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Contents of the talk

@ Infrared of Yang-Mills theory: What can we learn from it?

@ Maximally Abelian gauge: Why do we need this complicated gauge,
anyway? And what is its infrared behavior?

o Landau gauge: Does (partly) solving the Gribov problem change the
infrared behavior?

@ Non-perturbative tool: Dyson-Schwinger equations; is there an easy
way to derive them?
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Confinement of quarks and gluons

e Confinement is a long-range < IR phenomenon: We do not see
individual ~ infinitely separated quarks or gluons.
What's the mechanism behind it?

@ One expects that the property of being confined is encoded in the
particles' propagators.

o Different confinement criteria for the propagators:

o Positivity violations: negative norm contributions — not a particle of
the physical state space

o Kugo-Ojima: quartet mechanism, e. g. Gupta-Bleuler formalism in
QED: time-like and longitudinal photon cancel each other.
Landau gauge Yang-Mills, p* — 0: Dgiuon — 0, pzDghost — 00

o Gribov-Zwanziger (Landau gauge, Coulomb gauge): IR suppression
of the gluon propagator due to Gribov horizon — no long-distance
propagation.
Already manifest at perturbative level with Gribov-Zwanziger
Lagrangian!
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Dyson-Schwinger equations (DSEs) for investigating QCD

Equations of motion of Green functions

Infinitely large tower of equations
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Dyson-Schwinger equations (DSEs) for investigating QCD

Equations of motion of Green functions

Infinitely large tower of equatio

Pros:

@ Exact equations
— non-perturbative regime accessible

@ Continuum, different scales accessible
— complement lattice method
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Equations of motion of Green functions
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Dyson-Schwinger equations (DSEs) for investigating QCD

Equations of motion of Green functions

Infinitely large tower of equatio

Pros:

o Exact equations e Truncatipns (not for all tasks)

— non-perturbative regime accessible o Gauge-dependent

o Continuum, different scales accessible — Exploit advantages of different
— complement lattice method gauges
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Infrared regime of Yang-Mills theory in Landau gauge |

Sca|ing SOIUtion [Alkofer, Fischer, Gies, Maas, Pawlowski, von Smekal, ...]

@ Dressing functions obey power laws. — Qualitative information
provided by IR exponents.

@ Qualitative IR solution of ALL correlation functions is known.

@ Picture of confinement: IR vanishing gluon (— gluon confinement)
and IR enhanced ghost propagator (— long-range force to confine
quarks).

Horizon condition/Kugo-Ojima + IR enhanced ghost.
Gluon propagator violates positivity.
Confining Polyakov loop potential [Braun, Gies, Pawlowski, arXiv:0708.2413].

Method transferable to some other gauges (— MAG, lin. covariant
gauge & # 07).
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Infrared regime of Yang-Mills theory in Landau gauge |l

Decoupling solution
@ Gluon massive, ghost tree-level like.

@ Seen in most lattice calculations [Bogolubsky, Bornyakov, Cucchieri, ligenfritz,
Maas, Mendes, Miiller-Preussker, Pawlowski, Spielmann, Sternbeck, von Smekal, ...].
— Proof of unique solution?

o Adding condensates to the Gribov-Zwanziger action — refined
Gribov-Zwanziger scenario [Dudal et al.]

("] DSES, FRGEs [Boucaud et al., Aguilar et al., Fischer et al.]

o Different renormalization of the ghost propagator = tree-level like.
< boundary condition for DSEs [Fischer et al., Ann. Phys. 324; Maas,
0907.5185]

@ Gluon propagator violates positivity.
@ Confining Polyakov loop potential [Braun, Gies, Pawlowski, arXiv:0708.2413].
@ What is the mechanism for confinement?
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Hypothesis of Abelian dominance

Dual superconductor picture of confinement [Mandelstam, 't Hooft]

@ Picture a conventional superconductor, where the electric charges
condense and force the magnetic flux into vortices.

o Change "electric" and "magnetic" components and you get a dual
superconductor, where condensed magnetic monopoles squeeze the
electric flux into flux tubes.

