Status of glueball calculations from functional methods

Markus Q. Huber

Institute of Theoretical Physics Giessen University

PANDA Collaboration Meeting 22/3 Darmstadt, Germany, Oct. 12, 2022

In collaboration with Christian S. Fischer, Hèlios Sanchis-Alepuz: Eur.Phys.J.C 80, arXiv:2004.00415 \rightarrow J=0 Eur.Phys.J.C 80, arXiv:2110.09180 \rightarrow J=0,2,3,4 vConf21, arXiv:2111.10197 \rightarrow +higher terms HADRON2021, arXiv:2201.05163 \rightarrow +higher terms

Introduction

Bound states and multiplets

Quark model: Classification in terms of mesons or baryons \rightarrow multiplets

Outside this classification \rightarrow exotics

Introduction

Scalar sector

Classification not always easy, e.g., scalar sector $J^{PC} = 0^{++}$:

 $ightarrow qar{q}$ mesons, tetraquarks and glueballs

Introduction

Scalar sector

Classification not always easy, e.g., scalar sector $J^{PC} = 0^{++}$:

 $ightarrow qar{q}$ mesons, tetraquarks and glueballs

Tetraquarks [Jaffe, PRD15 (1977)] Functional review: [Eichmann, Fischer, Santowsky, Wallbott, Few-Body Syst.61 (2020)]

Glueballs

Non-Abelian nature of QCD \rightarrow self-interaction of force fields.

Mass dynamically created from massless (due to gauge invariance) gluons.

Theory:

Glueballs from gauge inv. operators, e.g., $F_{\mu\nu}F^{\mu\nu}$.

 \rightarrow Mixing of operators with equal quantum numbers.

Experiment:

Production in glue-rich environments, e.g., $p\bar{p}$ annihilation (PANDA), pomeron exchange in pp (central exclusive production), radiative J/ψ decays

Reviews on glueballs: [Klempt, Zaitsev, Phys.Rept.454 (2007); Mathieu, Kochelev, Vento, Int.J.Mod.Phys.18 (2009); Crede, Meyer, Prog.Part.Nucl.Phys.63 (2009); Ochs, J.Phys.G40 (2013); Llanes-Estrada, EPJST 230 (2021)]

Glueball spectrum

Scalar glueballs from J/ψ decay

Coupled-channel analyses of exp. data (BESIII):

- +add. data, largest overlap with $f_0(1770)$
- largest overlap with $f_0(1710)$

[Sarantsev, Denisenko, Thoma, Klempt, Phys. Lett. B 816 (2021)]

[Rodas et al., Eur.Phys.J.C 82 (2022)]

Glueball calculations: Lattice

Glueball calculations: Lattice

Lattice methods

Pure gauge theory: No dynamic quarks. \rightarrow "Pure" glueballs

- [Morningstar, Peardon, Phys. Rev. D60 (1999)]: standard reference
- [Athenodorou, Teper, JHEP11 (2020)]: improved statistics, more states

"Real QCD":

• . . .

- [Gregory et al., JHEP10 (2012)]
- [Brett et al., AIP Conf.Proc. 2249 (2020)]
- [Chen et al., 2111.11929]
- [Review talk LATTICE2022 by D. Vadacchino]

Challenging:

- Much higher statistics required (poor signal-to-noise ratio)
- Continuum extrapolation and inclusion of fermionic operators still to be done
 - Mixing with $\bar{q}q$ challenging
 - $m_{\pi}=360\,{
 m MeV}$
 - Tiny (e.g., 0⁺⁺, 2⁺⁺) to moderate unquenching effects (e.g., 0⁻⁺) found

No quantitative results yet.

Functional spectrum calculations

Functional methods successful in describing many aspects of the hadron spectrum qualitatively and quantitatively!

[Eichmann, Fischer, Sanchis-Alepuz, Phys.Rev.D94 (2016)]

Functional spectrum calculations

Functional methods successful in describing many aspects of the hadron spectrum qualitatively and quantitatively!

[[]Eichmann, Fischer, Sanchis-Alepuz, Phys.Rev.D94 (2016)]

Workhorse for more than 20 years: Rainbow-ladder truncation with an effective interaction, e.g., Maris-Tandy (or similar). (or similar). perturbative UV + IR strength restricted structure of equations ($\Gamma_{\mu} \rightarrow \gamma_{\mu}$)

Results for mesons beyond rainbow-ladder, e.g., [Williams, Fischer, Heupel, Phys.Rev.D 93 (2016)].

Functional glueball calculations

Glueballs? Rainbow-ladder?

Functional glueball calculations

Glueballs? Rainbow-ladder?

