Exploring exotic hadrons with functional equations

Markus Q. Huber

Institute of Theoretical Physics, Giessen University

Group report
Giessen:
Christian S. Fischer Stephan Hagel
\longrightarrow Joshua Hoffer Franziska Münster Graz:
Gernot Eichmann

DPG Spring Meeting 2024
March 12, 2024
Giessen, Germany
Thursday, 16:45: J. Hoffer, Tetraquarks (HK 71.5)

Bound states of the strong interaction

Quark model 1964:

- Solve Schrödinger equation with a given potential, e.g., Cornell:

$$
V(r)=-\frac{4}{3} \frac{\alpha s}{r}+\sigma r+\text { const. }
$$

- Abundance of states

Exotics:

Baryon

Scalar sector

Classification not always easy, e.g., scalar sector $J^{P C}=0^{++}$:

- $q \bar{q}$ mesons, tetraquarks: (inverted) mass hierarchy?

- Glueballs?

Functional review:
[Eichmann, Fischer,
Santowsky, Wallbott,
Few-Body Syst. 61 (2020)]

Functional bound state equation

Dyson equation: nonperturbative resummation!
Compare: $f(x)=\frac{1}{1-x}=1+x+x^{2}+\ldots=1+x f(x)=1+x+x^{2} f(x)$

Scattering kernel K : interactions
Scattering matrix T
Bethe-Salpeter amplitude 「

T contains bound states:

$$
T \rightarrow \frac{\Gamma \bar{\Gamma}}{P^{2}+M^{2}}
$$

Plug into Dyson equation:
\rightarrow homogeneous Bethe-Salpeter equ.

[Review: Eichmann, Sanchis-Alepuz, Williams, Alkofer, Fischer, Prog.Part.Nucl.Phys. 91 (2016)]

Elements of a BSE

$$
\Gamma=K G_{0} \Gamma
$$

Input:

- Propagators G_{0}
- Kernel K

Output:

- Mass M:
$M^{2}=-P^{2}$
- Bethe-Salpeter amplitudes 「

(quark-antiquark state)

Elements of a BSE

$$
\Gamma=K G_{0} \Gamma
$$

Input:

- Propagators G_{0}
- Kernel K

Output:

- Mass M:
$M^{2}=-P^{2}$
- Bethe-Salpeter amplitudes 「

(quark-antiquark state)

Symmetry constraints: Propagators and kernels are not independent!
Relevant for QCD: Chiral symmetry in quark sector \rightarrow axial-vector Ward-Takahashi identity

Elements of a BSE

$$
\Gamma=K G_{0} \Gamma
$$

Input:

- Propagators G_{0}
- Kernel K

Output:

- Mass M: $M^{2}=-P^{2}$
- Bethe-Salpeter amplitudes 「

(quark-antiquark state)

Symmetry constraints: Propagators and kernels are not independent!
Relevant for QCD: Chiral symmetry in quark sector \rightarrow axial-vector Ward-Takahashi identity

Approximations: bottom-up \longleftrightarrow top-down

Functional spectrum calculations: Bottom-up

Models, qualitative insight, quantitative results for some cases

Functional spectrum calculations: Bottom-up

Models, qualitative insight, quantitative results for some cases

IR strength + perturbative UV

Workhorse for more than 20 years: Rainbow-ladder truncation with an effective interaction, e.g., Maris-Tandy (or similar).

Functional spectrum calculations: Bottom-up

Models, qualitative insight, quantitative results for some cases

IR strength + perturbative UV

Workhorse for more than 20 years: Rainbow-ladder truncation with an effective interaction, e.g., Maris-Tandy (or similar).

Example: Nucleon spectrum

[Eichmann, Sanchis-Alepuz, Williams, Alkofer, Fischer, Prog.Part.Nucl.Phys. 91 (2016); Eichmann, Few Body Syst. 63 (2022)]

Bottom-up approximation: Rainbow

Need the gluon propagator $\left(Z\left(k^{2}\right)\right)$ and the quark-gluon vertex $\left(h_{i}(k ; p, q)\right)$.

