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Dyson-Schwinger equations (DSEs) for investigating QCD

DSEs describe non-perturbatively how particles propagate and interact.

Green functions

Equations of motion of

Infinitely large tower

@ Exact equations

Pros:

o Truncatipns (not for all tasks)

— non-perturbative regime accessible o Gauge-dependent

o Continuum, different scales accessible — Exploit advantages of different
— complement lattice method gauges /
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Introduction

Deriving Dyson-Schwinger equations

Integral of a total derivative vanishes:

d _sijo 85\ sy
J[an]%e v J[Dqﬂ(J 5¢)e e _yg

= DSEs for all Green functions (full, connected, 1PI) by further
differentiations.

Doing it by hand?
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Deriving Dyson-Schwinger equations

Integral of a total derivative vanishes:

d _sijo 85\ sy
J[an]%e v J[Dqﬂ(J 5¢)e e _yg

= DSEs for all Green functions (full, connected, 1PI) by further
differentiations.

Doing it by hand?

Example: Landau gauge

2 propagators (AA, cc): —,

(Acc, AAA, AAAA): \r Y >< 5;
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Introduction The Maximally Abelian gauge Infrared analysis

Scaling solution of the MAG

Landau Gauge DSEs: Propagators

Gluon propagator:
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Ghost propagator: e R G
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Introduction

Landau Gauge DSEs: Five-Gluon Vertex

434 terms
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Introduction

Derivation of DSEs (DoDSE)

= DoDSE [Alkofer, M.Q.H., Schwenzer, CPC 180 (2009)]
Given a structure of interactions, the DSEs are derived symbolically
using Mathematica.
Example (Landau gauge):
@ only input: interactions in Lagrangian (AA, AAA, AAAA, cc, Acc)
@ Which DSE do | want?

@ Can handle mixed propagators (then there are really many diagrams;
e. g. in Gribov-Zwanziger action).

Upgrades

@ Provide Feynman rules and get complete algebraic expressions.
— E. g. calculate color algebra with FORM and integrals with Cli

@ DoRGE: Calculate renormalization group equations.

FSU Jena Nov. 1, 2010 9/28
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Introduction The Maximally Abelian gauge Infrared analysis Scaling solution of the MAG

Landau Gauge ERGEs: Propagators

Gluon propagator:

o0 o i} W+V+2\\7/

Ghost propagator:

O o~ o L% ‘g/+\V/+A
ey : s e
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Introduction

Landau Gauge ERGEs: Five-Gluon Vertex

542 terms
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The Maximally Abelian gauge

Hypothesis of Abelian IR dominance

Dual superconductor picture of confinement [Mandelstam, 't Hooft]

@ Picture a conventional superconductor, where the electric charges
condense and force the magnetic flux into vortices.

@ Change "electric" and "magnetic" components and you get a dual
superconductor, where condensed magnetic monopoles squeeze the
electric flux into flux tubes.

@ QCD: No free chromoelectric charges.
Are they confined by condensed magnetic monopoles?

Hypothesis of Abelian IR dominance [Ezawa, Iwazaki, PRD 25 (1981)]:
Magnetic monopoles live in Abelian part of the theory.
— Abelian part dominates in the IR?

MQH FSU Jena Nov. 1, 2010 13/28



The Maximally Abelian gauge

Definition of the maximally Abelian gauge

Gauge field components:

A=A T +BIT? i=1,.. N-1 a=N,.. N1

Abelian subalgebra: [T?, T/] = 0, can be written as diagonal matrices

Abelian < diagonal fields A,
non-Abelian < off-diagonal fields B.

1
Eg T!= %)ﬁ, T2 = 5)@ for SU(3).
Which interactions are possible ([T, T°] = i f™'T*)?

| SU(2) | SU(N > 2)

fik 0 0 )

Fija 0 0 — SU(2) and SU(3) different?
fiab v v

fabc 0 v
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The Maximally Abelian gauge

Gauge fixing condition

Stress role of diagonal fields = minimize norm of off-diagonal field B:

[|Byll = de By, B{, — minimize wrt. gauge transformations U

DbeBﬁ = (8,p0.—8 fabiAL)Bﬁ =0 non-linear gauge fixing condition!

