Non-perturbative results for two- and three-point functions of Landau gauge Yang-Mills theory

Markus Q. Huber, Axel Maas, Lorenz von Smekal

Institute of Nuclear Physics, Technical University Darmstadt

Dec. 12. 2012

Gent University

JHEP 1211 (2012) 035 [arXiv:1207.0222]; arXiv:1211.6092

Unterstützt von / Supported by

Alexander von Humboldt Stiftung/Foundation

MQH

Summary

Our view of the world in terms of particles

The standard model:

Summary

Our view of the world in terms of particles

The standard model:

Our view of the world in terms of particles

Hadrons are bound states of quarks,

but they cannot be split into their building blocks.

Strong interaction

Asymptotic freedom at high energies

 \rightarrow perturbation theory applicable.

Many interesting phenomena at

low energies/non-zero temperature/non-zero density:

- Confinement
- Chiral symmetry breaking \rightarrow mass generation
- Phase transitions

Strong interaction

Asymptotic freedom at high energies

 \rightarrow perturbation theory applicable.

Many interesting phenomena at

low energies/non-zero temperature/non-zero density:

- Confinement
- Chiral symmetry breaking \rightarrow mass generation
- Phase transitions

Non-perturbative methods required!

effective theories, lattice, functional methods, duality, ...

Close relationship to other areas, e.g. condensed matter, gravity, beyond the standard model, \ldots

Applications of Landau gauge Green functions

Landau gauge Green functions:

- Information about confinement
- Input for phenomenological calculations, e.g., bound states, QCD phase diagram

Applications of Landau gauge Green functions

Landau gauge Green functions:

- Information about confinement
- Input for phenomenological calculations, e.g., bound states, QCD phase diagram

Example:

- (De)confinement and chiral transitions can be calculated.
- No sign problem!
 → Complement Monte-Carlo simulations
- Challenge: Infinite system of eqs. → combine lattice and functional methods

Landau Gauge Yang-Mills theory

Gluonic sector of quantum chromodynamics: Yang-Mills theory

$$\mathcal{L} = \frac{1}{2}F^2 + \mathcal{L}_{gf} + \mathcal{L}_{gh}$$
$$F_{\mu\nu} = \partial_{\mu}\mathbf{A}_{\nu} - \partial_{\nu}\mathbf{A}_{\mu} + ig[\mathbf{A}_{\mu}, \mathbf{A}_{\nu}]$$

Propagators and vertices are gauge dependent

 \rightarrow choose any gauge, ideally one that is convenient.

Landau gauge

• simplest one for functional equations

•
$$\partial_{\mu} \mathbf{A}_{\mu} = 0$$
: $\mathcal{L}_{gf} = \frac{1}{2\xi} (\partial_{\mu} \mathbf{A}_{\mu})^2$, $\xi \to 0$

- requires ghost fields: $\mathcal{L}_{gh} = \overline{c} (-\Box + g \mathbf{A} \times) c$
- 2 fields, 3 vertices

Dyson-Schwinger equations: Propagators

Dyson-Schwinger equations (DSEs) of gluon and ghost propagators:

- Equations of motion of correlation functions: Describe how fields propagate and interact non-perturbatively!
- Infinite tower of coupled integral equations.
- Derivation straightforward, but tedious \rightarrow automated derivation with *DoFun* [MQH, Braun, CPC183]
- Contain three-point and four-point functions: ghost-gluon vertex, three-gluon vertex, four-gluon vertex

Dyson-Schwinger equations: Propagators

Dyson-Schwinger equations (DSEs) of gluon and ghost propagators:

- Equations of motion of correlation functions: Describe how fields propagate and interact non-perturbatively!
- Infinite tower of coupled integral equations.
- Derivation straightforward, but tedious \rightarrow automated derivation with *DoFun* [MQH, Braun, CPC183]
- Contain three-point and four-point functions: ghost-gluon vertex, three-gluon vertex, four-gluon vertex

Truncated propagator Dyson-Schwinger equations

using bare ghost-gluon vertex and three-gluon vertex model

Influence of dynamic ghost-gluon vertex?