- $\Gamma^{a, \nu}(k ; p, q) \propto \gamma^{\nu} h_{1}(k ; p, q)$
- $\frac{g^{2}}{4 \pi} Z\left(k^{2}\right) h_{1}(k ; p, q) \propto \alpha\left(k^{2}\right)$

Iteration \rightarrow only 'rainbow-like' diagrams

Bottom-up approximation: Rainbow

Need the gluon propagator $\left(Z\left(k^{2}\right)\right)$ and the quark-gluon vertex $\left(h_{i}(k ; p, q)\right)$.

- $\Gamma^{a, \nu}(k ; p, q) \propto \gamma^{\nu} h_{1}(k ; p, q)$
- $\frac{g^{2}}{4 \pi} Z\left(k^{2}\right) h_{1}(k ; p, q) \propto \alpha\left(k^{2}\right)$

Iteration \rightarrow only 'rainbow-like' diagrams

Example for a model: Maris-Tandy interaction

\alpha\left(k^{2}\right)=\underbrace{\pi \eta^{7}\left(\frac{k^{2}}{\Lambda^{2}}\right)^{2} e^{-\eta^{2} \frac{k^{2}}{\Lambda^{2}}}}_{\alpha_{\mathrm{IR}}\left(k^{2}\right)}+\alpha_{\cup V}\left(k^{2}\right)
\]

- Scale \wedge from f_{π}
- Quark masses $m_{u}=m_{d}, m_{s}$ from m_{π}, m_{K}
- Parameter η : window of small sensitivity (for meson masses and decay constants)
- $\alpha_{u v}$: Phenomenologically irrelevant, provides correct perturbative running to quark propagator

Tetraquarks

Tetraquarks

- Light scalar mesons: (inverted) mass hierarchy [Jaffe, PRD15 (1977)]? History of σ meson, lightest scalar nonet is incompatible with $q \bar{q}$ picture:

$q \bar{q} q \bar{q}:$

- Experimental discovery of exotic XYZ states \rightarrow four-quark states?

Structure of four-quark states

Consider heavy-light system, e.g., $X(3872)$.
Possible clustering of states:

Tetraquarks: Functional equations

[Eichmann, Fischer, Santowsky, Wallbott, Few-Body Syst. 61 (2020)]

[Kvinikhidze, Khvedelidze, Theor. Math. Phys. 90 (1992); Heupel, Eichmann, Fischer, PLB 718 (2012); Eichmann, Fischer, Heupel, PLB 753 (2016)]

- Neglect 3- and 4-body interactions
- Complicated kinematics (4 momenta):
- dressings f (9 Lorentz scalar)
- $J=0$: 256 tensors, $J=1: 768$ tensors
\rightarrow Approximations necessary.

Clustering

Two-body clusters in amplitudes [Eichmann, Fischer, Heupel, PLB 753 (2016); Wallbott, Eichmann, Fischer, PRD 102 (2020)]:

Rainbow-ladder truncation

Consistency between quark propagator and bound state equations:

Iteration \rightarrow only 'rainbow-like' diagrams
[Maris, Roberts, Tandy, Phys. Rev. C 56 (1997); Maris,
Tandy, Phys. Rev. C 60 (1999)](%5B):

$$
\alpha\left(k^{2}\right)=\underbrace{\pi \eta^{7}\left(\frac{k^{2}}{\Lambda^{2}}\right)^{2} e^{-\eta^{2} \frac{k^{2}}{\Lambda^{2}}}}_{\alpha_{\mathbb{R}}\left(k^{2}\right)}+\alpha_{U V}\left(k^{2}\right)
$$

Rainbow-ladder truncation

\alpha\left(k^{2}\right)=\underbrace{\pi \eta^{7}\left(\frac{k^{2}}{\Lambda^{2}}\right)^{2} e^{-\eta^{2} \frac{k^{2}}{\Lambda^{2}}}}_{\alpha_{\mathrm{R}}\left(k^{2}\right)}+\alpha \cup \vee\left(k^{2}\right)
\]

