Dyson-Schwinger Equations in the Maximally Abelian Gauge

R. Alkofer Markus Q. Huber K. Schwenzer

Department of Physics, Karl-Franzens University Graz

Dec. 3, 2008

Dissertantenseminar WS 08

Alkofer, Huber, Schwenzer

Table of Contents

Dyson-Schwinger Equations in QCD

2 Infrared Analysis

The Maximally Abelian Gauge

Methods in Qantum ChromoDynamics

- Perturbation theory (expansion around small parameter; in QCD valid for high momenta)
- Monte Carlo simulations on a lattice (discretization of space-time; upper and lower bounds on momenta by lattice size and spacing)
- Effective theories and models
- Functional methods (Green functions):
 - Functional renormalization group
 - n-Pl action
 - Stochastic quantization
 - Dyson-Schwinger equations (DSEs)

The Lagrangian of QCD

QED:
$$\mathcal{L} = \frac{1}{4} F_{\mu\nu} F_{\mu\nu} + \mathcal{L}_{matter}$$

 $F_{\mu\nu} = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu}$

Invariant under gauge transformation $\Omega(x)$ (rotation in color space):

$$A_{\mu}(x) \rightarrow A'_{\mu}(x) = \Omega(x)A_{\mu}(x)\Omega^{\dagger}(x)$$

 \Rightarrow Equivalent field configurations exist.

The Lagrangian of QCD

QCD:
$$\mathcal{L} = \frac{1}{4} F_{\mu\nu} F_{\mu\nu} + \mathcal{L}_{matter}$$
$$F_{\mu\nu} = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu} + i [A_{\mu}, A_{\nu}]$$

Yang-Mills theory: No quarks, only gauge fields.

Invariant under gauge transformation $\Omega(x)$ (rotation in color space):

$$A_{\mu}(x)
ightarrow A'_{\mu}(x) = \Omega(x) A_{\mu}(x) \Omega^{\dagger}(x) + i \left(\partial_{\mu} \Omega(x) \right) \Omega^{\dagger}(x)$$

 \Rightarrow Equivalent field configurations exist.

Propagator

Why fix the gauge?

2-point functions cannot be inverted, e.g. photon propagator:

Take inverse of quadratic part of action.

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$$

$$\mathcal{L} = \frac{1}{4} F_{\mu\nu} F_{\mu\nu} = \frac{1}{2} \left((\partial_{\mu} A_{\nu})^{2} - (\partial_{\mu} A_{\nu}) (\partial_{\nu} A_{\mu}) \right)$$
$$\xrightarrow{\text{part.int.}} \frac{1}{2} A_{\mu} (-\Box \delta_{\mu\nu} + \partial_{\mu} \partial_{\nu}) A_{\nu}$$

This operator has no inverse!

Alkofer, Huber, Schwenzer

Gauge Fixing: Linear Covariant Gauges

Lorenz gauge condition:
$$\partial A = 0$$

 $\rightarrow \text{Add} + \frac{1}{2\xi} (\partial_{\mu}A_{\mu})^2$ to Lagrangian.

Inverse $\rightarrow \Delta_{\mu\nu} = (-\delta_{\mu\nu} + (1 - \xi)\Box^{-1}\partial_{\mu}\partial_{\nu})\frac{1}{\Box}$ Fourier transformation:

$$\Delta_{\mu
u}(
ho)=\left(\delta_{\mu
u}-(1-m{\xi})rac{p_{\mu}p_{
u}}{p^2}
ight)rac{1}{p^2}$$

- $\xi = 0$: Landau gauge
- $\xi = 1$: Feynman gauge, important in perturbation theory

 \Rightarrow Green functions are gauge dependent.

