Infrared scaling solutions beyond the Landau gauge: The maximally Abelian gauge and Abelian infrared dominance

Reinhard Alkofer, Markus Q. Huber, Kai Schwenzer

Institute of Theoretical Physics, Friedrich-Schiller-University Jena

Nov. 1, 2010

The many faces of QCD, Ghent

MQH

MQH

Confinement and functional methods

Scaling solution of the MAG

Confinement and functional methods

DSEs describe non-perturbatively how particles propagate and interact.

Equations of motion of Green functions

of equations Infinitely large tower

DSEs describe non-perturbatively how particles propagate and interact.

DSEs describe non-perturbatively how particles propagate and interact.

DSEs describe non-perturbatively how particles propagate and interact.

Deriving Dyson-Schwinger equations

Integral of a total derivative vanishes:

$$\int [D\varphi] \frac{\delta}{\delta\varphi} e^{-S+J\Phi} = \int [D\varphi] \left(J - \frac{\delta S}{\delta\varphi}\right) e^{-S+J\Phi} = 0.$$

 \Rightarrow DSEs for all Green functions (full, connected, 1PI) by further differentiations.

Doing it by hand?

Deriving Dyson-Schwinger equations

Integral of a total derivative vanishes:

$$\int [D\varphi] \frac{\delta}{\delta\varphi} e^{-S+J\Phi} = \int [D\varphi] \left(J - \frac{\delta S}{\delta\varphi}\right) e^{-S+J\Phi} = 0.$$

 \Rightarrow DSEs for all Green functions (full, connected, 1PI) by further differentiations.

Doing it by hand?

Landau Gauge DSEs: Propagators

Landau Gauge DSEs: Four-Gluon Vertex

66 terms

Landau Gauge DSEs: Five-Gluon Vertex

434 terms

**** ***** **** ************** ***** · * * * * * & & & & * * * * * * $\mathbf{k} \diamond \mathbf{k} \neq \mathbf{k} \neq \mathbf{k} \diamond \mathbf{k} \neq \mathbf{k} \diamond \mathbf{k}$ F, \overline{A} , $\overline{A$

8/28

Derivation of DSEs (*DoDSE*)

 $\Rightarrow DoDSE$ [Alkofer, M.Q.H., Schwenzer, CPC 180 (2009)]

Given a structure of interactions, the DSEs are derived symbolically using *Mathematica*.

- Example (Landau gauge):
 - only input: interactions in Lagrangian (AA, AAA, AAAA, cc, Acc)
 - Which DSE do I want?
 - Can handle mixed propagators (then there are really many diagrams; e. g. in Gribov-Zwanziger action).

Upgrades

Provide Feynman rules and get complete algebraic expressions.
 → E. g. calculate color algebra with FORM and integrals with C

• DoRGE: Calculate renormalization group equations.

Landau Gauge ERGEs: Propagators

Gluon propagator:

Ghost propagator:

Landau Gauge ERGEs: Four-Gluon Vertex

76 terms

Landau Gauge ERGEs: Five-Gluon Vertex

542 terms

 \mathcal{A} \mathcal{P} \mathcal{P} ********** なくねねななななななななななみななななななななな みななななななみななななななななななななななな *** **4 7 7 A A A A 7 7 7** 7 や-な-な-ヤ-ヌ-ダ-ネ-ダ-ダ-チャムなななななななな チャケケママチキャ マママウムケママムム *** **** *** ***** ት ት ት ት ት ት ት ት ት ት ት ት Y Y Y $\dot{\mathbf{w}}$

Hypothesis of Abelian IR dominance

Dual superconductor picture of confinement [Mandelstam, 't Hooft]

- Picture a conventional superconductor, where the electric charges condense and force the magnetic flux into vortices.
- Change "electric" and "magnetic" components and you get a dual superconductor, where condensed magnetic monopoles squeeze the electric flux into flux tubes.
- QCD: No free chromoelectric charges. Are they confined by condensed magnetic monopoles?

Hypothesis of Abelian IR dominance [Ezawa, Iwazaki, PRD 25 (1981)]: Magnetic monopoles live in Abelian part of the theory. \rightarrow Abelian part dominates in the IR?

Definition of the maximally Abelian gauge

Gauge field components:

$$A_{\mu} = A^{i}_{\mu} T^{i} + B^{a}_{\mu} T^{a}, \quad i = 1, ..., N-1, \quad a = N, ..., N^{2}-1$$

Abelian subalgebra: $[T^i, T^j] = 0$, can be written as diagonal matrices

E.g.
$$T^{1} = \frac{1}{2}\lambda^{3}$$
, $T^{2} = \frac{1}{2}\lambda^{8}$ for $SU(3)$.

Which interactions are possible $([T^r, T^s] = i f^{rst} T^t)$?

	<i>SU</i> (2)	SU(N > 2)
f ^{ijk}	0	0
f ^{ija}	0	0
f ^{iab}	\checkmark	\checkmark
f ^{abc}	0	\checkmark

 \rightarrow SU(2) and SU(3) different?