Truncated propagator Dyson-Schwinger equations

Standard truncation:

using bare ghost-gluon vertex and three-gluon vertex model

Influence of dynamic ghost-gluon vertex?

Truncating Dyson-Schwinger equations

gluon	ghost	gh-gl	3-g	4-pt.	ref.
\checkmark	0	0	model	0	[Mandelstam, PRD20, 1979]

$$D_{gl,\mu\nu}(p) = \left(g_{\mu\nu} - \frac{p_{\mu}p_{\nu}}{p^2}\right) \frac{\tilde{Z}(p^2)}{p^2}$$

• gluon dressing $\tilde{Z}(p^2)$ IR divergent \rightarrow IR slavery

Truncating Dyson-Schwinger equations

gluon	ghost	gh-gl	3-g	4-pt.	ref.
\checkmark	0	0	mode	0	[Mandelstam, PRD20, 1979]
\checkmark	\checkmark	model	models	0	[von Smekal, Hauck, Alkofer, PRL 79, 1997]

$$D_{gl,\mu\nu}(p) = \left(g_{\mu\nu} - \frac{p_{\mu}p_{\nu}}{p^2}\right) \frac{Z(p^2)}{p^2}$$
$$D_{gh}(p) = -\frac{G(p^2)}{p^2}$$

• gluon dressing $Z(p^2)$ IR vanishing

• deviations from lattice results in mid-momentum regime

Truncating Dyson-Schwinger equations

gluon	ghost	gh-g	3-g	4-pt.	ref.
\checkmark	0	0	mode	0	[Mandelstam, PRD20, 1979]
\checkmark	\checkmark	model	models	0	[von Smekal, Hauck, Alkofer, PRL 79, 1997]
\checkmark	\checkmark	\checkmark	model	0	[MQH, von Smekal, 1211.6092]

$$D_{gl,\mu\nu}(p) = \left(g_{\mu\nu} - \frac{p_{\mu}p_{\nu}}{p^2}\right) \frac{Z(p^2)}{p^2}$$
$$D_{gh}(p) = -\frac{G(p^2)}{p^2}$$

• gluon dressing $Z(p^2)$ IR vanishing

improved mid-momentum behavior

Improved truncations necessary for quantitative results and also extensions, e.g., non-zero temperature [Fister, Pawlowski, 1112.5440].

Ghost-gluon vertex DSE

- Lattice results [Cucchieri, Maas, Mendes, PRD77; Ilgenfritz et al., BJP37]
- OPE analysis [Boucaud et al., JHEP 1112]
- Modeling via ghost DSE [Dudal, Oliveira, Rodriguez-Quintero, PRD86]
- Semi-perturbative DSE analysis [Schleifenbaum et al., PRD72]

Ghost-gluon vertex

$$\Gamma^{A\bar{c}c,abc}_{\mu}(k;p,q) := ig f^{abc} \left(p_{\mu} A(k;p,q) + k_{\mu} B(k;p,q) \right)$$

Note:

B(k; p, q) is irrelevant in Landau gauge, but it is not the pure longitudinal part. Taylor argument applies only to longitudinal part (it's an STI).

IR and UV consistent truncation:

Only unfixed quantity in complete system of eqs.: three-gluon vertex.

Three-gluon vertex: Ultraviolet

Ansatz that reproduces the correct UV behavior of the gluon propagator [Fischer, Alkofer, Reinhardt, PRD65]:

$$D^{A^{3}}(x, y, z) = \frac{1}{Z_{1}} \frac{[G(y)G(z)]^{1-a/\delta-2a}}{[Z(y)Z(z)]^{1+a}}$$

y and z are the momenta in the gluon loop, i.e., not Bose symmetric in y, z and x. Also wrong anomalous dimension.

