Dyson-Schwinger Equations in QCD Infrared Analysis The Maximally Abelian Gauge

Dyson-Schwinger Equations
in the Maximally Abelian Gauge

R. Alkofer Markus Q. Huber K. Schwenzer

Department of Physics, Karl-Franzens University Graz

Dec. 3, 2008

Dissertantenseminar WS 08

SICIQFT

Alkofer, Huber, Schwenzer KFU Graz



Dyson-Schwinger Equations in QCD Infrared Analysis The Maximally Abelian Gauge

Table of Contents

@ Dyson-Schwinger Equations in QCD

© Infrared Analysis

© The Maximally Abelian Gauge

Alkofer, Huber, Schwenzer KFU Graz 2/25



Dyson-Schwinger Equations in QCD Infrared Analysis The Maximally Abelian Gauge

Methods in Qantum ChromoDynamics

@ Perturbation theory (expansion around small parameter; in
QCD valid for high momenta)

e Monte Carlo simulations on a lattice (discretization of
space-time; upper and lower bounds on momenta by lattice
size and spacing)

o Effective theories and models

e Functional methods (Green functions):

Functional renormalization group
n-Pl action

Stochastic quantization
Dyson-Schwinger equations (DSEs)
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The Lagrangian of QCD

1
QED L= ZFuVFyV + Ematter

Fuy = 0,A, — 0,7,

Invariant under gauge transformation Q(x) (rotation in color space):
Au(x) = AL(X) = Q(x)AL ()R (x)

= Equivalent field configurations exist.

Alkofer, Huber, Schwenzer KFU Graz 4/25



Dyson-Schwinger Equations in QCD Infrared Analysis The Maximally Abelian Gauge

The Lagrangian of QCD

1
QCD L= ZFupry + £matl‘er

Fuy = 0,A, — 0, AL + 1 [Au Al
Yang-Mills theory: No quarks, only gauge fields.

Invariant under gauge transformation Q(x) (rotation in color space):
Au(x) = A (x) = Q)AL ()R (x) + 1 (9,0(x)) Q' (x)

= Equivalent field configurations exist.
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Propagator
Why fix the gauge?

2-point functions cannot be inverted, e.g. photon propagator:

Take inverse of quadratic part of action.

Fu = 0,A, — OLA,

1 1
L= (R = 3 QAR - (0A)0A)
part.int.

1
SAu(=08 + 8,,0,)A,

This operator has no inverse! UNI
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Gauge Fixing: Linear Covariant Gauges

Lorenz gauge condition: 0A=0

— Add + 5((9 ,A,)? to Lagrangian.

1
Inverse — A, = (=0, + (1 — €)D_18u8,,)a
Fourier transformation:
_ Pupy\ 1
AW(P) = <5W -(1-9) p2 > ?

e £ =0: Landau gauge
e ¢ = 1: Feynman gauge, important in perturbation theory

= Green functions are gauge dependent.
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Gauge Fixing in Yang-Mills Theory

Gauge transf. connect: equivalent configurations
— gauge orbit [A].

Integration in path integral over all A, is overcomplete.

Idea by Faddeev and Popov: Reduce integration to single
representative of each gauge orbit.

. 1
e Gauge fixing term: 2(67#/4#)2 +CTMc
@ ghost fields: wrong statistic (even spin, but behave like
fermions)

e = 2 fields: gluons and ghosts
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Gauge Orbits and Gribov Copies

A

Apr

Ay
[A]

Fix the gauge to Landau gauge 0A = 0.
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Gauge Orbits and Gribov Copies

A

/ Agpe

[A]

9,4, =0

Gauge orbit should intersect hyperplane A = 0 only
once.
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Gauge Orbits and Gribov Copies

A

/ Agpe

Gribov Horizon €

[A]

9,4, =0

Minimize some functional to get only one gauge config-
uration per orbit — Gribov region.
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Gauge Orbits and Gribov Copies

A

/ Agpe

Gribov Horizon €

/' /| FMR A Au
\ > [A]

9,4, =0

Fundamental modular region (FMR): absolute minimum
of some fuctional.
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Green Functions

Green functions describe propagation and interaction of particles
— propagators and vertices.

Derived from generating functionals (full, connected, 1PI) by
differentiation.

n
zZ =Y LGy &L 0"

. m! 5¢i ... 0¢n
—

n-fold derivative
— n-point functions:
w =Y iIG,‘,f’J"’ g :
— m! @ n=2: inverse of
propagators

@ n>2: vertices

=S 3 O

m
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Dyson-Schwinger Equations (DSEs) for Investigating QCD

DSE describe non-perturbatively how particles propagate and interact.