There is no rainbow for gluons!

Functional glueball calculations

Glueballs? Rainbow-ladder?

There is no rainbow for gluons!

<u>Model based</u> BSE calculations (J = 0):

- [Meyers, Swanson, Phys.Rev.D87 (2013)]
- [Sanchis-Alepuz, Fischer, Kellermann, von Smekal, Phys.Rev.D92, (2015)]
- [Souza et al., Eur.Phys.J.A56 (2020)]
- [Kaptari, Kämpfer, Few Body Syst.61 (2020)]

Functional glueball calculations

There is no rainbow for gluons!

Glueballs? Rainbow-ladder?

<u>Model based</u> BSE calculations (J = 0):

- [Meyers, Swanson, Phys.Rev.D87 (2013)]
- [Sanchis-Alepuz, Fischer, Kellermann, von Smekal, Phys.Rev.D92, (2015)]
- [Souza et al., Eur.Phys.J.A56 (2020)]
- [Kaptari, Kämpfer, Few Body Syst.61 (2020)]

Alternative: Calculated input [MQH, Phys.Rev.D 101 (2020)]

- J = 0: [MQH, Fischer, Sanchis-Alepuz, Eur.Phys.J.C80 (2020)]
- J = 0, 2, 3, 4: [MQH, Fischer, Sanchis-Alepuz, Eur.Phys.J.C81 (2021)]

Extreme sensitivity on input!

• Require scattering kernel *K* and propagator.

- Require scattering kernels *K* and propagators.
- Quantum numbers determine which amplitudes Γ couple.

- Require scattering kernels *K* and propagators.
- Quantum numbers determine which amplitudes Γ couple.
- Ghosts from gauge fixing

One framework

- Natural description of mixing.
- Similar equations for hadrons with more than two constituents

Focus on pure glueballs.

- Require scattering kernels *K* and propagators.
- Quantum numbers determine which amplitudes Γ couple.
- Ghosts from gauge fixing

One framework

- Natural description of mixing.
- Similar equations for hadrons with more than two constituents

Kernels

Systematic derivation from 3PI effective action: [Berges, PRD70 (2004); Carrington, Gao, PRD83 (2011)] Self-consistent treatment of 3-point functions requires 3-loop expansion.

[Fukuda, Prog. Theor. Phys 78 (1987); McKay, Munczek, Phys. Rev. D 40 (1989); Sanchis-Alepuz, Williams, J. Phys: Conf. Ser. 631 (2015); MQH. Fischer, Sanchis-Alepuz, Eur, Phys. J. C80 (2020)]

Correlation functions

Correlation functions of quarks and gluons

Equations of motion: 3-loop 3PI effective action

 \rightarrow [Review: MQH, Phys.Rept. 879 (2020)]

-1

- Conceptual and technical challenges: nonperturbative renormalization, two-loop diagrams, convergence, size of kernels, ...
- Self-contained: Only parameters are the strong coupling and the quark masses!
- Long way, e.g., ghost-gluon vertex [MQH, von Smekal, JHEP 04 (2013)], three-gluon vertex [Blum, MQH, Mitter, von Smekal, PRD89 (2014)], four-gluon vertex [Cyrol, MQH, von Smekal, EPJC 75 (2015)], ...,
- \rightarrow MQH, Phys.Rev.D 101 (2020)

Correlation functions

Correlation functions of quarks and gluons

Equations of motion: 3-loop 3PI effective action

 \rightarrow [Review: MQH, Phys.Rept. 879 (2020)]

-1

-1

- Conceptual and technical challenges: nonperturbative renormalization, two-loop diagrams, convergence, size of kernels, ...
- Self-contained: Only parameters are the strong coupling and the quark masses!
- Long way, e.g., ghost-gluon vertex [MQH, von Smekal, JHEP 04 (2013)], three-gluon vertex [Blum, MQH, Mitter, von Smekal, PRD89 (2014)], four-gluon vertex [Cyrol, MQH, von Smekal, EPJC 75 (2015)], ...,
- \rightarrow MQH, Phys.Rev.D 101 (2020)

Start with pure gauge theory.

Landau gauge propagators

Self-contained: Only external input is the coupling!

Gluon dressing function:

Family of solutions [von Smekal, Alkofer, Hauck, PRL79 (1997); Aguilar, Binosi, Papavassiliou, Phys.Rev.D 78 (2008); Boucaud et al., JHEP06 (2008); Fischer, Maas, Pawlowski, Ann.Phys. 324 (2008); Alkofer, MQH, Schwenzer, Phys. Rev. D 81 (2010)]

Nonperturbative completions of Landau gauge [Maas, Phys. Lett. B 689 (2010)]?