Gauge fixing condition

Stress role of diagonal fields \Rightarrow minimize norm of off-diagonal field **B**:

$$||B_U|| = \int dx \, B_U^a B_U^a \to \text{minimize wrt. gauge transformations } U$$

 $D^{ab}_{\mu} B^{b}_{\mu} = (\delta_{ab} \partial_{\mu} - g f^{abi} A^{i}_{\mu}) B^{b}_{\mu} = 0 \qquad \text{non-linear gauge fixing condition!}$

Remaining symmetry of diagonal part: $U(1)^{N-1}$

Fix gauge of diag. gluon field **A** by Landau gauge condition: $\partial_{\mu} \mathbf{A}_{\mu} = 0$ \Rightarrow diagonal ghosts decouple (like in QED).

Lagrangian for the MAG

DSEs of the MAG

Scaling solution of the MAG

DSEs of the MAG

Complete analysis of all diagrams!

Available results in the MAG

- Available lattice results of MAG [Cucchieri, Mendes, Mihara, 2008]: All propagators massive, diagonal field has lowest mass.
 - \Rightarrow Other fields decouple. Realization of Abelian IR dominance.
- Refined Gribov-Zwanziger framework [Capri et al., PRD77, JPA43]: All propagators massive.
- $\bullet \ \rightarrow \ \text{decoupling solution}$

 \rightarrow Existence of scaling solution?

Available results in the MAG

- Available lattice results of MAG [Cucchieri, Mendes, Mihara, 2008]: All propagators massive, diagonal field has lowest mass.
 - \Rightarrow Other fields decouple. Realization of Abelian IR dominance.
- Refined Gribov-Zwanziger framework [Capri et al., PRD77, JPA43]: All propagators massive.
- $\bullet \ \rightarrow \ \text{decoupling solution}$

 \rightarrow Existence of scaling solution?

Reminder: Decoupling and scaling solutions in Landau gauge
In the deep IR two types of solutions emerge:

massive gluon propagator
finite ghost dressing function
enhanced ghost propagator

Decided by boundary condition, e.g., value of the ghost dressing function

at zero momentum [Fischer, Maas, Pawlowski, AP324; Maas, PLB689].

Infrared power counting

- Vertices also assume power law behavior
 - [e.g., Alkofer, Fischer, Llanes-Estrada, PLB 611 (2005) (skeleton expansion)].
- Limit of all momenta approaching zero simultaneously.
- Upon integration all momenta converted into powers of external momenta.

 \Rightarrow counting of IR exponents

System of inequalities

• Ihs is dominated by at least one diagram on rhs and rhs cannot be more divergent than Ihs:

$$\rightarrow \delta_{lhs} \leq \delta_{rhs,any} \, diagram$$

• Not knowing which diagram is leading on the rhs, we can write inequalities from all diagrams.

System of inequalities

• Ihs is dominated by at least one diagram on rhs and rhs cannot be more divergent than Ihs:

$$\rightarrow \delta_{lhs} \leq \delta_{rhs,any} \, diagram$$

• Not knowing which diagram is leading on the rhs, we can write inequalities from all diagrams.

 $-\delta_{gl} \leq 2\delta_{gl} + \delta_{3g}, \qquad -\delta_{gl} \leq 2\delta_{gh} + \delta_{gg}, \qquad .$

Still, for a large system a lot of work.

That's the basic idea.

Nov. 1, 2010

System of inequalities

• Ihs is dominated by at least one diagram on rhs and rhs cannot be more divergent than Ihs:

$$\rightarrow \delta_{lhs} \leq \delta_{rhs,any} \, diagram$$

• Not knowing which diagram is leading on the rhs, we can write inequalities from all diagrams.

$$-1 = +$$

$$+ - - - \frac{1}{6} - \frac{1}{2} - \frac{1}{2}$$

 $-\delta_{gl} \leq 2\delta_{gl} + \delta_{3g}, \qquad -\delta_{gl} \leq 2\delta_{gh} + \delta_{gg}, \qquad .$

Still, for a large system a lot of work.

MQH

That's the basic idea.

All inequalities relevant?

Relevant inequalities

Closed form for all relevant inequalities from 2 independent sets of funct. equations.

type		derived from	#
dressed vertices	$C_1 := \delta_{vertex} + \frac{1}{2} \sum \delta_j \ge 0$	ERGEs	∞
	legs <i>j</i> of vertex		
prim. div. vertices	$oldsymbol{\mathcal{C}}_2\coloneqqrac{1}{2}$ \sum $\delta_j\geq oldsymbol{0}$	DSEs+ERGEs	a few
	legs j of prim. div. vertex		

Relevant inequalities

Shifting analysis to IR exponents \rightarrow exact from this point on.

The Maximally Abelian gauge

Infrared analysis

Scaling solution of the MAG

Analysis of propagator DSEs

Very useful for complicated actions like the Gribov-Zwanziger action

(results agree with standard DSE/ERGE calculations [M.Q.H., Alkofer, Sorella, PRD81]).

