Infrared Behavior: Power Counting

Numerical Results

Conclusions

Infrared Behavior of Vertex Functions in d-Dimensional Yang-Mills Theory

Markus Huber, R. Alkofer, C. S. Fischer, K. Schwenzer

Karl-Franzens Universität Graz Institut für Physik, Fachbereich Theoretische Physik

6th June 2007

Infrared Behavior: Power Counting 00 00000 Numerical Results

Conclusions

Table of Contents

Introduction

Infrared Regime Methods in the Infrared Regime

Infrared Behavior: Power Counting

Propagators

Vertices

Numerical Results

Tensor Components

Dependence on Infrared Exponent

Conclusions

Introduction •••• •••

Infrared Behavior: Power Counting 00 00000 Numerical Results

Conclusions

Infrared Regime

- Infrared (IR) is different from UV, where perturbation theory works due to asymptotic freedom.
- IR phenomena:

dynamical chiral symmetry breaking and confinement.

- Complementing methods are needed: Lattice vs. functional methods as Dyson-Schwinger equations (DSEs) and renormalization group
- A first step in understanding confinement is to consider only ghosts and gluons, i.e. Yang-Mills (YM) theory.
- Confinement in YM theory (Landau gauge): Gribov-Zwanziger and Kugo-Ojima scenario

Infrared Behavior: Power Counting

Numerical Results

Conclusions

Dyson-Schwinger Approach

Dyson-Schwinger equations

- Equations of motion for Green functions
- Describe the theory completely, including non-perturbative effects
- Infinite tower of coupled integral equations
- Propagators: can be calculated using approximations for the vertices

In the IR a solution for the propagators and vertices in form of power laws is possible.

Introduction
000
00

Infrared Behavior: Power Counting

Numerical Results

Conclusions

Infrared Behavior

• Gluon and ghost propagators: dressing functions show power-like behavior

$$\begin{aligned} D_{\mu\nu}(p) &= \left(\delta_{\mu\nu} - \frac{p_{\mu}p_{\nu}}{p^2}\right) \frac{Z(p)}{p^2}, \qquad D_G(p) = -\frac{G(p)}{p^2}\\ Z(p) &= A \cdot (p^2)^{\alpha}, \qquad \qquad G(p) = B \cdot (p^2)^{\beta} \end{aligned}$$

Introduction
000
00

Infrared Behavior: Power Counting

Numerical Results

Conclusions

Infrared Behavior

• Gluon and ghost propagators: dressing functions show power-like behavior

$$\begin{aligned} D_{\mu\nu}(p) &= \left(\delta_{\mu\nu} - \frac{p_{\mu}p_{\nu}}{p^2}\right) \frac{Z(p)}{p^2}, \qquad D_G(p) = -\frac{G(p)}{p^2}\\ Z(p) &= A \cdot (p^2)^{\alpha}, \qquad \qquad G(p) = B \cdot (p^2)^{\beta} \end{aligned}$$

• Vertices: dressing functions show power-like behavior, but more complicated tensor structure

$$\Gamma_{\mu\nu...}(p_1, p_2, ...) = \sum_{i=0}^{n} H_i(p_1, p_2, ...) \tau_{\mu\nu...}^{(i)}$$

 $H_i(p_1, p_2, ...) = C_i \cdot (p^2)^{\gamma}$

Infrared Behavior: Power Counting

Numerical Results

Conclusions

Comparison of Different Methods

	Lattice	Continuum		
Ghost-gluon vertex	constant			
Ghost propagator	diverging	diverging		
Gluon propagator	vanishing? vanishing			
Other vertex functions	no data for IR	prediction: power-like		
		(Alkofer et al., PLB 611)		

Investigation of finite size effects via DSEs on a 4-dimensional torus \rightarrow much bigger lattices needed (Fischer et al., Annals Phys. 2007)

Infrared Behavior: Power Counting

Numerical Results

Conclusions

Comparison of Different Methods

	Lattice Continuum			
Ghost-gluon vertex	constant			
Ghost propagator	diverging	diverging		
Gluon propagator	vanishing? vanishing			
Other vertex functions	no data for IR prediction: power-lik			
	in 4 dim.	(Alkofer et al., PLB 611)		

Investigation of finite size effects via DSEs on a 4-dimensional torus \rightarrow much bigger lattices needed (Fischer et al., Annals Phys. 2007)