- Scale \wedge from f_{π}
- Quark masses $m_{u}=m_{d}, m_{s}, m_{c}, m_{b}$ from m_{π}, $m_{D^{(*)}}, m_{D_{s}^{(*)}}, \eta_{b}, m_{\Upsilon}$
- Parameter η : window of small sensitivity (for meson masses and decay constants)
- $\alpha \mathrm{uv}$: Phenomenologically irrelevant, provides correct perturbative running to quark

Hidden-flavor tetraquarks w/ charm and bottom quarks: Spectrum

Some teasers. . \rightarrow Full story:
Thursday, 16:45: J. Hoffer, Tetraquarks (HK 71.5)

[Hoffer, Eichmann, Fischer, 2402.12830]

Hidden-flavor tetraquarks w/ charm and bottom quarks: Structure

Identify dominant components, e.g., $\chi_{c 1}(3872)$ [$X(3872)$]:

- $D D^{*}: c \bar{q}, q \bar{c}$ (molecule)
- $\omega J / \psi: c \bar{c}, q \bar{q}$ (hadro-quarkonium)
- $A S: c q, \overline{c q}$ (diquark-antidiquark)

Hidden-flavor tetraquarks w/ charm and bottom quarks: Structure

Norm contributions:

Glueballs

Glueballs

Non-Abelian nature of QCD \rightarrow self-interaction of force fields.

Mass dynamically created from massless (due to gauge invariance) gluons.

Theory:
Glueballs from gauge inv. operators, e.g., $F_{\mu \nu} F^{\mu \nu}$.
\rightarrow Mixing of operators with equal quantum numbers.
Experiment:
Production in glue-rich environments, e.g., $p \bar{p}$ annihilation (PANDA), pomeron exchange in $p p$ (central exclusive production), radiative J / ψ decays

Reviews on glueballs: [Klempt, Zaitsev, Phys.Rept. 454 (2007); Mathieu, Kochelev, Vento, Int.J.Mod.Phys. 18 (2009); Crede, Meyer,
Prog.Part.Nucl.Phys. 63 (2009); Ochs, J.Phys.G40 (2013); Llanes-Estrada, EPJST 230 (2021); Vadacchino, 2305.04869]

Scalar glueballs from J / ψ decay

Coupled-channel analyses of exp. data (BESIII):
[Sarantsev, Denisenko, Thoma, Klempt, Phys. Lett. B 816 (2021)] [JPAC Coll., Rodas et al., Eur.Phys.J.C 82 (2022)]

Glueball calculations: Lattice

Lattice methods

Pure gauge theory:
No dynamic quarks.
\rightarrow "Pure" glueballs

- [Morningstar, Peardon, Phys. Rev. D60 (1999)]: standard reference
- [Athenodorou, Teper, JHEP11 (2020)]: improved statistics, more states

[Morningstar, Peardon, Phys. Rev. D60 (1999)]

Glueball calculations: Lattice

Lattice methods

Pure gauge theory:
No dynamic quarks.
\rightarrow "Pure" glueballs

- [Morningstar, Peardon, Phys. Rev. D60 (1999)]: standard reference
- [Athenodorou, Teper, JHEP11 (2020)]: improved statistics, more states
"Real QCD":
- [Gregory et al., JHEP10 (2012)]
- [Brett et al., AIP Conf.Proc. 2249 (2020)]
- [Chen et al., 2111.11929]
- [Vadacchino, Lattice2022, 2305.04869]

Challenging:

- Much higher statistics required (poor signal-to-noise ratio)
- Continuum extrapolation and inclusion of fermionic operators still to be done
- Mixing with $\bar{q} q$ challenging
- $m_{\pi}=360 \mathrm{MeV}$
- Small unquenching effects found

No quantitative results yet.

Functional glueball calculations

Glueballs? Rainbow-ladder?

Functional glueball calculations

Glueballs? Rainbow-ladder?

There is no rainbow for gluons!

Functional glueball calculations

Glueballs? Rainbow-ladder?

There is no rainbow for gluons!