Three-gluon vertex:

Ghost dressing function:

Markus Q. Huber (Giessen University)

[MQH, Phys.Rev.D 101 (2020)]

Stability of the solution

• Agreement with lattice results.

Stability of the solution

- Agreement with lattice results.
- Concurrence between functional methods: 3PI vs. 2-loop DSE:

DSE vs. FRG:

Stability of the solution

- Agreement with lattice results.
- Concurrence between functional methods: \checkmark

3PI vs. 2-loop DSE:

[Cucchieri, Maas, Mendes, Phys.Rev.D77 (2008); Sternbeck et al., Proc.Sci. LATTICE2016 (2017); Cyrol et al., Phys.Rev.D 94 (2016); MQH, Phys.Ref.D101 (2020)]

Markus Q. Huber (Giessen University)

Stability of the solution: Extensions

• Three-gluon vertex: Tree-level dressing dominant, others subleading [Eichmann, Williams, Alkofer,

Vujinovic, Phys.Rev.D89 (2014); Pinto-Gómez et al., 2208.01020]

Stability of the solution: Extensions

- Three-gluon vertex: Tree-level dressing dominant, others subleading [Eichmann, Williams, Alkofer, Vujinovic, Phys.Rev.D89 (2014); Pinto-Gómez et al., 2208.01020]
- Four-gluon vertex: Influence on propagators tiny for d = 3 [MQH, Phys.Rev.D93 (2016)]

Stability of the solution: Extensions

- Three-gluon vertex: Tree-level dressing dominant, others subleading [Eichmann, Williams, Alkofer, Vujinovic, Phys.Rev.D89 (2014); Pinto-Gómez et al., 2208.01020]
- Four-gluon vertex: Influence on propagators tiny for d = 3 [MQH, Phys.Rev.D93 (2016)]
- Two-ghost-two-gluon vertex [MQH, Eur. Phys.J.C77 (2017)]: (FRG: [Corell, SciPost Phys. 5 (2018)])

Glueball spectrum

Glueball results J=0

Gauge-variant correlation functions:

Glueball results J=0

Glueball results J=0

Spectrum independent! \rightarrow Family of solutions yields the same physics.

All results for $r_0 = 1/418(5)$ MeV.

[MQH, Fischer, Sanchis-Alepuz, Eur.Phys.J.C80 (2020)]

Markus Q. Huber (Giessen University)

Glueball spectrum

Oct. 12, 2022

15/20

Glueball spectrum

Higher order diagrams

One-loop diagrams only:

[MQH, Fischer, Sanchis-Alepuz, Eur.Phys.J.C80 (2020); MQH, Fischer, Sanchis-Alepuz, Eur.Phys.J.C81 (2021)] Two-loop diagrams: subleading effects

- 0⁻⁺: none [MQH, Fischer, Sanchis-Alepuz, EPJ Web Conf. 258 (2022)]
- 0⁺⁺: < 2% [MQH, Fischer, Sanchis-Alepuz, HADRON2021, arXiv:2201.05163]

Amplitudes

Information about significance of single parts.

 \rightarrow Amplitudes have different behavior for ground state and excited state. Useful guide for future developments.

 \rightarrow Meson/glueball amplitudes: Information about mixing.

Markus Q. Huber (Giessen University)

Glueball spectrum

Glueball amplitudes for spin J

[MQH, Fischer, Sanchis-Alepuz, Eur.Phys.J.C81 (2021)]

$$\Gamma_{\mu\nu
ho\sigma...}(p_1,p_2) = \sum \tau^i_{\mu
u
ho\sigma...}(p_1,p_2)h_i(p_1,p_2)$$

Numbers of tensors:

J	P = +	P = -
0	2	1
1	4	3
>2	5	4

Increase in complexity:

- 2 gluon indices (transverse)
- *J* spin indices (symmetric, traceless, transverse to *P*)

Low number of tensors, but high-dimensional tensors!

 \rightarrow Computational cost increases with *J*.

Glueball results

[MQH, Fischer, Sanchis-Alepuz, Eur.Phys.J.C81 (2021)]

*: identification with some uncertainty

[†]: conjecture based on irred. rep of octahedral group

- Agreement with lattice results
- (New states: 0^{**++}, 0^{**-+}, 3⁻⁺, 4⁻⁺)

Markus Q. Huber (Giessen University)

Glueball spectrum

Summary and outlook

- Alternative to models in bound state equations: Direct calculation of input.
- Large system of equations may be necessary.
- Independent tests:
 - Agreement with other methods: lattice + continuum
 - Extensions

Pure glueballs spectrum from first principles.

