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Infrared Regime

e Infrared (IR) is different from UV,

where perturbation theory works due to asymptotic freedom.

e |R phenomena:

dynamical chiral symmetry breaking and confinement.

e Complementing methods are needed:
Lattice vs. functional methods as Dyson-Schwinger equations

(DSEs) and renormalization group

e A first step in understanding confinement is to consider only ghosts
and gluons, i.e. Yang-Mills (YM) theory.

e Confinement in YM theory (Landau gauge):

Gribov-Zwanziger and Kugo-Ojima scenario
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Dyson-Schwinger Approach

Dyson-Schwinger equations

e Equations of motion for Green functions

e Describe the theory completely, including non-perturbative effects

o Infinite tower of coupled integral equations

e Propagators: can be calculated using approximations for the vertices

In the IR a solution for the propagators and vertices in form of power

laws is possible.
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Infrared Behavior

e Gluon and ghost propagators: dressing functions show power-like

behavior

wPv Z G
Du(p) = (B~ 22) ZEL () = £
Z(p)=A-(p*)", G(p) =B-(p*)’
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Infrared Behavior

e Gluon and ghost propagators: dressing functions show power-like

behavior
/”/ (6 pllpV> Z[Sf), DG(P) — _ G[Ef)
Z(p) (P")%, G(p) = B-(p*)’

e Vertices: dressing functions show power-like behavior, but more

complicated tensor structure

ruu...(p17p27 o ) = Z Hi(p17p27 s )T,L(LILZ

Hi(p1,p2,...) = G- (p?)"
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Comparison of Different Methods

Lattice ‘ Continuum
Ghost-gluon vertex constant
Ghost propagator diverging diverging
Gluon propagator vanishing? vanishing

Other vertex functions

no data for IR

prediction: power-like
(Alkofer et al., PLB 611)

Investigation of finite size effects via DSEs on a 4-dimensional torus —

much bigger lattices needed (Fischer et al., Annals Phys. 2007)
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Comparison of Different Methods

Lattice ‘ Continuum
Ghost-gluon vertex constant
Ghost propagator diverging diverging
Gluon propagator vanishing? vanishing

Other vertex functions

no data for IR
in 4 dim.

prediction: power-like
(Alkofer et al., PLB 611)

Investigation of finite size effects via DSEs on a 4-dimensional torus —

much bigger lattices needed (Fischer et al., Annals Phys. 2007)

Continuum results (k = 0.5953...)

e ghost-gluon-vertex: (p?)° — constant

K

e ghost propagator: (p?)~

e gluon propagator: (p?)%"

e 3-gluon vertex: (p?) 3~

o
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Vertices: Available Lattice Data

Three-gluon vertex, one momentum vanishing
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no power-like behavior
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Vertices: Available Lattice Data

Three-gluon vertex, one momentum vanishing I
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The Bare Ghost-Gluon Vertex

Starting point is transversal gluon propagator in Landau gauge:

Z(k k. k,
kD, (k) = ku% {5,” - } =0
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The Bare Ghost-Gluon Vertex

Starting point is transversal gluon propagator in Landau gauge:

Z(k k. k,
kD, (k) = ku% {5,” - } =0

(4~ P)uDu(q —P) = 0= 4, D(q — p) = P Dy (q — p)

Conclusions
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The Bare Ghost-Gluon Vertex

Starting point is transversal gluon propagator in Landau gauge:

Z(k k. k,
kD, (k) = ku% {5,” - } =0

(= pP)uDu(q—p)=0=q.D.(qa—p) = p.Du(q—p)
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Propagators

o IR behavior can be determined from the ghost DSE:

e Simple power counting gives a

relation between ghost and gluon propagator:

d ) 11
170)—54’(1714"}714’54’5

Conclusions
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Skeleton Expansion

DSEs for n-point functions contain even higher n-point functions.
E.g. the three-gluon DSE:

+1/6 +1/2 ﬂgf}%iﬂ/z f%
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Skeleton Expansion

DSEs for n-point functions contain even higher n-point functions.

Skeleton expansion of the ghost-gluon scattering kernel:

10/19



Introduction Infrared Behavior: Power Counting Numerical Results
000 (e]e} [e]e]e}
(oo} @0000 [e]

Skeleton Expansion

DSEs for n-point functions contain even higher n-point functions.

First order of skeleton expansion of 3-gluon vertex:

+1/6 +1/2 +1/2 +...

