Dyson-Schwinger equations

Extending truncations

Summary and conclusions

Recent developments in the calculation of correlation functions of Yang-Mills theory

Markus Q. Huber

arXiv 1808 05227

Institute of Theoretical Physics, Giessen University Institute of Physics, University of Graz

68th Annual Meeting of the Austrian Physical Society Graz, Austria

September 13, 2018

Markus Q. Huber

Giessen University, University of Graz

Dyson-Schwinger equations

Extending truncations

Summary and conclusions

Hadronic bound states

Bound state equations:

Ingredients:

Interaction kernel K

Dyson-Schwinger equations

Extending truncations

Summary and conclusions

Hadronic bound states

Bound state equations:

Ingredients:

Interaction kernel K

Approaches:

• Phenomenological: Model interactions • Quark propagator S $\underbrace{\sum_{S(p)}^{-1} = \underbrace{\sum_{S(q)}^{-1} + \gamma_{\mu} \underbrace{\sum_{S(q)}^{D_{\mu\nu}(p-q)} \Gamma_{\mu}(p,q)}}_{S(q)}$

 From first principles: Piecing together the pieces

Dyson-Schwinger equations

Extending truncations

Summary and conclusions

Hadronic bound states

Bound state equations:

Ingredients:

Interaction kernel K

Approaches:

Dyson-Schwinger equations

Extending truncations

Summary and conclusions

QCD phase diagram

200 Temperature T [MeV] Quark-gluon plasma Questions: Critical point Phases and transitions between them, critical 100 point Hadron gas anductor? Experimental • signatures Vacuum Nucleons 0 900 Chemical potential µ [MeV] Alexander Gorfer (quant.uni-graz.at), (CC-BY-SA 4.0)

Theoretical challenges:

- Model description
- Mathematical, e.g., complex action for lattice QCD
- Complexity, e.g., truncations of function eqs.

• . . .

Markus Q. Huber

Giessen University, University of Graz

Dyson-Schwinger equations

Extending truncations

Summary and conclusions

QCD phase diagram

200 Temperature T [MeV] Quark-gluon plasma Questions: Critical point Phases and transitions between them, critical 100 point Hadron gas onductor? Experimental • signatures Vacuum Nucleons 0 900 Chemical potential µ [MeV] Alexander Gorfer (quant.uni-graz.at), (CC-BY-SA 4.0)

Theoretical challenges:

- Model description
- Mathematical, e.g., complex action for lattice QCD
- Complexity, e.g., truncations of function eqs.

• . . .

Markus Q. Huber

Giessen University, University of Graz

Dyson-Schwinger equations

Extending truncations

Summary and conclusions

Truncations

• Influence of higher correlation functions?

qualitative? quantitative? negligible?

Dyson-Schwinger equations

Extending truncations

Summary and conclusions

Truncations

• Influence of higher correlation functions?

qualitative? quantitative? negligible?

 Hierarchy of diagrams/correlation functions? negligible diagrams? irrelevant correlation functions for specific questions?

Dyson-Schwinger equations

Extending truncations

Summary and conclusions

Truncations

• Influence of higher correlation functions?

qualitative? quantitative? negligible?

Hierarchy of diagrams/correlation functions?
 negligible diagrams? irrelevant correlation functions for specific questions?

 Model dependence ↔ Self-contained truncation? conflicting requirements for models? parameter-free solution?

Dyson-Schwinger equations

Extending truncations

Summary and conclusions

Truncations

• Influence of higher correlation functions?

qualitative? quantitative? negligible?

 Hierarchy of diagrams/correlation functions? negligible diagrams? irrelevant correlation functions for specific questions?

 Model dependence ↔ Self-contained truncation? conflicting requirements for models? parameter-free solution?

• How to realize resummation?

higher loop contributions?

Markus Q. Huber

Giessen University, University of Graz

Dyson-Schwinger equations

Extending truncations

Summary and conclusions

Truncations

• Influence of higher correlation functions?

qualitative? quantitative? negligible?

 Hierarchy of diagrams/correlation functions? negligible diagrams? irrelevant correlation functions for specific questions?

 Model dependence ↔ Self-contained truncation? conflicting requirements for models? parameter-free solution?

• How to realize resummation?

higher loop contributions?

• Equivalence between different functional methods?

FRG, DSEs, nPI, Hamiltonian approach

Markus Q. Huber

Dyson-Schwinger equations

Extending truncations

Summary and conclusions

Dyson-Schwinger equations

Markus Q. Huber

Giessen University, University of Graz

Dyson-Schwinger equations ○●○○○○ Extending truncations

Summary and conclusions

Coupled systems of Dyson-Schwinger equations

quark propagator + 3-point functions: [Williams, Fischer, Heupel '15] \rightarrow application to bound states

Markus Q. Huber

Giessen University, University of Graz

Dyson-Schwinger equations

Extending truncations

Summary and conclusions

Coupled systems of Dyson-Schwinger equations

Markus Q. Huber

Giessen University, University of Graz

Dyson-Schwinger equations

Extending truncations

Summary and conclusions

Coupled systems of Dyson-Schwinger equations

Markus Q. Huber

Giessen University, University of Graz

Dyson-Schwinger equations

Extending truncations

Summary and conclusions

3PI system of equations

Three-loop expansion of PI effective action [Berges '04]:

One-loop truncation of gluon propagator with an optimized effective model (contains zero crossing) [MQH, von Smekal '13]:

Good quantitative agreement for ghost and gluon dressings.

One-loop truncation of gluon propagator with an optimized effective model (contains zero crossing) [MQH, von Smekal '13]:

Good quantitative agreement for ghost and gluon dressings.

