}{=} d_c \cdot (p^2)^{\kappa_{MAG}} \\ c_B(p^2) \stackrel{p^2 \to 0}{=} d_B \cdot (p^2)^{\kappa_{MAG}} & 0 \le \kappa_{MAG} \le 1 \end{aligned}$ 

 $\kappa_{\textit{MAG}}\approx 0.74$ 

 $\rightarrow$  Infrared consistent solution exists.

Gauge fixing condition:  $D_{\mu}A_{\mu} = 0 \leftrightarrow$  gauge fixing parameter  $\alpha_{MAG}$ , MAG:  $\alpha_{MAG} = 0$ (cf. linear covariant gauges:  $\partial_{\mu}A_{\mu} = 0 \leftrightarrow \alpha_{LCG}$ , Landau gauge:  $\alpha_{LCG} = 0$ )

## Gauge fixing parameter dependence

Extension to non-zero  $\alpha_{MAG}$  easily possible, not easy for Landau gauge and linear covariant gauges [MQH, Alkofer, Schwenzer, PoS(FACESQCD) (2010)].

Two solution branches:



General linear covariant gauges: different from the Landau gauge  $\rightarrow$  The maximally Abelian is the first case where an IR solution is found that seems independent of the gauge fixing parameter.

Neither Landau gauge nor MAG are complete gauges.

 $\rightarrow$  Test influence of Gribov horizon for Landau gauge.



Restriction to Gribov region is done via adding a non-local term to the Lagrangian.  $\rightarrow$  New parameter  $\gamma$ , determined by horizon condition.

## Local Gribov-Zwanziger action

Add non-local horizon function h

to the Faddeev-Popov action [Zwanziger, NPB323 (1989)]:

$$\int dx \, \mathcal{L} = \int dx (\mathcal{L}_{FP} + \gamma^4 h)$$

## Local Gribov-Zwanziger action

Add non-local horizon function *h* to the Faddeev-Popov action [Zwanziger, NPB323 (1989)]:

$$\int dx \, \mathcal{L} = \int dx \, (\mathcal{L}_{FP} + \gamma^4 h)$$

Localization with (anti)commuting fields  $(\bar{\eta}_{\mu}^{ab}, \eta_{\mu}^{ab}) V_{\mu}^{ab}$ :

$$\mathcal{L}_{GZ} = \mathcal{L}_{FP}' - \bar{\eta}_{\mu}^{ac} M^{ab} \eta_{\mu}^{bc} + \frac{1}{2} V_{\mu}^{ac} M^{ab} V_{\mu}^{bc} + \mathbf{i} \mathbf{g} \gamma^2 \sqrt{2} f^{abc} A_{\mu}^a V_{\mu}^{bc}$$

$$\int_{\mathbf{F}} Faddeev-Popov \text{ operator: } -\partial D^{ab}$$

#### Perturbative analysis of the Gribov-Zwanziger action

Gluon propagator:

$$\delta^{ab} P_{\mu\nu}(p) \frac{p^2}{p^4 + 2 N g^2 \gamma^4}$$

vanishes at zero momentum ightarrow violation of positivity, gluon confined

Ghost propagator:

$$\sim \frac{1}{k^4}$$

IR enhanced  $\rightarrow$  ghost dominance

## Gribov-Zwanziger confinement picture

Originally defined in Landau and Coulomb gauge:

[Gribov NPB139 (1989); Zwanziger NPB364 (1991)]

- Gluon propagator vanishes at zero momentum  $\rightarrow$  violation of positivity (indication of gluon being confined)
- Ghost propagator infrared enhanced

 $\rightarrow$  ghost dominant degree of freedom ghost dominance

ullet Horizon condition ightarrow boundary condition for functional equations

## Gribov-Zwanziger confinement picture

Originally defined in Landau and Coulomb gauge:

[Gribov NPB139 (1989); Zwanziger NPB364 (1991)]

- Gluon propagator vanishes at zero momentum  $\rightarrow$  violation of positivity (indication of gluon being confined)
- Ghost propagator infrared enhanced

 $\rightarrow$  ghost dominant degree of freedom ghost dominance

 $\bullet\,$  Horizon condition  $\to$  boundary condition for functional equations

Dominant configurations: close to the Gribov horizon

#### Supported by:

- Semi-perturbative analysis based on improved gauge fixing [Gribov NPB139 (1989); Zwanziger, NBP323 (1989); NBP399 (1993)]
- Non-perturbative results from functional equations [e. g. von Smekal, Hauck, Alkofer, PRL79 (1997); Pawlowski, Litim, Nedelko, von Smekal, PRL93 (2004)]

## Ghost dominance from DSEs

Using Faddeev-Popov action: qualitatively the same solution (vanishing gluon and enhanced ghost propagators) + family of other solutions



#### DSEs of Gribov-Zwanziger action 1

#### Just to give an impression:



### DSEs of Gribov-Zwanziger action II

Just to give an impression:



Complete analysis of all diagrams!