Model based BSE calculations

$(J=0)$:

- [Meyers, Swanson, Phys.Rev.D87 (2013)]
- [Sanchis-Alepuz, Fischer, Kellermann, von Smekal, Phys.Rev.D92, (2015)]
- [Souza et al., Eur.Phys.J.A56 (2020)]
- [Kaptari, Kämpfer, Few Body Syst. 61 (2020)]

Functional glueball calculations

Glueballs? Rainbow-ladder?

There is no rainbow for gluons!

Model based BSE calculations
$(J=0)$:

- [Meyers, Swanson, Phys.Rev.D87 (2013)]
- [Sanchis-Alepuz, Fischer, Kellermann, von Smekal, Phys.Rev.D92, (2015)]
- [Souza et al., Eur.Phys.J.A56 (2020)]
- [Kaptari, Kämpfer, Few Body Syst. 61 (2020)]

Alternative: Calculated input [MQH, Phys.Rev.D 101 (2020)]

- $J=0$: [MQH, Fischer, Sanchis-Alepuz, Eur.Phys.J.C80 (2020)]
- $J=0,2,3,4$: $[\mathrm{MQH}$, Fischer, Sanchis-Alepuz, Eur.Phys.J.C81 (2021)]

Extreme sensitivity on input!

Bound state equations for QCD

- Require scattering kernel K and propagator.

Bound state equations for QCD

- Require scattering kernels K and propagators.
- Quantum numbers determine which amplitudes 「 couple.

Bound state equations for QCD

- Require scattering kernels K and propagators.
- Quantum numbers determine which amplitudes Γ couple.
- Ghosts from gauge fixing

One framework

- Natural description of mixing.
- Similar equations for hadrons with more than two constituents

Bound state equations for QCD

Focus on pure glueballs.

- Require scattering kernels K and propagators.
- Quantum numbers determine which amplitudes Γ couple.
- Ghosts from gauge fixing

One framework

- Natural description of mixing.
- Similar equations for hadrons with more than two constituents

Kernels

Systematic derivation from 3PI effective action: [Berges, Phys. Rev. D 70 (2004); Carrington, Gao, Phys. Rev. D 83 (2011)]

Self-consistent treatment of 3-point functions requires 3-loop expansion.

[Fukuda, Prog. Theor. Phys 78 (1987); McKay, Munczek, Phys. Rev. D 40 (1989); Sanchis-Alepuz, Williams, J. Phys: Conf. Ser. 631 (2015); MQH, Fischer, Sanchis-Alepuz, Eur.Phys.J.C80 (2020)]

Correlation functions of quarks and gluons

Equations of motion: 3-loop 3PI effective action

- Conceptual and technical challenges: nonperturbative renormalization, two-loop diagrams, convergence, size of kernels, ...
- Self-contained: Only parameters are the strong coupling and the quark masses!
- Long way, e.g., ghost-gluon vertex, three-gluon vertex, four-gluon vertex, ...
- \rightarrow MQH, Phys.Rev.D 101 (2020)

Correlation functions of quarks and gluons

Equations of motion: 3-loop 3PI effective action

\rightarrow [Review: MQH, Phys.Rept. 879 (2020)]

- Conceptual and technical challenges: nonperturbative renormalization, two-loop diagrams, convergence, size of kernels, ..
- Self-contained: Only parameters are the strong coupling and the quark masses!
- Long way, e.g., ghost-gluon vertex, three-gluon vertex, four-gluon vertex, ...
- \rightarrow MQH, Phys.Rev.D 101 (2020)

Start with pure gauge theory.

Landau gauge propagators

Self-contained: Only external input is the coupling! \rightarrow Ab-initio!

Landau gauge propagators

Self-contained: Only external input is the coupling! \rightarrow Ab-initio!

Gluon dressing function:

Family of solutions [von Smekal, Alkofer, Hauck,
PRL79 (1997); Aguilar, Binosi, Papavassiliou,
Phys.Rev.D 78 (2008); Boucaud et al., JHEP06 (2008);
Fischer, Maas, Pawlowski, Ann.Phys. 324 (2008);
Alkofer, MQH, Schwenzer, Phys. Rev. D 81 (2010)]
Nonperturbative completions of Landau gauge [Maas, Phys. Lett. B 689 (2010)]?