IR scaling solution of the MAG

Propagators:

$$\begin{split} \boldsymbol{D}_{\boldsymbol{A}}^{\boldsymbol{j}\boldsymbol{j}}(\boldsymbol{p}^2) &= \delta^{\boldsymbol{j}\boldsymbol{j}} \frac{\boldsymbol{c}_{\boldsymbol{A}}(\boldsymbol{p}^2)}{\boldsymbol{p}^2} \left(\boldsymbol{g}_{\mu\nu} - \frac{\boldsymbol{p}_{\mu}\boldsymbol{p}_{\nu}}{\boldsymbol{p}^2} \right) + \xi \, \delta^{\boldsymbol{j}\boldsymbol{j}} \frac{\boldsymbol{p}_{\mu}\boldsymbol{p}_{\nu}}{\boldsymbol{p}^2},\\ \boldsymbol{D}_{\boldsymbol{B}}^{\boldsymbol{ab}}(\boldsymbol{p}^2) &= \delta^{\boldsymbol{ab}} \frac{\boldsymbol{c}_{\boldsymbol{B}}(\boldsymbol{p}^2)}{\boldsymbol{p}^2} \left(\boldsymbol{g}_{\mu\nu} - (1-\alpha) \frac{\boldsymbol{p}_{\mu}\boldsymbol{p}_{\nu}}{\boldsymbol{p}^2} \right),\\ \boldsymbol{D}_{\boldsymbol{c}}^{\boldsymbol{ab}}(\boldsymbol{p}^2) &= -\delta^{\boldsymbol{ab}} \frac{\boldsymbol{c}_{\boldsymbol{c}}(\boldsymbol{p}^2)}{\boldsymbol{p}^2} \end{split}$$

Power laws:

$$c_{A}(p^{2}) \stackrel{p^{2} \rightarrow 0}{=} d_{A} \cdot (p^{2})^{\delta_{A}},$$

$$c_{B}(p^{2}) \stackrel{p^{2} \rightarrow 0}{=} d_{B} \cdot (p^{2})^{\delta_{B}},$$

$$c_{c}(p^{2}) \stackrel{p^{2} \rightarrow 0}{=} d_{c} \cdot (p^{2})^{\delta_{c}}$$

IR scaling solution of the MAG

$$\boldsymbol{\delta_B} = \boldsymbol{\delta_c} = -\boldsymbol{\delta_A} = \kappa_{MAG} \geq 0$$

[M.Q.H., Schwenzer, Alkofer, EPJC 68]

• The diagonal field is IR enhanced.

 \rightarrow realization of Abelian IR dominance

- Off-diagonal fields are IR suppressed.
- SU(2) and SU(N > 2) have the same solution.
- Qualitative solutions for tower of Green functions.

IR scaling solution of the MAG

$$\boldsymbol{\delta}_{\boldsymbol{B}} = \boldsymbol{\delta}_{\boldsymbol{c}} = -\boldsymbol{\delta}_{\boldsymbol{A}} = \boldsymbol{\kappa}_{\boldsymbol{M}\boldsymbol{A}\boldsymbol{G}} \geq \boldsymbol{0}$$

[M.Q.H., Schwenzer, Alkofer, EPJC 68]

• The diagonal field is IR enhanced.

 \rightarrow realization of Abelian IR dominance

- Off-diagonal fields are IR suppressed.
- SU(2) and SU(N > 2) have the same solution.
- Qualitative solutions for tower of Green functions.

IR leading diagrams:

Value of the IRE κ_{MAG}

Solution for κ_{MAG} is necessary but not sufficient.

Truncation: sunsets only

Dressing functions of gluons and ghosts:

$$c_{A}(p^{2}) \stackrel{p^{2} \rightarrow 0}{=} d_{A} \cdot (p^{2})^{-\kappa_{MAG}}$$

$$c_{B}(p^{2}) \stackrel{p^{2} \rightarrow 0}{=} d_{B} \cdot (p^{2})^{\kappa_{MAG}}$$

$$c_{c}(p^{2}) \stackrel{p^{2} \rightarrow 0}{=} d_{c} \cdot (p^{2})^{\kappa_{MAG}}$$

 $0 \leq \kappa_{\textit{MAG}} \leq 1$

Solution branch independent of gauge fixing parameter α .

Decoupling solutions in the MAG

Possible scenario for the connection between the decoupling and scaling solutions in the MAG

• Similar to ghost propagator in Landau gauge:

via renormalization of diagonal gluon propagator

- IR divergent dressing: scaling solution
- IR massive dressing: decoupling

Note: If any of the three dressings is massive, the other two have to be massive too (tadpole diagrams).

Abelian configurations [Greensite, Olejnik, Zwanziger, PRD78]

Summary

 \rightarrow Derivation of DSEs with DoDSE: useful for complicated systems.

 \rightarrow Possible scaling relations directly from Lagrangian.

Albeit additional interactions in SU(3) \rightarrow same IR behavior as in SU(2).

Variant of Abelian IR dominance found:

- diagonal gluon propagator IR enhanced,
- off-diagonal degrees of freedom IR suppressed.

The end

Thank you very much for your attention.