@ QCD: No free chromoelectric charges. Are they confined by
condensed magnetic monopoles?

Hypothesis of Abelian dominance [Ezawa, Iwazaki, PRD 25 (1981)]:
Magnetic monopoles live in Abelian part of the theory. — Abelian part
dominates in the IR?
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Lattice results on Abelian IR dominance

Quenched QCD, linear rising potential between two quarks:

V(ir)~ar.

@ Oapes (calculated from the Abelian part) is almost the same as o.

@ Suzuki et al. [PRD 80]: Without gauge fixing 0 ape; Was extracted and
agreed exactly with o.
Maybe MAG is a simple way to get monopoles?

@ Available lattice results of MAG [Cucchieri, Mendes, Mihara, 2008]: all
propagators massive, Abelian field has lowest mass
= other fields decouple. Realization of Abelian dominance.
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Definition of the maximally Abelian gauge

Look for dominance of Abelian part. What is the Abelian part?
Gauge field components:

Au:ALT'}LBjTa, i=1,...,N—1, a=N,...,N?>—1

Abelian subalgebra: [Ti, T9] =0, can be written as diagonal matrices

Abelian «+ diagonal fields A,
non-Abelian < off-diagonal fields B.

1 1
Eg T!= 5)&, T? = §>\8 for SU(3).
Which interactions are possible ([T, T°] = i f"™'T*)?

H SU(2) ‘ SU(N >2) = 2 off-diagonal and 1 diagonal field
fik 0 0 can interact; 3 off-diagonal fields can
fue 0 0 only interact in SU(N > 2)
fiab v v — SU(2) and SU(3) different?
Fre 0 v w2t
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Gauge fixing condition

Stress role of diagonal fields = minimize norm of off-diagonal field B:
[|Byll = J dx B{;B{; — minimize wrt. gauge transformations U
DbeBS = (0.50,—8 fabiAL)Bg =0 non-linear gauge fixing condition!

Remaining symmetry of diagonal part: U(1)N~!

Fix gauge of diag. gluon field A by Landau gauge condition: 0,A, =0
= diagonal ghosts decouple (like in QED).
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Lagrangian for the MAG

diagonal gluon off-diagonal gluon ghost

XX KK X

AABB AAcc BBcc BBBB cccc

SU(N > 2)
BBB Bcc ABBB ABcc
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Deriving Dyson-Schwinger equations

Integral of a total derivative vanishes:

d _siso _ S sijo
j[an]%e + J[Dqﬂ(J 5¢)e e _g)

= DSEs for all Green functions (full, connected, 1PI) by further
differentiations.

Doing it by hand?
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MQH

Deriving Dyson-Schwinger equations

Integral of a total derivative vanishes:

d _siso _ S sijo
j[an]%e + J[Dqﬂ(J 5¢)e e _g)

= DSEs for all Green functions (full, connected, 1PI) by further
differentiations.

Doing it by hand?

Example: Landau gauge, only 2 propagators (AA, cc), 3 interactions
(Acc, AAA, AAAA)
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Landau Gauge: Propagators

Gluon propagator:

S i2 sy E) 2y i2 : i : i1
i1 i2
L 02 i1 N
6 —@— -z

Ghost propagator: D e oy

MQH KFU Graz March. 24, 2010 13/39



X
(]
s
—
(]
>
=
o
=
O
L
>
o
LL
)
a0
=}
T
O

Landau

66 terms

pﬁ%%xhﬁ
T A X vﬂ WH
QP G O ot

XA bR R
XK RO R
YOY KO R B ORK

P




KT
e e
I
e s
s
LAy
LAy
e
P
X434y
KA >
R
I

x
(0]
)
-
(]
>
c
(©)
=
it
(O]
2
L
)
a0
=)
(g0}
O

Landau

: L
Rasol Gl O N g 1 g5 U S
R ol G gb N g S Qs
b e 5o P Aok
S o S b R
L S I S B
xS i MOk
Bk ko kAR
oSO A v R
T AL f R AR K
T A AR A ER
1A &k k XK
b g AR X
*
%m»

S S (SR I VY (U VI U VSR SV RV Vi VIS G
R R I R R T Bk TS SV e

15/39

March. 24, 2010

KFU Graz

T F R ek
F Y ERF IR

MQH



DoDSE

= DoDSE [Alkofer, M.Q.H., Schwenzer, CPC 180 (2009)]

Given a structure of interactions, the DSEs are derived symbolically using
Mathematica.