Gauge Fixing in Yang-Mills Theory

- Gauge transf. connect: equivalent configurations
 → gauge orbit [A].
- Integration in path integral over all A_{μ} is overcomplete.
- Idea by Faddeev and Popov: Reduce integration to single representative of each gauge orbit.
- Gauge fixing term: $\frac{1}{2\xi}(\partial_{\mu}A_{\mu})^{2} + \bar{c} M c$
- ghost fields: wrong statistic (even spin, but behave like fermions)
- $\bullet \Rightarrow 2$ fields: gluons and ghosts

Fix the gauge to Landau gauge $\partial A = 0$.

Gauge orbit should intersect hyperplane $\partial A = 0$ only once.

Minimize some functional to get only one gauge configuration per orbit \rightarrow Gribov region.

Fundamental modular region (FMR): absolute minimum of some fuctional.

Green Functions

 $\frac{\text{Green functions describe propagation and interaction of particles}}{\rightarrow \text{ propagators and vertices.}}$

Derived from generating functionals (full, connected, 1PI) by differentiation.

Alkofer, Huber, Schwenzer

DSE describe non-perturbatively how particles propagate and interact.

Facts about DSEs

- F. J. Dyson (1949) and J. S. Schwinger (1951)
- Equations of motion of <u>Green functions</u>
- Infinitely large tower of equations (DSE for n-point
 - function contains n+1- and n+2-point functions)

DSE describe non-perturbatively how particles propagate and interact.

Facts about DSEs

- F. J. Dyson (1949) and J. S. Schwinger (1951)
- Equations of motion of <u>Green functions</u>
- ۲

Infinitely large tower of equations (DSE for n-point

function contains n+1- and n+2-point functions)

Pros:

Exact equations

 \rightarrow non-perturbative regime acessible

- Continuum
 - \rightarrow complement lattice method

DSE describe non-perturbatively how particles propagate and interact.

DSE describe non-perturbatively how particles propagate and interact.

DSE describe non-perturbatively how particles propagate and interact.

Power Laws for Dressing Functions

In DSEs there are bare, like in perturbation theory, and dressed quantities \rightarrow dressing functions.

• Dressing functions in the infrared (IR) can be described by power laws, e.g. for ghost propagator

$$D_G = -rac{G(p^2)}{p^2}, \qquad G(p^2) \stackrel{p^2 \rightarrow 0}{=} B \cdot (p^2)^{\delta_{gh}}$$

- IR exponent: $\delta_{gh} > 1 \rightarrow \text{propagator vanishes}, \delta_{gh} < 0 \rightarrow \text{propagator IR enhanced}.$
- If external momenta small, integral dominated by small momenta.
- Upon integration loop momenta are transformed into external momenta.

Power Counting

• The ghost propagator DSE:

• Plug in power law ansätze for dressing functions in the IR

$$\left(\frac{B\cdot (p^2)^{\beta}}{p^2}\right)^{-1} \sim \int \frac{d^d q}{(2\pi)^d} P_{\mu\nu} \frac{A\cdot (q^2)^{\alpha}}{q^2} \frac{B\cdot ((p-q)^2)^{\beta}}{(p-q)^2} (p-q)_{\mu} q_{\nu}$$

Power Counting

- Only one momentum scale \rightarrow simple power counting is possible: • $1 - \beta = \frac{d}{2} + \alpha - 1 + \beta - 1 + \frac{1}{2} + \frac{1}{2} \Longrightarrow -2\beta = \alpha + \frac{d}{2} - 2$

Constraints from DSEs

Still, at the end there is a big system of inequalities that has to be solved, e.g. gluon propagator in Landau gauge:

$$-\delta_g = \min(\underbrace{0}_{\text{bare prop.}}, \underbrace{2\delta_g + \delta 3g}_{\text{gh loop}}, \underbrace{2\delta_{gh} + \delta_{gg}}_{\text{gl loop}}, \underbrace{\delta_g}_{\text{tadpole}}, \underbrace{4\delta_g + 2\delta_{3g}}_{\text{squint}}, \underbrace{3\delta_g + \delta_{4g}}_{\text{sunset}})$$

 $\begin{array}{l} \mbox{min-function} \Rightarrow \mbox{set of inequalities,} \\ \mbox{e.g. from sunset } 4\delta_g + \delta_{4g} \geq 0. \\ \mbox{From four-gluon DSE:} \\ \delta_{4g} \leq 0 \Rightarrow \delta_g \geq 0. \end{array}$

IR Exponent for Arbitrary Diagram

System difficult to solve. Look for alternatives or shortcuts.