Three-gluon vertex: Ultraviolet

Ansatz that reproduces the correct UV behavior of the gluon propagator [Fischer, Alkofer, Reinhardt, PRD65]:

$$D^{A^{3}}(x, y, z) = \frac{1}{Z_{1}} \frac{[G(y)G(z)]^{1-a/\delta-2a}}{[Z(y)Z(z)]^{1+a}}$$

y and z are the momenta in the gluon loop, i.e., not Bose symmetric in y, z and x. Also wrong anomalous dimension.

Bose symmetrized version:

$$D^{A^{3},UV}(x,y,z) = G\left(\frac{x+y+z}{2}\right)^{\alpha} Z\left(\frac{x+y+z}{2}\right)^{\beta}$$

Fix α and β :

- 1 UV behavior of three-gluon vertex
- 2 IR behavior of three-gluon vertex?

Three-gluon vertex: Ultraviolet

Ansatz that reproduces the correct UV behavior of the gluon propagator [Fischer, Alkofer, Reinhardt, PRD65]:

$$D^{A^{3}}(x, y, z) = \frac{1}{Z_{1}} \frac{[G(y)G(z)]^{1-a/\delta-2a}}{[Z(y)Z(z)]^{1+a}}$$

y and z are the momenta in the gluon loop, i.e., not Bose symmetric in y, z and x. Also wrong anomalous dimension.

Bose symmetrized version:

$$D^{A^{3},UV}(x,y,z) = G\left(\frac{x+y+z}{2}\right)^{\alpha} Z\left(\frac{x+y+z}{2}\right)^{\beta}$$

Fix α and β :

- 1 UV behavior of three-gluon vertex
- $2\,$ IR behavior of three-gluon vertex \rightarrow yes, but \ldots

Three-gluon vertex: Infrared

Hints from lattice data [Cucchieri, Maas, Mendes, PRD77]:

Three-gluon vertex might have a zero crossing. (d = 2, 3: zero crossing seen [Cucchieri, Maas, Mendes, PRD77; Maas, PRD75])

Three-gluon vertex: Infrared

Hints from lattice data [Cucchieri, Maas, Mendes, PRD77]:

Three-gluon vertex might have a zero crossing. (d = 2, 3: zero crossing seen [Cucchieri, Maas, Mendes, PRD77; Maas, PRD75])

$$D^{A^{3},IR}(x,y,z) = \\ h_{IR}G(x+y+z)^{3}(f^{3g}(x)f^{3g}(y)f^{3g}(z))^{4}$$

IR damping function $f^{3g}(x) := \frac{\Lambda_{3g}^2}{\Lambda_{3g}^2 + x}$

Parameter for zero crossing: $h_{IR} < 0$

Three-gluon vertex: Infrared

Hints from lattice data [Cucchieri, Maas, Mendes, PRD77]:

Three-gluon vertex might have a zero crossing. (d = 2, 3: zero crossing seen [Cucchieri, Maas, Mendes, PRD77; Maas, PRD75])

$$D^{A^{3},IR}(x,y,z) = h_{IR}G(x+y+z)^{3}(f^{3g}(x)f^{3g}(y)f^{3g}(z))^{4}$$
IR damping function $f^{3g}(x) := \frac{\Lambda_{3g}^{2}}{\Lambda_{3g}^{2}+x}$
Parameter for zero crossing: $h_{IR} < 0$

$$D^{A^{3},IR}(x,y,z) = \frac{\Lambda_{3g}^{2}}{\frac{1}{2}}$$

New three-gluon vertex:

$$D^{A^{3}}(x, y, z) = D^{A^{3}, lR}(x, y, z) + D^{A^{3}, UV}(x, y, z)$$

IR

Influence of the three-gluon vertex

ghost-gluon vertex: bare

original three-gluon vertex

Summary

Influence of the three-gluon vertex

ghost-gluon vertex: bare

original three-gluon vertex Bose symmetric three-gluon vertex

Influence of the three-gluon vertex

ghost-gluon vertex: bare

original three-gluon vertex Bose symmetric three-gluon vertex Bose symmetric three-gluon vertex with IR part

 \Rightarrow Improved three-gluon vertex adds additional strength in the mid-momentum regime.