Example (Landau gauge):

@ only input: interactions in Lagrangian (AA, AAA, AAAA, cc, Acc)
o Which DSE do | want?

@ Step-by-step calculations possible.

@ Can handle mixed propagators (then there are really many diagrams;
e. g. in Gribov-Zwanziger action).

Upgrade: Symb2Alg
Provide Feynman rules and get complete algebraic expressions.
— E. g. calculate color algebra with FORM and integrals with C. U
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DSEs of the MAG

— ety _ O - _O PO
O —— e —
_e_ \W/+\W/+\W/
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Infrared power counting

Generic propagator

- D(p?)
(i)~ P2 )
IR exponent
assume power law behavior at low p? /
D'R(p? 2)6

@ Vertices also assume power law behavior [Alkofer, Fischer, Llanes-Estrada,
PLB 611 (2005) (skeleton expansion)].

@ Limit of all momenta approaching zero simultaneously.

@ Upon integration all momenta converted into powers of external
momenta. = Counting of IR exponents
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System of inequalities

@ IR exponent for every diagram

o lhs is dominated by at least one diagram on rhs and rhs cannot be
more divergent than |hs. — 8hs <d/hs any diagram-

@ Not knowing which diagram is leading on the rhs, we can write
inequalities from all diagrams.

VAV AVAVEEEAVIVAVAVAVER>) 5 +W e TG 5

8 < 20+ 03g,  —Bg < 28gh + Ogg

That's the basic idea. Still, for a large system a lot of work.
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System of inequalities

@ IR exponent for every diagram

o lhs is dominated by at least one diagram on rhs and rhs cannot be
more divergent than |hs. — 8hs <d/hs any diagram-

@ Not knowing which diagram is leading on the rhs, we can write
inequalities from all diagrams.

VAV AVAVEEEAVIVAVAVAVER>) 5 +W e TG 5

—0g1 < 204 + 034, —0g1 < 204 + Ogg,
That's the basic idea. Still, for a large system a lot of work.
All inequalities relevant? NI
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More IR exponents?

Uniform/global scaling: All external momenta go to
zero simultaneously.

r—0 qg—0
p—0
Kinematic scaling: Some external momenta go to zero
simultaneously. — Non-uniform dependence on
momenta [Alkofer, M.Q.H., Schwenzer, EPJC 62 (2009)]

r ~ const. q~ const.

Additional singularities only in longitudinal parts:
RER = [Alkofer, M.Q.H., Schwenzer, EPJC 62 (2009); Fischer, Pawlowski,
PRD 80 (2009)]

OO

NS

]
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Relevant inequalities

A closed form for all relevant inequalities can be derived
from DSES and FRGES [Huber, Schwenzer, Alkofer, 0904.1873].

type derived from #
dressed vertices C1 = bvertex + % Z d; > 0 | FRGEs infinite
legs j of
vertex
prim. div. vertices | Cp = % Z 5 >0 DSEs+FRGEs | finite
legs j of
prim. div.
vertex

Some inequalities are contained within others.
E. g. in MAG: g > 0 and &, > 0 render dg + 6. > 0 useless.
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Scaling relations

General analysis of propagator DSEs
[M.Q.H., Schwenzer, Alkofer, arXiv:0804.1873]

@ At least one inequality from a prim. divergent vertex has to be

saturated, i. e. Czi = 0 for at least one i |.

o Necessary condition for a scaling solution.

o Related to bare vertices in DSEs: Fischer-Pawlowski consistency
condition DSEs <> FRGEs [Fischer, Pawlowski, PRD 75 (2007)].

= One primitively divergent vertex is not IR enhanced.