Arbitrary Diagram vNumbers of vertices and propagators related \Rightarrow possible to get a formula for the IR exponent.

Function of:

- propagator IR exponents δ_{X_i}
- number of external legs m^{X_i}
- number of vertices.

$$\begin{split} \delta_{\mathbf{v}} &= -\frac{1}{2} \sum_{i} m^{X_{i}} \delta_{X_{i}} + \\ &+ \sum_{i} (\# \text{ of dressed vertices})_{i} C_{1}^{i} + \sum_{i} (\# \text{ of bare vertices})_{i} C_{2}^{i} \end{split}$$

Functional Renormalization Group

Functional equations similar to DSEs, but with decisive differences:

- only 1-loop diagrams
- all quantities dressed

Renormalization group equations (RGEs) are "differential DSEs".

Infrared Analysis

The Maximally Abelian Gauge

Restrictions

Combining DSEs and RGEs (idea by Fischer, Pawlowski, 2006)

we get bounds for coefficients C_1^i and C_2^i :

$$C_1^i \ge 0, \qquad \qquad C_2^i \ge 0$$

 $\Rightarrow \text{ Maximally IR divergent solution: } \delta_{v,max} = -\frac{1}{2} \sum_{i} m^{X_i} \delta_{X_i}.$ Only depends on number and type of external fields.

Existence of Scaling Solutions

Abundance of inequalities \rightarrow reduce to relevant ones. Only small number left, e. g. Landau gauge:

$$\delta_{gh} + \frac{1}{2}\delta_g \ge 0, \quad \delta_g \ge 0$$

Looking for solutions of the propagator DSEs \rightarrow at least one of these equations has to be saturated:

- $\delta_g = 0$: corresponds to trivial solution (perturbation theory)
- $2\delta_{gh} = -\delta_g$: scaling solution for Landau gauge [von Smekal, Hauck, Alkofer, 1998]

Condition of saturation of one inequality: Restricts naive existence of scaling solutions in other gauges, e. g. covariant gauges, ghost anti-ghost symmetric gauges.

The Maximally Abelian Gauge (MAG) in SU(2)Split the gluon field $A_{\mu} = A_{\mu}^{r}T^{r}$ into diagonal and off-diagonal fields:

 $A_{\mu} = B^{a} T^{a} + A^{i} T^{i}$

T^a: off-diagonal matrices

T^{*i*}: diagonal matrices

 \Rightarrow Gluonic vertices split: *ABB*, *AABB*, *BBBB*

Number of diagonal fields per vertex restricted.

Non-linear gauge fixing

Minimize off-diagonal components along gauge orbit:

$$D^{ab}_{\mu}B^{b} = (\delta_{ab}\partial_{\mu} - g f^{abi}A^{i}_{\mu})B^{b} = 0$$

⇒ ghosts and interactions: Acc, AAcc, BBcc

builing blocks for DSEs: *ABB*, *Acc*, *AABB*, *AAcc*, *BBcc*, *BBBB*, *cccc*

DSEs of the MAG

diagonal gluon: • off-diagonal gluon: • off-

off-diagonal gluon propagator DSE:

, ,

,

Constraints on Infrared Exponents in the MAG for SU(2)

Relevant inequalities:

δ

8

$$\begin{split} \delta_{BBBB} + 2\delta_B &\geq 0, & \delta_{cccc} + 2\delta_c &\geq 0, \\ \delta_{AABB} + \delta_A + \delta_B &\geq 0, & \delta_{AAcc} + \delta_A + \delta_c &\geq 0, \\ \delta_B &\geq 0, & \delta_c &\geq 0, \\ \delta_A + \delta_B &\geq 0, & \delta_A + \delta_c &\geq 0, \\ \delta_{BBcc} + \delta_B + \delta_c &\geq 0, & \delta_B + \delta_c &\geq 0, \\ \delta_{ABB} + \frac{1}{2}\delta_A + \delta_B &\geq 0, & \frac{1}{2}\delta_A + \delta_B &\geq 0, \\ \delta_{Acc} + \frac{1}{2}\delta_A + \delta_c &\geq 0, & \frac{1}{2}\delta_A + \delta_c &\geq 0 \end{split}$$

Constraints on Infrared Exponents in the MAG for SU(2)

Relevant inequalities:

$$\begin{split} \delta_{BBBB} + 2\delta_B &\geq 0, \\ \delta_{AABB} + \delta_A + \delta_B &\geq 0, \\ \delta_B &\geq 0, \\ \delta_A + \delta_B &\geq 0, \end{split}$$

$$\delta_{cccc} + 2\delta_c \ge 0,$$

 $\delta_{AAcc} + \delta_A + \delta_c \ge 0,$
 $\delta_c \ge 0,$
 $\delta_A + \delta_c \ge 0,$

Results for the MAG in SU(2)

• IR enhanced diagonal gluon:

$$\delta_{B} = \delta_{c} =: \kappa \ge 0, \qquad \delta_{A} = -\kappa$$

- Supports Abelian dominance hypothesis (relevant degrees of freedom in diagonal part of gluon field).
- Vertices with 2 diagonal & 2 off-diagonal fields do NOT scale, i.e. $\delta_{AABB} = \delta_{AAcc} = 0$.

The MAG in SU(3)

In general there are more interactions than included above. \rightarrow Different solution for "physical system", i. e. SU(3)?

4 additional vertices: *BBB*, *Bcc*, *ABBB*, *ABcc* Constraints:

$$\begin{split} &\frac{3}{2}\delta_B\geq 0, & \qquad \qquad \frac{1}{2}\delta_B+\delta_c\geq 0, \\ &\frac{1}{2}\delta_A+\frac{3}{2}\delta_B\geq 0, & \qquad \qquad \frac{1}{2}\delta_A+\frac{1}{2}\delta_B+\delta_c\geq 0 \end{split}$$

Already contained in "old" system \rightarrow nothing new, solution still valid and unique.

Higher n-Point Functions

Sunsets definitely leading: \rightarrow successively add pairs of fields \rightarrow n-point functions with n even

n odd: at least one vertex with an odd number of legs, 3cannot be determined uniquely.

Summary: Functional Approaches & Scaling Solutions

Functional approaches

- Gauge fixing necessary for functional approaches.
- Infinitely large tower of equations.
- Solution in the IR possible without truncations.

Scaling solutions

- Power laws for dressing functions with infrared exponents in IR regime.
- Maximally IR divergent solution depends on number of legs and propagator IR exponents.
- At least one vertex does not scale.
- Self-interacting fields (e.g. gluon in Landau gauge) have non-negative IR exponents ⇒ no IR enhancement.

Summary: Results for the MAG

- $\delta_B = \delta_c =: \kappa \ge 0, \qquad \delta_A = -\kappa$
- Diagonal gluon (A) IR enhanced
 ⇒ supports Abelian dominance hypothesis.
- Off-diagonal fields (*B*, *c*) are IR suppressed (compared to tl.).
- Four-point functions with 2 diagonal and 2 off-diagonal fields do not scale ⇒ 2-loop diagrams IR leading.
- Unique solution for vertices with an even number of legs.
- For vertices with an odd number of legs several solutions.
- No qualitative difference between SU(2) and SU(3).