#### Propagators and two-point functions

Mixing at two-point level:  $i g \gamma^2 \sqrt{2} f^{abc} A^a_{\mu} V^{bc}_{\mu}$ 

$$D^{\phi\phi} = (\Gamma^{\phi\phi})^{-1}, \qquad \phi \in \{A, V\}$$

 $\Rightarrow$  Non-trivial relationship between propagators and two-point functions.

#### Propagators and two-point functions

Mixing at two-point level:  $i g \gamma^2 \sqrt{2} f^{abc} A^a_{\mu} V^{bc}_{\mu}$ 

$$D^{\phi\phi} = (\Gamma^{\phi\phi})^{-1}, \qquad \phi \in \{A, V\}$$

 $\Rightarrow$  Non-trivial relationship between propagators and two-point functions.

Example: VV-two-point function,

$$\Gamma^{VV,abcd}_{\mu\nu} = \delta^{ac} \delta^{bd} p^2 \boldsymbol{c_V}(\boldsymbol{p^2}) g_{\mu\nu}$$

dressing function  $c_V(p^2) \xrightarrow{p^2 \to 0} d_V \cdot (p^2)^{\mathsf{K}_V}$  infrared exponent

#### Propagators and two-point functions

Mixing at two-point level:  $i g \gamma^2 \sqrt{2} f^{abc} A^a_{\mu} V^{bc}_{\mu}$ 

$$D^{\phi\phi} = (\Gamma^{\phi\phi})^{-1}, \qquad \phi \in \{A, V\}$$

 $\Rightarrow$  Non-trivial relationship between propagators and two-point functions.

Example: VV-two-point function,

$$\nabla^{VV,abcd}_{\mu
u} = \delta^{ac} \delta^{bd} p^2 c_V(p^2) g_{\mu
u}$$

dressing function  $c_V(p^2) \xrightarrow{p^2 \to 0} d_V \cdot (p^2)^{\mathsf{K}_V}$  *VV*-propagator:

$$D_{\mu\nu}^{VV,abcd} = \frac{1}{p^2} \frac{1}{c_V(p^2)} \delta^{ac} \delta^{bd} g_{\mu\nu} - f^{abe} f^{cde} \frac{1}{p^2} P_{\mu\nu} \frac{2c_{AV}^2(p^2)}{c_A^{\perp}(p^2)c_V^2(p^2) + 2N c_{AV}^2(p^2)c_V(p^2)}$$

### IR solution of Gribov-Zwanziger action

Scaling relation of IR exponents:  $\kappa_V = \kappa_c = -\kappa_A/2 = 0.595353$ [MQH, Alkofer, Sorella, PRD81 (2010); AIP CP1343 (2011)]

- System reduces in the IR to the Faddeev-Popov system.
- $\Rightarrow$  Same IR solution, i.e.,
  - IR vanishing gluon propagator,
  - IR enhanced ghost propagator,
  - qualitative behavior of all vertices known.
- Mixed propagator is IR suppressed.
- Auxiliary fields are IR enhanced, as in [Zwanziger, PRD81 (2010)].

Corroborates Zwanziger's argument on cutting the integral at  $\partial \Omega$ .

Adding new terms to action and recovering old action.  $\rightarrow$  Reminiscent of renormalization group approach. Irrelevant operators?

### The maximally Abelian and the Landau gauge

Structures of equations considerably different in the two gauges.

|                         | Landau gauge                | Maximally Abelian gauge |
|-------------------------|-----------------------------|-------------------------|
|                         | (ghost dominance)           | (Abelian dominance)     |
| dominant configurations | Gribov horizon              | diagonal                |
|                         | $( ightarrow 	ext{ghosts})$ |                         |

### The maximally Abelian and the Landau gauge

Structures of equations considerably different in the two gauges.

|                         | Landau gauge                                                    | Maximally Abelian gauge |
|-------------------------|-----------------------------------------------------------------|-------------------------|
|                         | (ghost dominance)                                               | (Abelian dominance)     |
| dominant configurations | $\begin{array}{c} Gribov \ horizon \\ (\to ghosts) \end{array}$ | diagonal                |

Abelian configurations discrete strain and a strain an

This relation is also reflected in the behavior of Green functions.

[MQH, Alkofer, Sorella, PRD81 (2010)]















## Summary

- Several confinement pictures on the market.
- Not mutually exclusive, but focus on different aspects, for example: Abelian degrees of freedom, structure of field configuration space, vortices, ...
- In the maximally Abelian gauge there may exist a solution that supports Abelian IR dominance motivated by dual superconductor picture.
- "Improving" the gauge fixing does not alter the non-perturbative scaling solution in the Landau gauge (ghost dominance).
- In order to understand confinement, one of the great challenges of particle physics, we need to understand the connections between different confinement scenarios.

## The end

#### Thank you very much for your attention.