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Infrared Regime

• Infrared (IR) is di�erent from UV,

where perturbation theory works due to asymptotic freedom.

• IR phenomena:

dynamical chiral symmetry breaking and con�nement.

• Complementing methods are needed:

Lattice vs. functional methods as Dyson-Schwinger equations

(DSEs) and renormalization group

• A �rst step in understanding con�nement is to consider only ghosts

and gluons, i.e. Yang-Mills (YM) theory.

• Con�nement in YM theory (Landau gauge):

Gribov-Zwanziger and Kugo-Ojima scenario
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Dyson-Schwinger Approach

Dyson-Schwinger equations

• Equations of motion for Green functions

• Describe the theory completely, including non-perturbative e�ects

• In�nite tower of coupled integral equations

• Propagators: can be calculated using approximations for the vertices

In the IR a solution for the propagators and vertices in form of power

laws is possible.
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Infrared Behavior

• Gluon and ghost propagators: dressing functions show power-like

behavior

Dµν(p) =

(
δµν −

pµpν

p2

)
Z (p)

p2
, DG (p) = −G (p)

p2

Z (p) = A · (p2)α, G (p) = B · (p2)β

• Vertices: dressing functions show power-like behavior, but more

complicated tensor structure

Γµν...(p1, p2, . . . ) =
n∑

i=0

Hi (p1, p2, . . . )τ
(i)
µν...

Hi (p1, p2, . . . ) = Ci · (p2)γ
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Comparison of Di�erent Methods

Lattice Continuum

Ghost-gluon vertex constant

Ghost propagator diverging diverging

Gluon propagator vanishing? vanishing

Other vertex functions no data for IR prediction: power-like

(Alkofer et al., PLB 611)

Investigation of �nite size e�ects via DSEs on a 4-dimensional torus →
much bigger lattices needed (Fischer et al., Annals Phys. 2007)

Continuum results (κ = 0.5953 . . . )

• ghost-gluon-vertex: (p2)0 → constant

• ghost propagator: (p2)−κ

• gluon propagator: (p2)2κ

• 3-gluon vertex: (p2)−3κ
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Vertices: Available Lattice Data
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Three-gluon vertex, one momentum vanishing 4 dimensions

Maas et al., Braz. J. Phys.

37N1B, 2007

no power-like behavior
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Vertices: Available Lattice Data
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Vertices: Available Lattice Data

2 dimensions

Maas, arXiv:0704.0722,

2007

IR exponent can be ex-

tracted

7 / 19



Introduction Infrared Behavior: Power Counting Numerical Results Conclusions

Vertices: Available Lattice Data

2 dimensions

Maas, arXiv:0704.0722,

2007

IR exponent can be ex-

tracted

Qualitatively the

same results in 2, 3 and 4

dimensions?
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The Bare Ghost-Gluon Vertex

Starting point is transversal gluon propagator in Landau gauge:

kµDµν(k) = kµ
Z (k)

k2

[
δµν −

kµkν

k2

]
= 0

(q − p)µDµν(q − p) = 0⇒ qµDµν(q − p) = pµDµν(q − p)

= +
q

p

q-p
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Propagators

• IR behavior can be determined from the ghost DSE:

-1 = -1 -

• Simple power counting gives a

relation between ghost and gluon propagator:

1− β =
d

2
+ α− 1 + β − 1 +

1

2
+

1

2

β = −κ

G (p2) = (p2)−κ, Z (p2) = (p2)2κ+2− d
2
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Skeleton Expansion

DSEs for n-point functions contain even higher n-point functions.

E.g. the three-gluon DSE:

= - +1/2 +

+1/6 +1/2 +1/2
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Skeleton Expansion

DSEs for n-point functions contain even higher n-point functions.

Skeleton expansion of the ghost-gluon scattering kernel:

= + + + + ...
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Skeleton Expansion

DSEs for n-point functions contain even higher n-point functions.

First order of skeleton expansion of 3-gluon vertex:

= - +1/2 +

+1/6 +1/2 +1/2 +...

Simple power counting is possible again → (p2)−3κ+ d
2
−2
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Four-Gluon Vertex

First order of skeleton expansion is

= + + +

Ghost loop is dominant again: → (p2)−4κ+ d
2
−2
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Building Blocks

For the calculation of an arbitrary vertex function we can use these

building blocks:

object number of objects scaling dimension

loop l d/2

internal ghost line ni δ2,0 − 1 = −κ− 1

internal gluon line mi δ0,2 − 1 = 2κ + 1− d/2

ghost-gluon vertex v2,1 1/2

bare 3-gluon vertex vb
0,3 1/2

dressed 3-gluon vertex v0,3 δ0,3 + 1

2
= −3κ + d/2− 3/2

bare 4-gluon vertex vb
0,4 0

dressed 4-gluon vertex v0,4 δ0,4 = −4κ + d/2− 2
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2n Ghosts, m Gluons

Employing a skeleton expansion the calculation of the IR exponent of an

arbitrary vertex function with 2n external ghosts and m external gluons is

possible:

ρ2n,m = (n −m)κ + (1− n)(
d

2
− 2).

Higher orders of the skeleton expansion

Derivation is independent of order

→ all orders have the same IR exponent

Alternatively: Show that the insertions for creating higher orders give no

additional contribution.
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Qualitative Behavior

The dimension dependence of the IR behavior of YM Green functions.

Dimension 4 3 2

κ 0.5953 . . . ≈ 0.6 1 0.3976 . . . ≈ 0.4 0.5 0.2 0

Ghost −κ− 1 −1.6 −2 −1.4 −1.5 −1.2 −1

Gluon 2κ + 1− d
2

0.2 1 0.3 0.5 0.4 0

3-gluon −3κ + d
2
− 3

2
−1.3 −2.5 −1.2 −1.5 −1.1 −0.5

4-gluon −4κ + d
2
− 2 −2.4 −4 −2.1 −2.5 −1.8 −1

• Ghost is divergent in all three values of space-time dimension.

• Gluon is vanishing in all three values of space-time dimension,

except one case.

• Vertices have the same qualitative behavior in all three values of

space-time dimension.
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The Ghost Triangle

Analytic calculation of the ghost triangle con�rms power-like behavior.

p1 µ
q

p2ν

q-p2

p3

ρ
q+p1

Γgh−∆,IR
µνρ (p1, p2, p3) =

Nc B
3 g3

2

∫
ddq

(2π)d
(q + p1)µ(q − p2)ρqν

((q + p1)2)κ+1((q − p2)2)κ+1(q2)κ+1

Used Method: Negative Dimension Integration (NDIM)

→ Appell's function F4
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Appell's Function F4

F4(x , y) with x = p2
2
/p2

1
, y = p2

3
/p2

1

Solution for Euclidean region consists of several hypergeometric series.
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Tensor Components of the Ghost Triangle
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Dependence on Infrared Exponent

How much in�uence has the numerical value of κ on the ghost triangle?

Overlap of the tree-level tensor with the ghost-triangle for d = 2, 3 and 4:
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Dependence on κ is only weak

→ ghost dominance seems to be a robust mechanism
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Summary

• The dependence on the numerical value of the IR exponent is weak.

• The skeleton expansion works in 2, 3 and 4 dimensions.

• A general formula for the IR exponent of vertex functions was found.

• It yields the same qualitative behavior of vertex functions in two,

three and four dimensions.

• Lattice data in lower dimensions can give

qualitative results similar to four dimensions.

Gribov-Zwanziger con�nement scenario

con�rmed in 2 and 3 dimensions!!!
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