Influence of the three-gluon vertex

- Vary $\Lambda_{3g} \rightarrow$ vary mid-momentum strength
- Ghost almost unaffected
- Thin line: Leading IR order <u>DSE calculation for</u> <u>three-gluon vertex</u> ⇒ zero crossing

Dynamic ghost-gluon vertex: Propagator results

- Ghost-gluon vertex: dynamic
- Old three-gluon vertex model
- Three-gluon vertex: optimized effective model, i.e. optimized overlap with lattice results

• Good quantitative agreement of both ghost and gluon dressing

Fixed anti-ghost momentum:

Ghost-gluon vertex: Selected configurations

$$\Gamma^{A\bar{c}c,abc}_{\mu}(k;p,q) \coloneqq i g f^{abc} \left(p_{\mu} A(k;p,q) + k_{\mu} B(k;p,q) \right)$$

Fixed angle:

Ghost-gluon vertex: Comparison with lattice data

Orthogonal configuration $k^2 = 0$, $q^2 = p^2$:

lattice data [Sternbeck, hep-lat/0609016]

constant in the IR

 relatively insensitive to changes of the three-gluon vertex (red/green lines: different three-gluon vertex models)

Solutions of DSEs: Decoupling and scaling

- Two types of solutions with functional methods that differ only in deep IR [Boucaud et al., JHEP 0806, 012; Fischer, Maas, Pawlowski, AP 324]: scaling [von Smekal, Alkofer, Hauck PRL97], decoupling [Aguilar, Binosi, Papavassiliou PRD78]
- Lattice calculations find only decoupling type solution for d = 3, 4and scaling for d = 2
- Decoupling emerges also from Refined Gribov-Zwanziger framework [Dudal, Sorella, Vandersickel, Verschelde, PRD77]

Decoupling and scaling solutions

Realization on lattice?

- Dependence of propagators on Gribov copies, e.g., Bogolubsky, Burgio, Müller-Preussker, Mitrjushkin, PRD 74; Maas, 1106.3942
- First hints from Sternbeck, Müller-Preussker, 1211.3057: choosing Gribov copies by the lowest eigenvalue of the Faddeev-Popov operator → modification of both dressings

d = 2: Analytic and numerical arguments from DSEs for scaling only [Cucchieri, Dudal, Vandersickel, PRD85; MQH, Maas, von Smekal, JHEP1211] as well as from analysis of Gribov region [Zwanziger, 1209.1974].

Ghost-gluon vertex and scaling solution

- Dressing not 1 in the IR ← Contributions from loop corrections (for decoupling they are suppressed)
- Scaling/decoupling also seen in ghost-gluon vertex

Summary

Two dimensions

Why are two dimensions interesting?

- Ambiguity of solutions?
- larger lattices \rightarrow lower momenta lower dimensions require (much) less computer power, e.g.: d = 4: 128⁴ ($L \approx 27 \text{ fm}$) [Cucchieri, Mendes, Pos LAT2007, 297], d = 2: 2560² ($L \approx 460 \text{ fm}$) [Cucchieri, Mendes, AIP CP 1343, 185]
- ullet
 ightarrow good lattice results exist even for three-point functions
- Gribov problem also present

Why are two dimensions interesting?

- Ambiguity of solutions?
- larger lattices \rightarrow lower momenta lower dimensions require (much) less computer power, e.g.: d = 4: 128⁴ ($L \approx 27 \text{ fm}$) [Cucchieri, Mendes, Pos LAT2007, 297], d = 2: 2560² ($L \approx 460 \text{ fm}$) [Cucchieri, Mendes, AIP CP 1343, 185]
- ullet
 ightarrow good lattice results exist even for three-point functions
- Gribov problem also present

Yang-Mills theory for d = 2

- Perturbation theory does not work because of IR divergences.
- Gluons have no transverse polarization \rightarrow no physical degrees of freedom, but we can investigate correlation functions, the Gribov problem, ...