Infrared Behavior: Power Counting

Numerical Results

Conclusions

Comparison of Different Methods

	Lattice Continuum		
Ghost-gluon vertex	constant		
Ghost propagator	diverging	diverging	
Gluon propagator	vanishing? vanishing		
Other vertex functions	no data for IR prediction: power-lik		
	in 4 dim.	(Alkofer et al., PLB 611)	

Investigation of finite size effects via DSEs on a 4-dimensional torus \rightarrow much bigger lattices needed (Fischer et al., Annals Phys. 2007)

Continuum results ($\kappa = 0.5953...$)

• ghost-gluon-vertex: $(p^2)^0 \rightarrow constant$

• ghost propagator: $(p^2)^{-\kappa}$

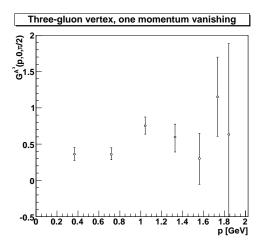
- gluon propagator: $(p^2)^{2\kappa}$
- 3-gluon vertex: $(p^2)^{-3\kappa}$

Introduction ○○○ ○● Infrared Behavior: Power Counting

Numerical Results

Conclusions

Vertices: Available Lattice Data



4 dimensions

Maas et al., Braz. J. Phys. 37N1B, 2007

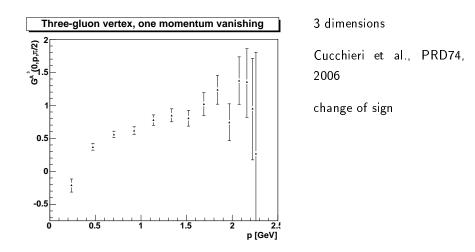
no power-like behavior

Infrared Behavior: Power Counting

Numerical Results

Conclusions

Vertices: Available Lattice Data

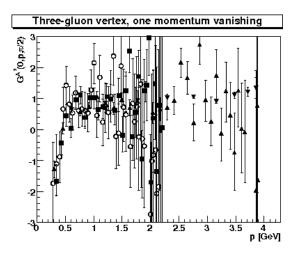


Infrared Behavior: Power Counting

Numerical Results

Conclusions

Vertices: Available Lattice Data



2 dimensions

Maas, arXiv:0704.0722, 2007

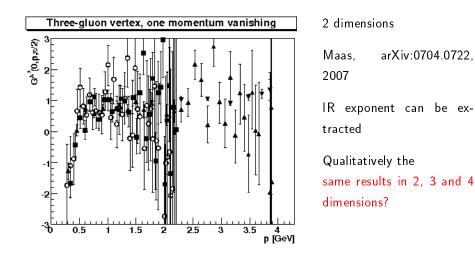
IR exponent can be extracted

Infrared Behavior: Power Counting

Numerical Results

Conclusions

Vertices: Available Lattice Data



Infrared Behavior: Power Counting

Numerical Results

Conclusions

The Bare Ghost-Gluon Vertex

Starting point is transversal gluon propagator in Landau gauge:

$$k_{\mu}D_{\mu\nu}(k) = k_{\mu}\frac{Z(k)}{k^2}\left[\delta_{\mu\nu} - \frac{k_{\mu}k_{\nu}}{k^2}\right] = 0$$

Infrared Behavior: Power Counting

Numerical Results

Conclusions

The Bare Ghost-Gluon Vertex

Starting point is transversal gluon propagator in Landau gauge:

$$k_{\mu}D_{\mu\nu}(k) = k_{\mu}\frac{Z(k)}{k^2}\left[\delta_{\mu\nu} - \frac{k_{\mu}k_{\nu}}{k^2}\right] = 0$$

$$(q-p)_{\mu}D_{\mu\nu}(q-p)=0 \Rightarrow q_{\mu}D_{\mu\nu}(q-p)=p_{\mu}D_{\mu\nu}(q-p)$$

Infrared Behavior: Power Counting ●○ ○○○○○ Numerical Results

Conclusions

The Bare Ghost-Gluon Vertex

Starting point is transversal gluon propagator in Landau gauge:

$$k_{\mu}D_{\mu\nu}(k) = k_{\mu}\frac{Z(k)}{k^2}\left[\delta_{\mu\nu} - \frac{k_{\mu}k_{\nu}}{k^2}\right] = 0$$

$$(q-p)_{\mu}D_{\mu\nu}(q-p)=0 \Rightarrow q_{\mu}D_{\mu\nu}(q-p)=p_{\mu}D_{\mu\nu}(q-p)$$