Three-gluon vertex:

Ghost dressing function:

Stability of the solution

- Agreement with lattice results.

Stability of the solution

- Agreement with lattice results.
- Concurrence between functional methods:

3PI vs. 2-loop DSE:

Stability of the solution

- Agreement with lattice results.
- Concurrence between functional methods:

3PI vs. 2-loop DSE:

DSE vs. FRG:

[Cucchieri, Maas, Mendes, Phys.Rev.D77 (2008); Sternbeck et al., Proc.Sci. LATTICE2016 (2017); Cyrol et al., Phys.Rev.D 94 (2016); MQH, Phys.Ref.D101 (2020)]

Stability of the solution: Extensions

- Three-gluon vertex: Tree-level dressing dominant, others subleading [Eichmann, Williams, Alkofer, Vujinovic, Phys.Rev.D89 (2014); Pinto-Gómez et al., 2208.01020]

Stability of the solution: Extensions

- Three-gluon vertex: Tree-level dressing dominant, others subleading [Eichmann, Williams, Alkofer, Vujinovic, Phys.Rev.D89 (2014); Pinto-Gómez et al., 2208.01020]
- Four-gluon vertex: Influence on propagators tiny for $d=3$ [МQH, Phys.Rev.D93 (2016)]

Stability of the solution: Extensions

- Three-gluon vertex: Tree-level dressing dominant, others subleading [Eichmann, Williams, Alkofer, Vujinovic, Phys.Rev.D89 (2014); Pinto-Gómez et al., 2208.01020]
- Four-gluon vertex: Influence on propagators tiny for $d=3$ [MQH, Phys.Rev.D93 (2016)]
- Two-ghost-two-gluon vertex [МQН, Eur. Phys.J.C77 (2017)]: (FRG: [Corell, SciPost Phys. 5 (2018)])

Amplitudes

Information about significance of single parts.

Ground state scalar glueball:
Amplitudes 0^{++}

Excited scalar glueball:
Amplitudes 0^{*++}

\rightarrow Amplitudes have different behavior for ground state and excited state. Useful guide for future developments.
\rightarrow Meson/glueball amplitudes: Information about mixing.

Glueball results

[MQH, Fischer, Sanchis-Alepuz, Eur.Phys.J.C81 (2021)]

- Agreement with lattice results
- New states: $0^{* *++}, 0^{* *-+}, 3^{-+}, 4^{-+}$

Higher order diagrams

One-loop diagrams only:

[MQH, Fischer, Sanchis-Alepuz, Eur.Phys.J.C80
(2020); MQH, Fischer, Sanchis-Alepuz,

Eur.Phys.J.C81 (2021)]

One-loop diagrams only:

[MQH, Fischer, Sanchis-Alepuz, Eur.Phys.J.C80 (2020); MQH, Fischer, Sanchis-Alepuz, Eur.Phys.J.C81 (2021)]

Two-loop diagrams: subleading effects

- 0^{-+}: none
[MQH, Fischer, Sanchis-Alepuz, EPJ Web Conf. 258 (2022)]
- 0^{++}: $<2 \%$
[MQH, Fischer, Sanchis-Alepuz, HADRON2021, arXiv:2201.05163]
- 2^{++}: none
[MQH, Fischer, Sanchis-Alepuz, HADRON2023, arXiv:2312.12029]

Hybrids

Bound state equations for hybrids

- (Anti)quarks + gluonic excitation
- Meson \rightarrow three-body equation
- Baryon \rightarrow four-body equation

Bound state equations for hybrids

- (Anti)quarks + gluonic excitation
- Meson \rightarrow three-body equation
- Baryon \rightarrow four-body equation

- $\pi_{1}(1600)\left(1^{-+}\right): 48$ tensors
- Leading order of 3 PI effective action: dressed quark-gluon and three-gluon interactions
- Preliminary results: diagrams with three-gluon vertices leading

Summary and outlook

Tetraquarks: Bottom-up

- Structure: molecule/hadro-quarkonium/diquarkantidiquark
$b n \bar{n} \bar{b}$
 number and flavor dependent!