Existence of decoupling solution

• Analytical:

For d = 2, 3, 4 two possible scaling solutions, of which one is unphysical.

Specific to d = 2: One can show analytically which one is unphysical. Coincides with decoupling type.

• Numerical:

Ghost equation contains IR singularities for decoupling type.

 \Rightarrow No decoupling type solution in two dimensions.

In agreement with Cucchieri, Dudal, Vandersickel, PRD85; Zwanziger, 1209.1974.

Aspects of d = 2 Dyson-Schwinger equations

• Different momentum regimes mix, e.g., mid-momentum influences UV.

 Ghost dressing must approach 1 in the UV, but difficult to achieve due to mixing.

 \rightarrow Increased vertex dependence.

 Remaining logarithmic divergences: Different subtraction methods available.

Propagator results

- bare ghost-gluon vertex, three-gluon vertex ansatz (1 parameter),
- lattice results [Maas, 1106.3942]

Propagator results

- bare ghost-gluon vertex, three-gluon vertex ansatz (1 parameter),
- lattice results [Maas, 1106.3942]
- lattice inspired models for both vertices,

Propagator results

- bare ghost-gluon vertex, three-gluon vertex ansatz (1 parameter),
- lattice results [Maas, 1106.3942]
- lattice inspired models for both vertices,
- dynamic ghost-gluon vertex, lattice inspired three-gluon vertex
- \Rightarrow Good agreement with lattice can be obtained,

but strong dependence on vertices.

Ghost-gluon vertex results: Selected configurations

Fixed ghost momentum:

Fixed angle:

 \rightarrow 1 in the UV \rightarrow IR constant

 \rightarrow Almost no dependence on angle

2 dimensions

Three-gluon vertex

Three-gluon vertex from propagators and ghost-gluon vertex:

Fixed angle:

Orthogonal configuration:

red, green, blue: DSE calculation with different truncations black (orange): lattice with $L = 21(12) fm^{-1}$ [Maas, PRD75]

 \Rightarrow Leading diagrams reproduce lattice results.

Summary & conclusions: 2 dimensions

- No decoupling solution in 2 dimensions.
- First study of influence of three-point functions.
- Ghost UV behavior very sensitive to truncations

 \rightarrow restrictions on vertices.

- Mixing of different momentum regimes.
- Quantitative importance of two-loop diagrams.
- First full momentum dependent calculation of three-gluon vertex, in good agreement with lattice data.

Summary & conclusions

- Systematic improvement of truncations of DSEs possible.
- Newest step: Inclusion of three-point functions
 - Required for quantitative results and
 - likely also for some aspects of non-zero temperature and density calculations [Fister, Pawlowski, 1112.5440].
 - Reproduction of lattice data possible.
- Automatization tools:

DoFun [Alkofer, MQH, Schwenzer, CPC180; MQH, Braun, CPC183] CrasyDSE [MQH, Mitter, CPC183]

• While functional equations were at the beginning especially helpful to understand the qualitative behavior, we arrive now at quantitative results.

Summary & conclusions

- Systematic improvement of truncations of DSEs possible.
- Newest step: Inclusion of three-point functions
 - Required for quantitative results and
 - likely also for some aspects of non-zero temperature and density calculations [Fister, Pawlowski, 1112.5440].
 - Reproduction of lattice data possible.
- Automatization tools:

DoFun [Alkofer, MQH, Schwenzer, CPC180; MQH, Braun, CPC183] CrasyDSE [MQH, Mitter, CPC183]

• While functional equations were at the beginning especially helpful to understand the qualitative behavior, we arrive now at quantitative results.

Thank you very much for your attention.