In troduct	ion
000	
00	

Infrared Behavior: Power Counting ○● ○○○○○ Numerical Results

Conclusions

Propagators

• IR behavior can be determined from the ghost DSE:

Simple power counting gives a

relation between ghost and gluon propagator:

$$1 - \beta = \frac{d}{2} + \alpha - 1 + \beta - 1 + \frac{1}{2} + \frac{1}{2}$$

Introdu	ction	
000		
00		

Infrared Behavior: Power Counting ○● ○○○○○ Numerical Results

Conclusions

Propagators

• IR behavior can be determined from the ghost DSE:

• Simple power counting gives a relation between ghost and gluon propagator:

$$\alpha = -2\beta + 2 - \frac{d}{2}$$

Introductio	on
000	
00	

Infrared Behavior: Power Counting ○● ○○○○○ Numerical Results

Conclusions

Propagators

• IR behavior can be determined from the ghost DSE:

• Simple power counting gives a relation between ghost and gluon propagator:

$$\alpha = -2\beta + 2 - \frac{d}{2}$$

$$\beta = -\kappa$$

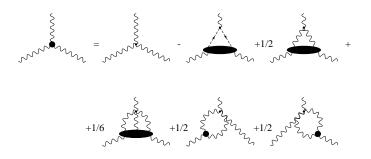
$$G(p^2) = (p^2)^{-\kappa}, \quad Z(p^2) = (p^2)^{2\kappa+2-\frac{d}{2}}$$

Infrared Behavior: Power Counting 00 00000 Numerical Results

Conclusions

Skeleton Expansion

DSEs for n-point functions contain even higher n-point functions. E.g. the three-gluon DSE:

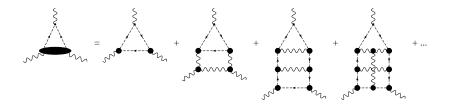


Infrared Behavior: Power Counting 00 00000 Numerical Results

Conclusions

Skeleton Expansion

DSEs for n-point functions contain even higher n-point functions. Skeleton expansion of the ghost-gluon scattering kernel:

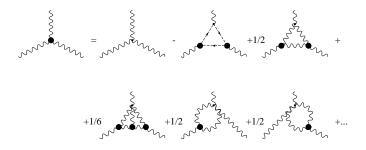


Infrared Behavior: Power Counting 00 00000 Numerical Results

Conclusions

Skeleton Expansion

DSEs for n-point functions contain even higher n-point functions. First order of skeleton expansion of 3-gluon vertex:



Simple power counting is possible again $ightarrow (p^2)^{-3\kappa + rac{d}{2} - 2}$

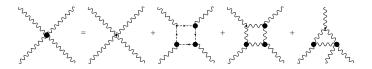
Infrared Behavior: Power Counting

Numerical Results

Conclusions

Four-Gluon Vertex

First order of skeleton expansion is



Ghost loop is dominant again: $ightarrow (p^2)^{-4\kappa + rac{d}{2} - 2}$

Infrared Behavior: Power Counting

Numerical Results

Conclusions

Building Blocks

For the calculation of an arbitrary vertex function we can use these building blocks:

object	number of objects	scaling dimension
loop	I	d/2
internal ghost line	ni	$\delta_{2,0}-1=-\kappa-1$
internal gluon line	m _i	$\delta_{0,2} - 1 = 2\kappa + 1 - d/2$
ghost-gluon vertex	<i>v</i> _{2,1}	1/2
bare 3-gluon vertex	v _{0,3} ^b	1/2
dressed 3-gluon vertex	V _{0,3}	$\delta_{0,3} + \frac{1}{2} = -3\kappa + d/2 - 3/2$
bare 4-gluon vertex	v _{0,4} ^b	0
dressed 4-gluon vertex	V _{0,4}	$\delta_{0,4} = -4\kappa + d/2 - 2$