- Future: +quarks \rightarrow QCD
 - three-body bound state equations $\rightarrow C = -1$

Summary and outlook

- Alternative to models in bound state equations: Direct calculation of input.
- Large system of equations may be necessary.
- Independent tests:
 - Agreement with other methods: lattice + continuum
 - Extensions

Pure glueballs spectrum from first principles.

- Future: +quarks \rightarrow QCD
 - three-body bound state equations $\rightarrow C = -1$

Thank you for your attention.

Landau-Yang theorem

Two-photon states cannot couple to $J^{P} = 1^{\pm}$ or $(2n + 1)^{-}$

[Landau, Dokl.Akad.Nauk SSSR 60 (1948); Yang, Phys. Rev. 77 (1950)].

(\rightarrow Exclusion of J = 1 for Higgs because of $h \rightarrow \gamma \gamma$.)

Applicable to glueballs?

- \rightarrow Not in this framework, since gluons are not on-shell.
- \rightarrow Presence of J = 1 states is a dynamical question.

J = 1 not found here.

Hadron masses from correlation functions of color singlet operators.

Hadron masses from correlation functions of color singlet operators. Example: For $J^{PC} = 0^{++}$ glueball take $O(x) = F_{\mu\nu}(x)F^{\mu\nu}(x)$: $D(x - y) = \langle O(x)O(y) \rangle$

Hadron masses from correlation functions of color singlet operators. Example: For $J^{PC} = 0^{++}$ glueball take $O(x) = F_{\mu\nu}(x)F^{\mu\nu}(x)$: $D(x - y) = \langle O(x)O(y) \rangle$

Lattice: Mass exponential Euclidean time decay:

$$\lim_{t \to \infty} \langle O(x) O(0)
angle \sim e^{-tM}$$

Hadron masses from correlation functions of color singlet operators.

Example: For $J^{PC} = 0^{++}$ glueball take $O(x) = F_{\mu\nu}(x)F^{\mu\nu}(x)$:

 $D(x - y) = \langle O(x)O(y) \rangle$

Functional approach: Complicated object in a diagrammatic language, 2-, 3- and 4-gluon contributions [MQH, Cyrol, Pawlowski, Comput.Phys.Commun. 248 (2020)]

Hadron masses from correlation functions of color singlet operators. Example: For $J^{PC} = 0^{++}$ glueball take $O(x) = F_{\mu\nu}(x)F^{\mu\nu}(x)$: $D(x - y) = \langle O(x)O(y) \rangle$

Put total momentum on-shell and consider individual 2-, 3- and 4-gluon contributions. \rightarrow Each can have a pole at the glueball mass.

 A^4 -part of D(x - y), total momentum on-shell:

Kernel construction

From 3PI effective action truncated to three-loops:

[Berges, PRD70 (2004); Carrington, Gao, PRD83 (2011)]

$$\Gamma^{3I}[\Phi, D, \Gamma^{(3)}] = \Gamma^{0,3I}[\Phi, D, \Gamma^{(3)}] + \Gamma^{int,3I}[\Phi, D, \Gamma^{(3)}]$$

Kernels constructed by cutting two legs:

gluon/gluon,ghost/gluon, gluon/ghost, ghost/ghost

[Fukuda, Prog. Theor. Phys 78 (1987); McKay, Munczek, Phys. Rev. D 40 (1989); Sanchis-Alepuz, Williams, J. Phys: Conf. Ser. 631 (2015); MQH, Fischer, Sanchis-Alepuz, Eur.Phys.J.C80 (2020)]

Glueball spectrum

Charge parity

Transformation of gluon field under charge conjugation:

$${m A}^{m a}_{\mu}
ightarrow -\eta({m a}) {m A}^{m a}_{\mu}$$

where

$$\eta(a) = \left\{ egin{array}{cc} +1 & a = 1, 3, 4, 6, 8 \ -1 & a = 2, 5, 7 \end{array}
ight.$$

Color neutral operator with two gluon fields:

$$\mathcal{A}^a_\mu \mathcal{A}^a_
u o \eta(a)^2 \mathcal{A}^a_\mu \mathcal{A}^a_
u = \mathcal{A}^a_\mu \mathcal{A}^a_
u.$$

 $\Rightarrow C = +1$

Negative charge parity, e.g.:

$$egin{aligned} d^{abc} A^a_\mu A^b_
u A^c_
ho &
ightarrow - d^{abc} \eta(a) \eta(b) \eta(c) A^a_\mu A^b_
u A^c_
ho &= \ - d^{abc} A^a_\mu A^b_
u A^c_
ho. \end{aligned}$$

Only nonvanishing elements of the symmetric structure constant d^{abc} : zero or two indices equal to 2, 5 or 7.