Summary and outlook

Glueballs: Top-down

- Self-contained input, parameters: coupling, (quark masses)
- Quantitative predictions
- Successful stability tests

Summary and outlook

Tetraquarks: Bottom-up

- Structure: molecule/hadro-quarkonium/diquarkantidiquark
$b n \bar{n} \bar{b}$

- Structure quantum number and flavor dependent!

Future:

- Hybrids
- Open flavor tetraquarks

Glueballs: Top-down

- Self-contained input, parameters: coupling, (quark masses)
- Quantitative predictions
- Successful stability tests

Summary and outlook

Tetraquarks: Bottom-up

- Structure: molecule/hadro-quarkonium/diquarkantidiquark
$b n \bar{n} \bar{b}$

- Structure quantum number and flavor dependent!

Future:

- Hybrids

- Open flavor tetraquarks

Glueballs: Top-down

- Self-contained input, parameters: coupling, (quark masses)
- Quantitative predictions
- Successful stability tests

- Three-gluon glueballs
- Mixing glueballs/mesons

Thank you for your attention!

Functional spectrum calculations: Top-down

Derivation of kernels and correlation functions from n PI effective actions [Fukuda, Prog.Theor.Phys. 78 (1987); Sanchis-Alepuz, Williams, J.Phys.Conf.Ser. 631 (2015)].

Loop expansion of $n \mathrm{PI}$ effective actions as reliable expansion in terms of nonperturbative quantities?

Functional spectrum calculations: Top-down

Derivation of kernels and correlation functions from n PI effective actions [Fukuda, Prog.Theor.Phys. 78 (1987); Sanchis-Alepuz, Williams, J.Phys.Conf.Ser. 631 (2015)].

Loop expansion of $n \mathrm{PI}$ effective actions as reliable expansion in terms of nonperturbative quantities?

Example: 3-loop 3PI effective action [Berges, Phys. Rev. D 70 (2004); Carrington, Gao, Phys. Rev. D 83 (2011)]

$$
\Gamma^{31}\left[\Phi, D, \Gamma^{(3)}\right]=\Gamma^{0,31}\left[\Phi, D, \Gamma^{(3)}\right]+\Gamma^{\text {int }, 31}\left[\Phi, D, \Gamma^{(3)}\right]
$$

Correlation functions for complex momenta

$$
\lambda(P) \Gamma(P)=\mathcal{K} \cdot \Gamma(P)
$$

\rightarrow Eigenvalue problem for $\Gamma(P)$:
(1) Solve for $\lambda(P)$.
(2) Find P with $\lambda(P)=1$.
$\Rightarrow M^{2}=-P^{2}$

Correlation functions for complex momenta

$$
\lambda(P) \Gamma(P)=\mathcal{K} \cdot \Gamma(P)
$$

\rightarrow Eigenvalue problem for $\Gamma(P)$:
(1) Solve for $\lambda(P)$.
(2) Find P with $\lambda(P)=1$.

$$
\Rightarrow M^{2}=-P^{2}
$$

However:
Propagators are probed at $\left(q \pm \frac{P}{2}\right)^{2}=\frac{P^{2}}{4}+q^{2} \pm \sqrt{P^{2} q^{2}} \cos \theta=-\frac{M^{2}}{4}+q^{2} \pm i M \sqrt{q^{2}} \cos \theta$ \rightarrow Complex for $P^{2}<0$!

Time-like quantities $\left(P^{2}<0\right) \rightarrow$ Correlation functions for complex arguments.