Infrared Behavior: Power Counting

Numerical Results

Conclusions

2n Ghosts, m Gluons

Employing a skeleton expansion the calculation of the IR exponent of an arbitrary vertex function with 2n external ghosts and m external gluons is possible:

$$\rho_{2n,m} = (n-m)\kappa + (1-n)(\frac{d}{2}-2).$$

Infrared Behavior: Power Counting

Numerical Results

Conclusions

2n Ghosts, m Gluons

Employing a skeleton expansion the calculation of the IR exponent of an arbitrary vertex function with 2n external ghosts and m external gluons is possible:

$$\rho_{2n,m} = (n-m)\kappa + (1-n)(\frac{d}{2}-2).$$

Higher orders of the skeleton expansion

Derivation is independent of order

 \rightarrow all orders have the same IR exponent

Alternatively: Show that the insertions for creating higher orders give no additional contribution.

Infrared Behavior: Power Counting

Numerical Results

Conclusions

Qualitative Behavior

The dimension dependence of the IR behavior of YM Green functions.

Dimension		4		3		2	
κ		$0.5953\ldotspprox 0.6$	1	$0.3976\ldotspprox 0.4$	0.5	0.2	0
Ghost	$-\kappa - 1$	-1.6	-2	-1.4	-1.5	-1.2	-1

• Ghost is divergent in all three values of space-time dimension.

Infrared Behavior: Power Counting

Numerical Results

Conclusions

Qualitative Behavior

The dimension dependence of the IR behavior of YM Green functions.

Dimension		4		3		2	
κ		$0.5953\ldotspprox 0.6$	1	$0.3976\ldotspprox 0.4$	0.5	0.2	0
Ghost	$-\kappa - 1$	-1.6	-2	-1.4	-1.5	-1.2	-1
Gluon	$2\kappa + 1 - \frac{d}{2}$	0.2	1	0.3	0.5	0.4	0

- Ghost is divergent in all three values of space-time dimension.
- Gluon is vanishing in all three values of space-time dimension, except one case.

Infrared Behavior: Power Counting

Numerical Results

Conclusions

Qualitative Behavior

The dimension dependence of the IR behavior of YM Green functions.

Dimension		4		3		2	
κ		$0.5953\ldotspprox 0.6$	1	$0.3976\ldotspprox 0.4$	0.5	0.2	0
Ghost	$-\kappa - 1$	-1.6	-2	-1.4	-1.5	-1.2	-1
Gluon	$2\kappa + 1 - \frac{d}{2}$	0.2	1	0.3	0.5	0.4	0
3-gluon	$-3\kappa + \frac{d}{2} - \frac{3}{2}$	-1.3	-2.5	-1.2	-1.5	-1.1	-0.5
4-gluon	$-4\kappa + \frac{d}{2} - 2$	-2.4	-4	-2.1	-2.5	-1.8	-1

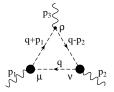
- Ghost is divergent in all three values of space-time dimension.
- Gluon is vanishing in all three values of space-time dimension, except one case.
- Vertices have the same qualitative behavior in all three values of space-time dimension.

Infrared Behavior: Power Counting 00 00000 Numerical Results

Conclusions

The Ghost Triangle

Analytic calculation of the ghost triangle confirms power-like behavior.



$$\frac{\Gamma_{\mu\nu\rho}^{gh-\Delta,IR}(p_1,p_2,p_3)}{2} = \frac{N_c B^3 g^3}{2} \int \frac{d^d q}{(2\pi)^d} \frac{(q+p_1)_{\mu}(q-p_2)_{\rho} q_{\nu}}{((q+p_1)^2)^{\kappa+1}((q-p_2)^2)^{\kappa+1}(q^2)^{\kappa+1}}$$

Used Method: Negative Dimension Integration (NDIM) \rightarrow Appell's function F_4