Facts about DSEs
e F. J. Dyson (1949) and J. S. Schwinger (1951)

e Equations of motion of Green functions

° Infinitely large tower of equations (DSE for n-point

function contains n+1- and n+2-point functions)
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Dyson-Schwinger Equations (DSEs) for Investigating QCD

DSE describe non-perturbatively how particles propagate and interact.

Facts about DSEs
e F. J. Dyson (1949) and J. S. Schwinger (1951)

e Equations of motion of Green functions

° Infinitely large tower of gquations (DSE for n-point

function contains n+1- a 2-point functions)

Pros:
e Exact equations
— non-perturbative regime acessible

e Continuum
— complement lattice method e
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Dyson-Schwinger Equations (DSEs) for Investigating QCD
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Dyson-Schwinger Equations (DSEs) for Investigating QCD

DSE describe non-perturbatively how particles propagate and interact.

Facts about DSEs
e F. J. Dyson (1949) and J. S. Schwinger (1951)

e Equations of motion of Green functions

° Infinitely large tower quations (DSE for n-point

function contains n+1- a int/functions)

Pros:

e Exact equatiofs Truncations (not for all tasks)

— non-perturbative regime acessible Gauge-dependent

e Continuum — Exploit advantages of
— complement lattice method different gauges UNI
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Power Laws for Dressing Functions
In DSEs there are bare, like in perturbation theory, and dressed
quantities — dressing functions.

@ Dressing functions in the infrared (IR) can be described by
power laws, e.g. for ghost propagator

2 )
pe=-SB) () =0 B 7y

@ IR exponent: dg4 > 1 — propagator vanishes,
dgh < 0 — propagator IR enhanced.

o If external momenta small,
integral dominated by small momenta.

@ Upon integration loop momenta are transformed
into external momenta.

Alkofer, Huber, Schwenzer KFU Graz 11/25



Dyson-Schwinger Equations in QCD Infrared Analysis The Maximally Abelian Gauge

Power Counting

@ The ghost propagator DSE:

@ Plug in power law ansitze for dressing functions in the IR

B - (p°)° _IN d’q A-(*)* B-((p—a))’
< p? ) [ e P (0 — a)
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Power Counting

@ The ghost propagator DSE:

B - (p°)° _IN d’q A-(*)* B-((p—a))’
< p? ) [ e P (0 — a)

@ Only one momentum scale
— simple power counting is possible:

d d
01—ﬁ=§+a—1+6—1+ + :>—25:a+5—2
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Constraints from DSEs

Still, at the end there is a big system of inequalities that has to be
solved, e.g. gluon propagator in Landau gauge:

—dg=min( 0,205 +038,205h + 0gg, Og ,405 + 2034,305 + Oag)
N ———— — . N ——— ——

bare prop. gh loop gl loop tadpole squint sunset

=L 21 R 1 1 1 1
W:’m+m oo — = — = — = =
- 2 2 2 6

min-function = set of inequalities,
e.g. from sunset 49, + 04 > 0.
From four-gluon DSE:

54g <0= 5g > 0.
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IR Exponent for Arbitrary Diagram

System difficult to solve. Look for alternatives or shortcuts.

Arbitrary Diagram v Function of:
Numbers of vertices and propagators @ propagator IR exponents Ox;
related = possible to get a formula @ number of external legs m”™

for the IR exponent. @ number of vertices.

1 :
O == EZmX'5X;+
1

+ Z (# of dressed vertices),C; + Z (# of bare vertices),Cj

Alkofer, Huber, Schwenzer KFU Graz



Dyson-Schwinger Equations in QCD Infrared Analysis The Maximally Abelian Gauge

Functional Renormalization Group

Functional equations similar to DSEs, but with decisive differences:
@ only 1-loop diagrams
@ all quantities dressed

Renormalization group equations (RGEs) are "differential DSEs".
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Restrictions

Combining DSEs and RGEs (idea by Fischer, Pawlowski, 2006)

we get bounds for coefficients C] and Cj:

¢l >0, Ci>0

. . ) 1 :
= Maximally IR divergent solution: dy, max = —5 Z mx'5xl..