Extrapolation of $\lambda\left(P^{2}\right)$

Extrapolation method

- Extrapolation to time-like P^{2} using Schlessinger's continued fraction method (proven superior to default Padé approximants) [Schlessinger, Phys.Rev. 167 (1968)]
- Average over extrapolations using subsets of points for error estimate

$$
f(x)=\frac{f\left(x_{1}\right)}{1+\frac{a_{1}\left(x-x_{1}\right)}{1+\frac{x_{2}\left(x-x_{2}\right)}{1+\frac{\partial_{3}\left(x-x_{3}\right)}{\cdots}}}}
$$

Coefficients a_{i} can determined such that $f(x)$ exact at x_{i}.

Extrapolation of $\lambda\left(P^{2}\right)$

Extrapolation method

- Extrapolation to time-like P^{2} using Schlessinger's continued fraction method (proven superior to default Padé approximants) [Schlessinger, Phys.Rev. 167 (1968)]
- Average over extrapolations using subsets of points for error estimate

Test extrapolation for solvable system:
Heavy meson [MQH, Sanchis-Alepuz, Fischer, Eur.Phys.J.C 80 (2020)]

$$
f(x)=\frac{f\left(x_{1}\right)}{1+\frac{a_{1}\left(x-x_{1}\right)}{1+\frac{a_{2}\left(x-x_{2}\right)}{1+\frac{\partial_{3}\left(x-x_{3}\right)}{\cdots}}}}
$$

Coefficients a_{i} can determined such that $f(x)$ exact at x_{i}.

$J=1$ glueballs

Landau-Yang theorem

Two-photon states cannot couple to $J^{P}=1^{ \pm}$or $(2 n+1)^{-}$
[Landau, Dokl.Akad.Nauk SSSR 60 (1948); Yang, Phys. Rev. 77 (1950)].
(\rightarrow Exclusion of $J=1$ for Higgs because of $h \rightarrow \gamma \gamma$.)

Applicable to glueballs?
\rightarrow Not in this framework, since gluons are not on-shell.
\rightarrow Presence of $J=1$ states is a dynamical question.

$$
J=1 \text { not found here. }
$$

Glueballs as bound states

Hadron masses from correlation functions of color singlet operators.

Glueballs as bound states

Hadron masses from correlation functions of color singlet operators.
Example: For $J^{P C}=0^{++}$glueball take $O(x)=F_{\mu \nu}(x) F^{\mu \nu}(x)$:

$$
D(x-y)=\langle O(x) O(y)\rangle
$$

Glueballs as bound states

Hadron masses from correlation functions of color singlet operators.
Example: For $J^{P C}=0^{++}$glueball take $O(x)=F_{\mu \nu}(x) F^{\mu \nu}(x)$:

$$
D(x-y)=\langle O(x) O(y)\rangle
$$

Lattice: Mass exponential Euclidean time decay:

$$
\lim _{t \rightarrow \infty}\langle O(x) O(0)\rangle \sim e^{-t M}
$$

Glueballs as bound states

Hadron masses from correlation functions of color singlet operators.
Example: For $J^{P C}=0^{++}$glueball take $O(x)=F_{\mu \nu}(x) F^{\mu \nu}(x)$:

$$
D(x-y)=\langle O(x) O(y)\rangle
$$

Functional approach: Complicated object in a diagrammatic language, 2-, 3- and 4-gluon contributions [MQH, Cyrol, Pawlowski, Comput.Phys.Commun. 248 (2020)]
\qquad
+3-loop diagrams
Leading order:
[Windisch, MQH, Alkofer, Phys.Rev.D87 (2013)]

Glueballs as bound states

Hadron masses from correlation functions of color singlet operators.
Example: For $J^{P C}=0^{++}$glueball take $O(x)=F_{\mu \nu}(x) F^{\mu \nu}(x)$:

$$
D(x-y)=\langle O(x) O(y)\rangle
$$

Put total momentum on-shell and consider individual 2-, 3- and 4-gluon contributions. \rightarrow Each can have a pole at the glueball mass.
A^{4}-part of $D(x-y)$, total momentum on-shell:

Glueball amplitudes for spin J

[MQH, Fischer, Sanchis-Alepuz, Eur.Phys.J.C81 (2021)]

$$
\Gamma_{\mu \nu \rho \sigma \ldots}\left(p_{1}, p_{2}\right)=\sum \tau_{\mu \nu \rho \sigma \ldots}^{i}\left(p_{1}, p_{2}\right) h_{i}\left(p_{1}, p_{2}\right)
$$

Numbers of tensors:

J	$\mathrm{P}=+$	$\mathrm{P}=-$
0	2	1
1	4	3
>2	5	4

Increase in complexity:

- 2 gluon indices (transverse)
- J spin indices (symmetric, traceless, transverse to P)

Low number of tensors, but high-dimensional tensors!
\rightarrow Computational cost increases with J.