Remaining symmetry of diagonal part: U(1)V~!

Fix gauge of diag. gluon field A by Landau gauge condition: 0,A, =0
= diagonal ghosts decouple (like in QED).

MQH FSU Jena Nov. 1, 2010 15/28



The Maximally Abelian gauge

Lagrangian for the MAG

diagonal gluon off-diagonal gluon ghost

XX XK X

AABB AAcc BBcc BBBB cccc

SU(N > 2)
BBB Bcc ABBB ABcc
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The Maximally Abelian gauge

DSEs of the MAG

—_———
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DSEs of the MAG

Complete analysis of all diagrams!
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The Maximally Abelian gauge

Available results in the MAG

@ Available lattice results of MAG [Cucchieri, Mendes, Mihara, 2008]:
All propagators massive, diagonal field has lowest mass.
= Other fields decouple. Realization of Abelian IR dominance.
o Refined Gribov-Zwanziger framework [Capri et al., PRD77, JPA43]:
All propagators massive.

@ — decoupling solution
— Existence of scaling solution?
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The Maximally Abelian gauge

Available results in the MAG

@ Available lattice results of MAG [Cucchieri, Mendes, Mihara, 2008]:
All propagators massive, diagonal field has lowest mass.
= Other fields decouple. Realization of Abelian IR dominance.
o Refined Gribov-Zwanziger framework [Capri et al., PRD77, JPA43]:
All propagators massive.

@ — decoupling solution
— Existence of scaling solution?

Reminder: Decoupling and scaling solutions in Landau gauge

In the deep IR tjafgtypes of solutions emerge: \

@ massive gluon propagator @ vanishing gluon propagator

o finite ghost dressing function @ enhanced ghost propagator

Decided by boundary condition, e.g., value of the ghost dressing function
at zero momentum [Fischer, Maas, Pawlowski, AP324; Maas, PLB689].
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Infrared analysis

Infrared power counting

Generic propagator
D(p?)

p2
IR exponent
assume power law behavior at low p? /

Tiij -

)

DR(p?) = A- (p?)°

@ Vertices also assume power law behavior
[e.g., Alkofer, Fischer, Llanes-Estrada, PLB 611 (2005) (skeleton expansion)].

@ Limit of all momenta approaching zero simultaneously.

@ Upon integration all momenta converted into powers of external
momenta.

= counting of IR exponents

MQH FSU Jena Nov. 1, 2010
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Infrared analysis

System of inequalities

@ lhs is dominated by at least one diagram on rhs and rhs cannot be
more divergent than |hs:

— Qs <8rhs,any diagram

@ Not knowing which diagram is leading on the rhs, we can write
inequalities from all diagrams.
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@ Not knowing which diagram is leading on the rhs, we can write
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S O b —O—
F—O— b —e— b _ON

—8g1 < 2841+ B3gy  —Bgt < 20gh + Bgg

That's the basic idea. Still, for a large system a lot of work.
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Infrared analysis

System of inequalities

@ lhs is dominated by at least one diagram on rhs and rhs cannot be
more divergent than |hs:

— Qs <8rhs,any diagram

@ Not knowing which diagram is leading on the rhs, we can write
inequalities from all diagrams.

S O b —O—
F—O— b —e— b _ON

—0g1 < 2841 + O34, —0g1 < 20gh + Ogg,
. \
That's the basic idea. Still, for a large system a lot of work. {W ?ﬂ
All inequalities relevant? o
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Infrared analysis
Relevant inequalities

Closed form for all relevant inequalities
from 2 independent sets of funct. equations.

type derived from #
dressed vertices G = ve,tex—i— Z d; > 0 | ERGEs 00
legs j of
vertex
prim. div. vertices | C; = % Z 5 >0 DSEs+ERGEs | a few
legs j of
prim. div.
vertex
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Infrared analysis

Relevant inequalities

validity of skeleton expan-
Closed form for all relevant inequalities . Y P
. . sion basic property of scal-
from 2 independent sets of funct. equations. |. .
ing solutions
type derived from #
dressed vertices G = ve,tex—l— Z d; > 0 | ERGEs 00
legs j of
vertex
prim. div. vertices | C; = % Z 5 >0 DSEs+ERGEs | a few
legs j of
prim. div.
vertex