1
Only depends on number and type of external fields.
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Existence of Scaling Solutions

Abundance of inequalities — reduce to relevant ones. Only small
number left, e. g. Landau gauge:

1
Ogh+ 505 20, 0g 20

Looking for solutions of the propagator DSEs — at least one of
these equations has to be saturated:

@ 0y = 0: corresponds to trivial solution (perturbation theory)
® 2044 = —0g: scaling solution for Landau gauge [von Smekal,

Hauck, Alkofer, 1998]

Condition of saturation of one inequality: Restricts naive existence
of scaling solutions in other gauges, e. g. covariant gauges, ghost
anti-ghost symmetric gauges.
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The Maximally Abelian Gauge (MAG) in SU(2)
Split the gluon field A, = A}, T"
into diagonal and off-diagonal fields:

A,=B*T+ AT

T?: off-diagonal matrices
T': diagonal matrices
= Gluonic vertices split: ABB, AABB, BBBB
Number of diagonal fields per vertex restricted.
Non-linear gauge fixing

Minimize off-diagonal components along gauge orbit:
DB = (5,50, — g f**' A} )B® =0
= ghosts and interactions: Acc, AAcc, BBcc

builing blocks for DSEs: ABB, Acc, AABB, AAcc, BBcc,
BBBB, cccc a—
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DSEs of the MAG

diagonal gluon: ———  off-diagonal gluon:

off-diagonal ghost:

off-diagonal gluon propagator DSE:

The Maximally Abelian Gauge

—— T3 _0 4 _0 - _Q
_1 < N P 1 < " P
2 g  —g 6 g  —g
A Ty Ty Ty
Alkofer, Huber, Schwenzer KFU Graz
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Infrared Analysis

The Maximally Abelian Gauge

Constraints on Infrared Exponents in the MAG for SU(2)

Relevant inequalities:

dpBBB + 205 > 0,
daaBB + 04+ >0,
o > 0,

dp+0g >0,

0BBcc + 0B + 0¢c > 0,
1
0aBB + §5A +dp >0,

1
6Acc + §5A + 5c > 07

5CCCC + 25C Z 07
dAAcc + 04+ 6c >0,

dc > 0,
5A+5C207
5B+6CZO7
1
§5A+5BZO,
1
*5A+6c20
2
a2

Alkofer, Huber, Schwenzer
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Constraints on Infrared Exponents in the MAG for SU(2)

Relevant inequalities:

5BBBB + 255 > 0; 5cccc + 25c > 07
daaBB + 04+ >0, dAAcc +0a +0c > 0,
o >0, dc >0,
dp+0g >0, 0a+ e >0,
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Results for the MAG in SU(2)

Leading diagrams in propagator DSEs

All sunsets with 2 diagonal & 2 off-diagonal fields

~—— p — ~—— ~_/

possibly some squints

@ IR enhanced diagonal gluon:
(532(5(;::!120, (5A:—I<L

@ Supports Abelian dominance hypothesis (relevant degrees of
freedom in diagonal part of gluon field).

@ Vertices with 2 diagonal & 2 off-diagonal fields do NOT scale,
i.e. daaBe = 0aacc = 0. miy
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The MAG in SU(3)

Dyson-Schwinger Equations in QCD

In general there are more interactions than included above.
— Different solution for "physical system", i. e. SU(3)?

4 additional vertices: BBB, Bcc, ABBB, ABcc
Constraints:

3 1

— > — >

265 = 0, 268+6C = 0,
1 3 1 1
— — > — — >
25A+25B_0, 25A+258+5c_0

Already contained in "old" system — nothing new, solution still
valid and unique.
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Higher n-Point Functions

Sunsets definitely leading: — successively add pairs of fields
— n-point functions with n even

n odd: at least one vertex with an odd number of legs,
3cannot be determined uniquely. e
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Summary: Functional Approaches & Scaling Solutions

Functional approaches
@ Gauge fixing necessary for functional approaches.
e Infinitely large tower of equations.

@ Solution in the IR possible without truncations.

Scaling solutions

@ Power laws for dressing functions
with infrared exponents in IR regime.

e Maximally IR divergent solution depends on number of legs
and propagator IR exponents.

@ At least one vertex does not scale.

e Self-interacting fields (e.g. gluon in Landau gauge) have
non-negative IR exponents = no IR enhancement.

c
z
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Summary: Results for the MAG

@ g =0,=:Kk2>0, 0a = —kK
e Diagonal gluon (A) IR enhanced
= supports Abelian dominance hypothesis.
e Off-diagonal fields (B, c) are IR suppressed (compared to tl.).

@ Four-point functions with 2 diagonal and 2 off-diagonal fields
do not scale = 2-loop diagrams IR leading.

@ Unique solution for vertices with an even number of legs.

@ For vertices with an odd number of legs several solutions.

e No qualitative difference between SU(2) and SU(3).
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