The non-enhancement of at least one primitively divergent vertex
is now established for all scaling type solutions.
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How to obtain a scaling relation: Landau gauge

© Look at all inequalities for primitively divergent vertices, i. e. at Cj.
© Try all possibilities of Cj = 0.
© Choose the non-trivial solutions.
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How to obtain a scaling relation: Landau gauge

© Look at all inequalities for primitively divergent vertices, i. e. at Cj.
© Try all possibilities of Cj = 0.
© Choose the non-trivial solutions.
Application to Landau gauge:
Q 65 2>0, 0z +285n >0
Q@ a 4y=0
b 8g -+ 25 =0
Q a Su=bm=
b Og +25g =0

1
Scaling relation of the Landau gauge: Eég/ = —0gn = KiG
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How to obtain a scaling relation: MAG

Many interactions = many inequalities, but some of them are contained
within others = reduces number of possibilities.

© Look at all inequalities for primitively divergent vertices, i. e. at CJ.
© Try all possibilities of Cj = 0.

© Choose the non-trivial solutions.
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How to obtain a scaling relation: MAG

Many interactions = many inequalities, but some of them are contained
within others = reduces number of possibilities.

© Look at all inequalities for primitively divergent vertices, i. e. at CJ.
© Try all possibilities of Cj = 0.
© Choose the non-trivial solutions.
Application to the MAG:
Q065>0,0>0,04+085>0,0a+08:20

(2] a 6g=0
b 5=0
c da+06=0
d da+0c=0

Q a SA/:-BB{éc{O
b Sa=8sg=0:=0
C da+0=0
d da+0:=0

Scaling relation of the MAG: ‘55 =08, =04 =Kmac > 0‘ =

MQH KFU Graz March. 24, 2010 24/39



IR scaling solution of the MAG

‘5B:5c:_6A:KMAGZO‘

@ The Abelian fields are IR enhanced. — Realization of Abelian
dominance?

o Off-diagonal fields are IR suppressed.
@ SU(2) and SU(N > 2) have the same solution.

@ Qualitative solutions for tower of all Green functions.

Two-loop diagrams are IR leading (sunset, squint). — UV/IR preserving
truncation?
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Relation Landau gauge & MAG

Landau gauge | maximally Abelian gauge

ghost dominance Abelian (gluon) dominance
Gribov region bounded | Gribov region unbounded in diagonal direction
[Capri et al., PRD79]

Greensite, Olejnik, Zwanziger, PRD78:

. . . Landau gauge . .
Abelian configurations ——— £2"€%, 51 Gribov horizon
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Gauge orbits and Gribov copies

A

A

A
[A]

Gauge equivalent configurations (gauge orbit [A]) = integra-
tion in path integral is overcomplete.
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Gauge orbits and Gribov copies

A

/ Agpe

AH
[A]

%A, — 0

Faddeev and Popov: Restriction of integration to single rep-
resentative of each gauge orbit possible? Gauge symmetry
replaced by BRST symmetry!
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Gauge orbits and Gribov copies

A

/ Agy

Gribov region

A(r
[A]

0uAu =0

Restriction to Gribov horizon: almost unique gauge fixing.
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Gauge orbits and Gribov copies

A

/ Agy

Gribov region

AH
[A]

%A, — 0

Restriction to Gribov horizon: almost unique gauge fixing.

Restriction to Gribov region is done via adding a non-local term to the
Lagrangian. — New parameter 7y, determined by horizon condition. un

MQH KFU Graz March. 24, 2010 27/39



How do DSEs usually deal with this?

Integral of a total derivative vanishes:

d _sijo 85\ sy
J[Ddﬂ@e + J[Ddﬂ(J 5¢)e e _g)

= DSEs for all Green functions (full, connected, 1PI) by further
differentiations.
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How do DSEs usually deal with this?

Integral of a total derivative vanishes [Zwanziger, PRD65]:

o 75+J®:J D ( _55> stio _
L)[Ddﬂéd)e el (4= e 0.

= DSEs for all Green functions (full, connected, 1PI) by further
differentiations.
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How do DSEs usually deal with this?