Shifting analysis to IR exponents — exact from this point on.
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Infrared analysis

Analysis of propagator DSEs

Example: o + 28 gpose = 0 in Landau gauge

gluon

[von Smekal, Alkofer, Hauck, PRL79]

scaling relation

one vertex always IR constant (no Taylor argument req.) ‘

related to bare vertices in DSEs, cf. [Fischer, Pawlowski PRD77] ‘

necessary condition for scaling solutions ‘

qualitative behavior of higher Green functions ‘

valid for a large number of systems‘

Very useful for complicated actions like the Gribov-Zwanziger action
(results agree with standard DSE/ERGE calculations [M.Q.H., Alkofer, Sorella, PRD81]).
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Scaling solution of the MAG

IR scaling solution of the MAG

Propagators:
2
i 2y <ij€alp?) Pupv i PupPv
DA(P)—MT gm/*? + &5 2
cg(p?)
D2 (p?) =522~ f (guv —(1—«) ppgv) ,
p p
2
Db (p?) :752”7“('2’ )
p
Power laws:
2
0
ca(p?) P =" da- (p?)%4,
2
0
cs(p?) P =" dg - (p?)°2,
2
0
ce(p?) P =" de - (p?)%¢
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Scaling solution of the MAG

IR scaling solution of the MAG

‘ S = SC = —6A = KMAG = 0‘ [M.Q.H., Schwenzer, Alkofer, EPJC 68]

@ The diagonal field is IR enhanced.
— realization of Abelian IR dominance

o Off-diagonal fields are IR suppressed.
@ SU(2) and SU(N > 2) have the same solution.
@ Qualitative solutions for tower of Green functions.
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Scaling solution of the MAG

IR scaling solution of the MAG

‘ S = SC = —6A = KMAG = 0‘ [M.Q.H., Schwenzer, Alkofer, EPJC 68]

@ The diagonal field is IR enhanced.
— realization of Abelian IR dominance

o Off-diagonal fields are IR suppressed.
@ SU(2) and SU(N > 2) have the same solution.
@ Qualitative solutions for tower of Green functions.

IR leading diagrams:

i

b a -
a b L
-2

— UV/IR preserving truncation?
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Scaling solution of the MAG

Value of the IRE kpac

Solution for kpacg is necessary but not sufficient.

Truncation: sunsets only

Dressing functions of gluons and ghosts:

2
2y P20 - 0 <kmac <1
calp®) "="da- (p7) ¢
2
2y P 20 2\ KMAG
C =" d . .
5(p°) B (p7) Solution branch independent of gauge
2 .
2y P°—=0 21K fixing parameter «.
c(p?) "="dc - (p?)ime &P
3 \ 10F ¥ v ....ﬂ'.
] v v oo’
o ] *secedoccces B R 2 10
— a0 06 ', ,'v
! --  a=025 A 0_4,'v; vv'V'
Sauzend - a=075 cepieiioatey '*\ S5 e ool
=1 )
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Scaling solution of the MAG

Decoupling solutions in the MAG

Possible scenario for the connection between the
decoupling and scaling solutions in the MAG

@ Similar to ghost propagator in Landau gauge:
via renormalization of diagonal gluon propagator

@ IR divergent dressing: scaling solution

@ IR massive dressing: decoupling

Note: If any of the three dressings is massive, the other two have to be
massive too (tadpole diagrams).

Landau gauge

Abelian configurations ————— on Gribov horizon (ghost dominancg
[Greensite, Olejnik, Zwanziger, PRD78]
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Scaling solution of the MAG

‘ — Derivation of DSEs with DoDSE: useful for complicated systems.

‘ — Possible scaling relations directly from Lagrangian.

Albeit additional interactions in SU(3)
— same IR behavior as in SU(2).

Variant of Abelian IR dominance found:

@ diagonal gluon propagator IR enhanced,

o off-diagonal degrees of freedom IR suppressed.

MQH FSU Jena Nov. 1, 2010 27/28



Introduction The Maximally Abelian gauge Infrared analysis Scaling solution of the MAG

The end

Thank you very much for your attention.
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