Simple power counting is possible again — (p2)*3"”"+g*2

Conclusions
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Four-Gluon Vertex

First order of skeleton expansion is

:}{ %ﬁ

Ghost loop is dominant again: — (p2)—4n+g72

Conclusions
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building blocks:

object

Building Blocks

For the calculation of an arbitrary vertex function we can use these

number of objects

scaling dimension

loop

internal ghost line
internal gluon line
ghost-gluon vertex
bare 3-gluon vertex
dressed 3-gluon vertex
bare 4-gluon vertex

dressed 4-gluon vertex

I
n;
mj
V21
Ve
Y0,3
Ve,

V0,4

d/2
o—1=-r-1
So2—1=2k+1-4d/2
1/2
1/2
do3+3=-3k+d/2—3/2
0
Opa=—4k+d/2 -2
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2n Ghosts, m Gluons

Employing a skeleton expansion the calculation of the IR exponent of an
arbitrary vertex function with 2n external ghosts and m external gluons is

possible:

p2om = (n—m)rk+ (1 — n)(g -2).
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2n Ghosts, m Gluons

Employing a skeleton expansion the calculation of the IR exponent of an
arbitrary vertex function with 2n external ghosts and m external gluons is

possible:
d
pP2om = (n—m)xk+ (1 — n)(i —2).

Higher orders of the skeleton expansion

Derivation is independent of order
— all orders have the same IR exponent
Alternatively: Show that the insertions for creating higher orders give no

additional contribution.

Fod gt g
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Qualitative Behavior

The dimension dependence of the IR behavior of YM Green functions.

Dimension 4 3 2
K 0.5953... ~ 0.6 1 0.3976 ...~ 0.4 0.5 0.2 0
Ghost —Kk —1 —1.6 -2 —1.4 —1.5 —1.2 —1

e Ghost is divergent in all three values of space-time dimension.
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The dimension dependence of the IR behavior of YM Green functions.

Dimension 4 3 2

& 0.5953...~ 0.6 1 0.3976...~0.4 | 05 0.2 0
Ghost —k—1 —~1.6 —2 —1.4 —15 | —12 | -1
Gluon 2k+1- 94 0.2 1 0.3 0.5 0.4 0

e Ghost is divergent in all three values of space-time dimension.

e Gluon is vanishing in all three values of space-time dimension,

except one case.
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Qualitative Behavior

The dimension dependence of the IR behavior of YM Green functions.

Dimension 4 3 2

P 0.5953...~ 0.6 1 0.3976...~0.4 | 05 0.2 0
Ghost k-1 —~1.6 —2 —1.4 —15 | —12 | —1
Gluon 2k +1- 94 0.2 1 0.3 0.5 0.4 0
3-gluon —3x+d -3 -1.3 25 —1.2 ~15 | —1.1 | —0.5
4-gluon —ar+ 9 -2 —2.4 —4 —2.1 —25 | —1.8 | —1

e Ghost is divergent in all three values of space-time dimension.

e Gluon is vanishing in all three values of space-time dimension,

except one case.

e Vertices have the same qualitative behavior in all three values of

space-time dimension.
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The Ghost Triangle

Analytic calculation of the ghost triangle confirms power-like behavior.

"

apy N\
K

ri’;;A’IR(Pl’Pz,m) =
Ne B3g3/ d’q (94 p1)u(g — p2)oav
2 (2m) ((q + p1)?)" " ((g — p2)?)" 1 (g?)" !

Used Method: Negative Dimension Integration (NDIM)

— Appell's function Fy4
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Appell’'s Function Fy4

Fa(x,y) with x = p2/p?, y = p3/p?

Conclusions
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Solution for Euclidean region consists of several hypergeometric series.
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Tensor Components
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Dependence on Infrared Exponent

How much influence has the numerical value of s on the ghost triangle?
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Dependence on Infrared Exponent

How much influence has the numerical value of s on the ghost triangle?

Overlap of the tree-level tensor with the ghost-triangle for d = 2,3 and 4:

; 0.025
0.5 0.75 < 0.05,
0.2 0.4 0.8 1 x 0.02
0. 05
-0.4] 0.015
0. 15
0.01
-0.2]
“0.25 0.005

Dependence on « is only weak

— ghost dominance seems to be a robust mechanism

Numerical Results

Conclusions
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Summary

e The dependence on the numerical value of the IR exponent is weak.
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Summary

The dependence on the numerical value of the IR exponent is weak.
The skeleton expansion works in 2, 3 and 4 dimensions.
A general formula for the IR exponent of vertex functions was found.

It yields the same qualitative behavior of vertex functions in two,

three and four dimensions.

Lattice data in lower dimensions can give

qualitative results similar to four dimensions.
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Summary

The dependence on the numerical value of the IR exponent is weak.
The skeleton expansion works in 2, 3 and 4 dimensions.
A general formula for the IR exponent of vertex functions was found.

It yields the same qualitative behavior of vertex functions in two,

three and four dimensions.

Lattice data in lower dimensions can give

qualitative results similar to four dimensions.

Gribov-Zwanziger confinement scenario

confirmed in 2 and 3 dimensions!!!
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