Charge parity

Transformation of gluon field under charge conjugation:

$$
A_{\mu}^{a} \rightarrow-\eta(a) A_{\mu}^{a}
$$

where

$$
\eta(a)= \begin{cases}+1 & a=1,3,4,6,8 \\ -1 & a=2,5,7\end{cases}
$$

Color neutral operator with two gluon fields:

$$
A_{\mu}^{a} A_{\nu}^{a} \rightarrow \eta(a)^{2} A_{\mu}^{a} A_{\nu}^{a}=A_{\mu}^{a} A_{\nu}^{a} .
$$

$\Rightarrow C=+1$
Negative charge parity, e.g.:

$$
\begin{aligned}
d^{a b c} A_{\mu}^{a} A_{\nu}^{b} A_{\rho}^{c} \rightarrow & -d^{a b c} \eta(a) \eta(b) \eta(c) A_{\mu}^{a} A_{\nu}^{b} A_{\rho}^{c}= \\
& -d^{a b c} A_{\mu}^{a} A_{\nu}^{b} A_{\rho}^{c}
\end{aligned}
$$

Only nonvanishing elements of the symmetric structure constant $d^{a b c}$: zero or two indices equal to 2,5 or 7 .

Hidden-flavor tetraquarks w/ charm and bottom quarks: Quark mass dependence

Some teasers. . \rightarrow Full story:
Thursday, 16:45: J. Hoffer, Tetraquarks (HK 71.5)

[Hoffer, Eichmann, Fischer, 2402.12830]

Three-gluon vertex

[Cucchieri, Maas, Mendes, Phys. Rev. D 77 (2008); Sternbeck et al., 1702.00612; MQH, Phys. Rev. D 101 (2020)]

- Simple kinematic dependence of three-gluon vertex (only singlet variable of S_{3})
- Large cancellations between diagrams

Ghost-gluon vertex

Ghost-gluon vertex:

[Maas, SciPost Phys. 8 (2019);
MQH, Phys. Rev. D 101 (2020)]

- Nontrivial kinematic dependence of ghost-gluon vertex
- Qualitative agreement with lattice results, though some quantitative differences (position of peak!).

Gauge invariance

Couplings can be extracted from each vertex.

- Slavnov-Taylor identities (gauge invariance): Agreement perturbatively (UV) necessary.
[Cyrol et al., Phys.Rev.D 94 (2016)]
- Difficult to realize: Small deviations \rightarrow Couplings cross and do not agree.
- Here: Vertex couplings agree down to GeV regime (IR can be different).

Landau gauge propagators in the complex plane

Simpler truncation:
[Fischer, MQH, Phys.Rev.D 102 (2020)]

Landau gauge propagators in the complex plane

Simpler truncation:

[Fischer, MQH, Phys.Rev.D 102 (2020)]
Ray technique for self-consistent solution of a DSE:

- Current truncation leads to a pole-like structure in the gluon propagator.
- Analyticity up to 'pole' confirmed by various tests (Cauchy-Riemann, Schlessinger, reconstruction)

Landau gauge propagators in the complex plane

Simpler truncation:

Landau gauge propagators in the complex plane

Simpler truncation:

\rightarrow Opening at $q^{2}=p^{2}$.

Landau gauge propagators in the complex plane

Simpler truncation:

\rightarrow Opening at $q^{2}=p^{2}$.
Appearance of branch cuts for complex momenta forbids integration directly to cutoff.

Extrapolation for glueball eigenvalue curves

Several curves: ground state and excited states.