Infrared Behavior: Power Counting

Numerical Results

Conclusions

Appell's Function F_4

 $F_4(x,y)$ with $x = p_2^2/p_1^2$, $y = p_3^2/p_1^2$

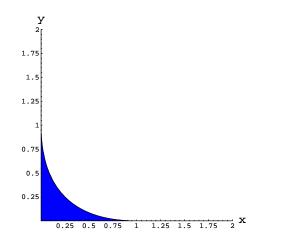
Infrared Behavior: Power Counting

Numerical Results

Conclusions

Appell's Function F_4

$$F_4(x,y)$$
 with $x = p_2^2/p_1^2$, $y = p_3^2/p_1^2$



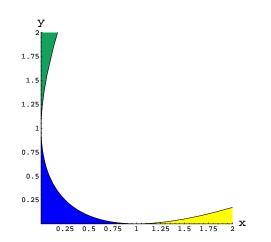
Infrared Behavior: Power Counting

Numerical Results

Conclusions

Appell's Function F_4

 $F_4(x,y)$ with $x = p_2^2/p_1^2, \quad y = p_3^2/p_1^2$



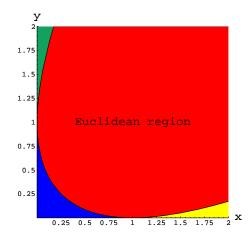
Infrared Behavior: Power Counting 00 00000 Numerical Results

Conclusions

Appell's Function F_4

 $F_4(x,y)$ with $x = p_2^2/p_1^2, \quad y = p_3^2/p_1^2$

Solution for Euclidean region consists of several hypergeometric series.



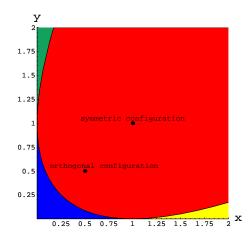
Infrared Behavior: Power Counting 00 00000 Numerical Results

Conclusions

Appell's Function F_4

$$F_4(x,y)$$
 with $x = p_2^2/p_1^2$, $y = p_3^2/p_1^2$

Solution for Euclidean region consists of several hypergeometric series.

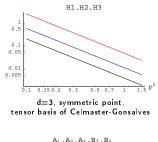


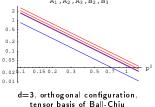
Infrared Behavior: Power Counting

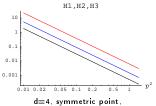
Numerical Results

Conclusions

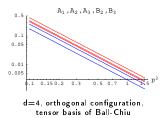
Tensor Components of the Ghost Triangle







tensor basis of Celmaster-Gonsalves



Infrared Behavior: Power Counting

Numerical Results

Conclusions

Dependence on Infrared Exponent

How much influence has the numerical value of κ on the ghost triangle?

Infrared Behavior: Power Counting

Numerical Results

Conclusions

Dependence on Infrared Exponent

How much influence has the numerical value of κ on the ghost triangle?

Overlap of the tree-level tensor with the ghost-triangle for d = 2, 3 and 4:



Dependence on κ is only weak

 \rightarrow ghost dominance seems to be a robust mechanism

Infrared Behavior: Power Counting

Numerical Results

Conclusions

Summary

• The dependence on the numerical value of the IR exponent is weak.

Infrared Behavior: Power Counting

Numerical Results

Conclusions

- The dependence on the numerical value of the IR exponent is weak.
- The skeleton expansion works in 2, 3 and 4 dimensions.

Infrared Behavior: Power Counting

Numerical Results

Conclusions

- The dependence on the numerical value of the IR exponent is weak.
- The skeleton expansion works in 2, 3 and 4 dimensions.
- A general formula for the IR exponent of vertex functions was found.

Infrared Behavior: Power Counting

Numerical Results

Conclusions

- The dependence on the numerical value of the IR exponent is weak.
- The skeleton expansion works in 2, 3 and 4 dimensions.
- A general formula for the IR exponent of vertex functions was found.
- It yields the same qualitative behavior of vertex functions in two, three and four dimensions.

Infrared Behavior: Power Counting

Numerical Results

Conclusions

- The dependence on the numerical value of the IR exponent is weak.
- The skeleton expansion works in 2, 3 and 4 dimensions.
- A general formula for the IR exponent of vertex functions was found.
- It yields the same qualitative behavior of vertex functions in two, three and four dimensions.
- Lattice data in lower dimensions can give qualitative results similar to four dimensions.

Infrared Behavior: Power Counting

Numerical Results

Conclusions

Summary

- The dependence on the numerical value of the IR exponent is weak.
- The skeleton expansion works in 2, 3 and 4 dimensions.
- A general formula for the IR exponent of vertex functions was found.
- It yields the same qualitative behavior of vertex functions in two, three and four dimensions.
- Lattice data in lower dimensions can give qualitative results similar to four dimensions.

Gribov-Zwanziger confinement scenario confirmed in 2 and 3 dimensions!!!