Glueball spectrum

Three-gluon vertex

[Cucchieri, Maas, Mendes, Phys. Rev. D 77 (2008); Sternbeck et al., 1702.00612; MQH, Phys. Rev. D 101 (2020)]

- Simple kinematic dependence of three-gluon vertex (only singlet variable of S₃)
- Large cancellations between diagrams

Ghost-gluon vertex

Ghost-gluon vertex:

- Nontrivial kinematic dependence of ghost-gluon vertex
- Qualitative agreement with lattice results, though some quantitative differences (position of peak!).

Gauge invariance

Couplings can be extracted from each vertex.

- Slavnov-Taylor identities (gauge invariance): Agreement perturbatively (UV) necessary.
 [Cyrol et al., Phys.Rev.D 94 (2016)]
- Difficult to realize: Small deviations → Couplings cross and do not agree.
- Here: Vertex couplings agree down to GeV regime (IR can be different).

10 10⁰ 10^{-1} $\chi(p^2)$ 10^{-2} α_{aha} 10^{-3} 10^{-4} α_{4a} 10^{-5} 10^{-2} 10^{-1} 10⁰ 10¹ 10^{2} p[GeV]

[MQH, Phys. Rev. D 101 (2020)]

Solving a bound state equation

(pseudoscalar glueball)

 $\boldsymbol{\lambda(P)}\boldsymbol{\Gamma(P)} = \mathcal{K} \cdot \boldsymbol{\Gamma(P)}$

 \rightarrow Eigenvalue problem for $\Gamma(P)$:

• Solve for $\lambda(P)$.

• Find *P* with
$$\lambda(P) = 1$$
.
 $\Rightarrow M^2 = -P^2$

Solving a bound state equation

(pseudoscalar glueball)

However:

Propagators are probed at $\left(q \pm \frac{P}{2}\right)^2 = \frac{P^2}{4} + q^2 \pm \sqrt{P^2 q^2} \cos \theta = -\frac{M^2}{4} + q^2 \pm i M \sqrt{q^2} \cos \theta$ \rightarrow Complex for $P^2 < 0!$

Time-like quantities ($P^2 < 0$) \rightarrow Correlation functions for complex arguments.

 $\lambda(P)\Gamma(P) = \mathcal{K} \cdot \Gamma(P)$

 \rightarrow Eigenvalue problem for $\Gamma(P)$:

• Solve for $\lambda(P)$.

• Find *P* with
$$\lambda(P) = 1$$
.
 $\Rightarrow M^2 = -P^2$

Extrapolation of $\lambda(P^2)$

Extrapolation method

- Extrapolation to time-like *P*² using Schlessinger's continued fraction method (proven superior to default Padé approximants) [Schlessinger, Phys.Rev.167 (1968)]
- Average over extrapolations using subsets of points for error estimate

$$f(x) = \frac{f(x_1)}{1 + \frac{a_1(x-x_1)}{1 + \frac{a_2(x-x_2)}{1 + \frac{a_2(x-x_2)}{1 + \frac{a_3(x-x_3)}{1 + \frac{a_3(x$$

Coefficients a_i can determined such that f(x) exact at x_i .

Extrapolation of $\lambda(P^2)$

Extrapolation method

- Extrapolation to time-like *P*² using Schlessinger's continued fraction method (proven superior to default Padé approximants) [Schlessinger, Phys.Rev.167 (1968)]
- Average over extrapolations using subsets of points for error estimate

Test extrapolation for solvable system:

Heavy meson [MQH, Sanchis-Alepuz, Fischer, Eur.Phys.J.C 80 (2020)]

$$f(x) = \frac{f(x_1)}{1 + \frac{a_1(x-x_1)}{1 + \frac{a_2(x-x_2)}{1 + \frac{a_3(x-x_3)}{1 + \frac{a_3(x$$

Coefficients a_i can determined such that f(x) exact at x_i .

Simpler truncation:

[Fischer, MQH, Phys.Rev.D 102 (2020)]

Simpler truncation:

[Fischer, MQH, Phys.Rev.D 102 (2020)]

- Current truncation leads to a pole-like structure in the gluon propagator.
- Analyticity up to 'pole' confirmed by various tests (Cauchy-Riemann, Schlessinger, reconstruction)

Simpler truncation:

Simpler truncation:

 \rightarrow Opening at $q^2 = p^2$.

Appearance of branch cuts for complex momenta forbids integration directly to cutoff.