Integral of a total derivative vanishes [Zwanziger, PRD65]:

o 75+J®:J D ( _55> stio _
L)[Ddﬂéd)e el (4= e 0.

= DSEs for all Green functions (full, connected, 1PI) by further

differentiations.

J (D] (J— 55) 5(3- A)det(M)e=Sm+I® _ g,
o o

det(M)‘Q —0
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Local renormalizable action

Non-local term can be localized with auxiliary fields

(q_)flb, (pflb, d)ff’, wﬁb) — local Gribov-Zwanziger action:

‘CGZ _ (bicMab(pﬁc o (I)fchabU)ﬁc + y2g fabCAZ((PﬁC - (bﬁc) *Y4d(N2 o 1)

Horizon condition in local form:

(g 2043 (95 — §E%)) = 22 d(N2 — 1),

@ Restriction breaks BRST invariance.

@ Mixing at the level of two-point functions, e. g. (Afl(pf,‘:).
= (3x3)-matrix relation between propagators and two-point

functions:
Dé® = (ro®)~1 b e{A 0,0}

= non-trivial relation between IR exponents of propagators and
two-point functions =
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More fields . ..

Simplify to (2x2)-matrix relation by splitting into real and imaginary part
[Zwanziger, 0904.2380]:

1 . L
@ZE(UHV), @—ﬁ(U V).

L&z =Ly+Ly+ Lyy — 0 MPwbe,

‘CU = %USC Mab Uﬁc’

Ly = %v;c M vbe 1 i gy?V2f e A7 vEe,
Luyv = %igf"chid Vo AS o,
Simplify even further:
c,c, U w,w—n,n a2
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DSEs of Gribov-Zwanziger action

Just to give an impression:

i P [ i A i i A i

—r—V— e .;A*v—- - %A_<A:} Ve *A_<VC>; 4
i vV i i v i
s e
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DSEs of Gribov-Zwanziger action

Just to give an impression:

i

R i [T i AA} i i AA} i
+ - Ve - -—A—( A
— v - v e, w
i vV i i v i
B
AV- V V-

e L O O D D
G e e D e
I e TN " (U ¢ 1N

— A — A
; VAha ) 5y ARy : YAy MVa
SIS S U S . & N [N U S 6 & N (S S Wy
VAN s VAN A s 2%y VAR s By
PR e S RS e, o D

»5Y, ved, T ‘
I R € & N RO 6. < o' S SR €. S

. vid .y vay . vy . Y
SIS s T N € C U € < NN R RS € - C U 6. &

YA NV 1 YA Nv
N H A
A e, e,

Complete analysis of all diagrams! a2
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Truncation of tensors

Propagators (Aj, Vbey and (Vib V&) can have many tensors with

different dressing functions,
e. g. color space: f‘abc_ 5ab6Cd 6ac6bd 6ad6bc fabEfcde f'acef'bde-

Truncation: Take only tree-level tensors of two-point functions.

rAA rAV
rée = <rVA rVV) »
1
M = 8% p*cy (p?) Puv + 63Cg€;'l(p2)pupv,

r:y,abcd _ 53c5bdp2cv (p2)guv)

]—fw\//,cab = fcabipchV(P2)gpw>

c,-j(pz) are dressing functions.
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Propagators of the GZ action

2
n n C
D?;Iyab — (r;’ll;l,ab)fl — _gabged ﬂl()g )

DYV has two tensors — non-trivial truncation:

DAA,ab _ éabip CV(p2)
= v ,
Y 2 M ex(pPev(p?) +2N 2, (p?)
1 1

DVX,abcd _ = ac6bdg —

. P? cv(p?) g

_ l/:abefcdeip v QCiv(p2)
p? "t (p?) el (p?) +2N cky, (p?)ev(p?)’
DAV,abe _ f‘abcip \ﬁcAV(p2)

p? "l (p?)ev(p?) +2N ¢k, (p?)
Appearance of the determinant ¢z (p?)cy (p?) + 2N cay (p?)
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The four possibilities

Which part of the determinant ca (p?)cy (p?) + 2N c3, (p?) dominates in
the IR?

cij(p?) = dy - (p*)*0

I: CE\V > CcaCy & Ka + Ky > 2Kay
[l CAC\/>C/§V(—)2KA\/>KA+KV
Il cf\v ~ CACy & Ka + Ky = 2Ky, no cancelations

IV: cf\v ~ CACY & KA + Ky = 2Kay, cancelations

Cancelations: Leading contributions cancel and some less dominant term
takes over.
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The four possibilities

Which part of the determinant cj(p2)cv(p2) + 2N 3y (p?) dominates in
the IR?

cij(p?) = dj - (p?)%i

I: Cﬁv > cac A Ky > 2Kavy
[l: cacy > C%V — 2Kay > Ka + Ky
II: cf\v ~ CACy & Ka + Ky = 2Kay, no cancelations

IV: cf\v ~ CcaC 4T Ky = 2Kay, cancelations

Cancelations: Leading contributions cancel and some less dominant term
takes over.

Two solutions lead to inconsistencies [M.Q.H., R. Alkofer, S. P. Sorella, 0910.5604].
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Case |I: Recovery of standard Landau gauge solution

CaCy > Civ & Ka+ Ky < 2Kay

@ The VV-propagator becomes

1 1

il 365170'
p? cv(p?)

Euv — Ky = Ky

= VV-propagator could be integrated out in the IR and the FP
theory is recovered exactly.

@ All contributions containing an AV-propagator are suppressed. =
DSEs reduce in the IR to the same system as in FP theory.

@ Formula for IR exponent of arbitrary n-point functions is obtained.

@ IR exponent of AV-2-point function is not fixed by scaling relation;
calculated numerically.
Several solutions: 0.0668776, 0.981386 and higher.

In the IR this is completely the same as FP theory! =
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Case Ill: The "strict" scaling solution

All IR exponents are connected by the scaling relations (k := ky = ky):

Ka+ 2k =K+ 2kay =0

Mixed propagator: 84y = k/2 = Less pronounced IR suppression than in
case Il (bav > K/2).

The determinant remains as it is. = Non-linear relations between the
coefficients of the dressing functions.
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Summary Gribov-Zwanziger action

[M.Q.H., Alkofer, Sorella, 0910.5604, to appear in PRD]

Explicitly restricted integration to Gribov region by using the
Gribov-Zwanziger action.
Mixed propagators complicate the analysis. Two candidates remain:
@ All solutions have the same qualitative behavior.
@ Mixed propagator IR suppressed.

@ Scaling relation between FP ghost and gluon unaltered:
Ka+ 2k = 0.

@ Input for numerical solution of the equations.

Both cases reproduce the

qualitative behavior of the Gribov-Zwanziger and Kugo-Ojima scenarios.
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Summary maximally Abelian gauge m.aH. schwenzer, Alkofer, 0904.1873]

@ Existence and form of scaling solutions can easily be obtained
directly from the interactions.

o Fischer-Pawlowski consistency condition: one vertex remains bare in
the IR.
@ Scaling solution may exist in MAG:
o Abelian gluon propagator is IR enhanced. — Support of hypothesis
of Abelian dominance.
o Complete numerical solution required. « Input from asymptotic
behavior
o Two-loop terms are IR leading <+ UV/IR preserving truncation?
o Relation to chromomagnetic monopoles?
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Thank you very much for your attention.
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IR Scaling solutions for other gauges

The analysis can be used also for other gauges. Beware: This
corresponds to a naive application!

Linear covariant gauges Ghost-antighost symmetric gauges

scaling solution only, if the longitudinal
part of the gluon propagator gets
dressed, but gauge fixing condition =
longitudinal part bare

quartic ghost interaction — dg4 > 0
— with non-negative IREs only the
trivial solution can be realized

This is valid for all possible dressings and agrees with the results from
[Alkofer, Fischer, Reinhardt, v. Smekal, PRD 68 (2003)], where only certain dressings

were considered.

o Either the existence of a
- scaling solution is something special (?) or
@ a more refined analysis (symmetries < cancelations) is needed
in these cases. -
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