QCD is only this:

$$\mathcal{L} = -\frac{1}{2} T_r \left(F_{\mu\nu} F^{\mu\nu} \right) + \sum_j \bar{\varphi}_j [i s^{\mu\nu} D_{\mu} - m_j] \Psi_j$$

Markus Q. Huber

Giessen University, University of Graz

Dyson-Schwinger equations

Extending truncations

Summary and conclusions

UV behavior of the gluon propagator

Resummed one-loop order: anomalous dimension $\gamma = -13/22$

$$\left(1+rac{lpha(s)11N_c}{12\pi}\lnrac{p^2}{s}
ight)^{oldsymbol{\gamma}}$$

One-loop anomalous dimension

Origin in resummation of higher order diagrams.

However, one-loop truncation discards some terms.

Dyson-Schwinger equations

Extending truncations

Summary and conclusions

UV behavior of the gluon propagator

Resummed one-loop order: anomalous dimension $\gamma = -13/22$

$$\left(1+rac{lpha(s)11N_c}{12\pi}\lnrac{p^2}{s}
ight)^{oldsymbol{\gamma}}$$

One-loop anomalous dimension

Origin in resummation of higher order diagrams.

However, one-loop truncation discards some terms.

 \rightarrow Puts constraints on UV behavior of vertices [von Smekal, Hauck, Alkofer '97]. Way out: Include in models (for now).

Markus Q. Huber

Giessen University, University of Graz

Dyson-Schwinger equations

Extending truncations

Summary and conclusions

Resummed behavior

Minimal requirements to obtain one-loop resummed behavior:

- Squint diagram
- Correct anomalous dimensions of three-point functions
- Correct renormalization (constants)

Dyson-Schwinger equations

Extending truncations

Summary and conclusions

Resummed behavior

Minimal requirements to obtain one-loop resummed behavior:

- Squint diagram
- Correct anomalous dimensions of three-point functions
- Correct renormalization (constants)

Dyson-Schwinger equations

Extending truncations

Summary and conclusions

Extending truncations

Various ways to extend truncations:

- Vertex tensors beyond tree-level
- Neglected diagrams
- Neglected correlation functions

Extensions also test the previous truncations!

Markus Q. Huber

Dyson-Schwinger equations

Extending truncations

Summary and conclusions

Three-gluon vertex: Kinematic dependence

• In the following: One-momentum approximation

Markus Q. Huber

Giessen University, University of Graz

Dyson-Schwinger equations

Extending truncations

Summary and conclusions

Three-gluon vertex DSE

Dyson-Schwinger equations

Extending truncations

Summary and conclusions

Three-gluon vertex DSE

Perturbative one-loop truncation [Blum, MQH, Mitter von Smekal '14; Eichmann, Alkofer, Vujinovic '14]:

Dyson-Schwinger equations

Extending truncations

Summary and conclusions

Three-gluon vertex DSE

Perturbative one-loop truncation [Blum, MQH, Mitter von Smekal '14; Eichmann, Alkofer, Vujinovic '14]:

Markus Q. Huber

Giessen University, University of Graz

Dyson-Schwinger equations

Extending truncations

Summary and conclusions

Influence of two-ghost-two-gluon vertex

Dyson-Schwinger equations

Extending truncations

Summary and conclusions

Influence of two-ghost-two-gluon vertex

Coupled system of ghost-gluon, three-gluon and four-gluon vertices with and without two-ghost-two-gluon vertex [MQH '17]:

 Introduction
 Dyson-Schwinger equations
 E

 000
 000000
 0

Extending truncations

Summary and conclusions

Influence of two-ghost-two-gluon vertex

Coupled system of ghost-gluon, three-gluon and four-gluon vertices with and without two-ghost-two-gluon vertex [MQH '17]:

- Small influence on ghost-gluon vertex (< 1.7%)
- Negligible influence on three- and four-gluon vertices.

Markus Q. Huber

Giessen University, University of Graz

Dyson-Schwinger equations

Extending truncations

Summary and conclusions

Three-gluon vertex results

Dyson-Schwinger equations

Extending truncations

Summary and conclusions

Three-gluon vertex results

Dyson-Schwinger equations

Extending truncations

Summary and conclusions

Three-gluon vertex results

Dyson-Schwinger equations

Extending truncations

Summary and conclusions

Three-gluon vertex results

• Two-loop truncation: All diagrams except the one with a five-point function.

Dyson-Schwinger equations

Extending truncations

Summary and conclusions

Three-gluon vertex results

- Difference between two-loop DSE and 3PI smaller than lattice error.
- Resolves ambiguity in zero crossing due to RG improvement [Blum et al. '14; Eichmann et al. '14; Williams et al. '16]
- Zero crossing in agreement with other approaches, e.g., [Pelaez et al. '13; Aguilar et al. '13; Athenodorou et al. '16; Duarte et al. '16; Sternbeck et al. '17]

Markus Q. Huber

Giessen University, University of Graz

Dyson-Schwinger equations

Extending truncations

Summary and conclusions

The two-ghost-two-gluon vertex

Non-primitively divergent correlation function \rightarrow No guide from tree-level tensor. \rightarrow Use full basis.

Dyson-Schwinger equations

Extending truncations

Summary and conclusions

The two-ghost-two-gluon vertex

Non-primitively divergent correlation function \rightarrow No guide from tree-level tensor. \rightarrow Use full basis.

<u>Lorentz basis</u> transverse wrt gluon legs \rightarrow 5 tensors $\tau^i_{\mu\nu}(p,q;r,s)$, (anti-)symmetric under exchange of gluon legs. <u>Color basis:</u> 8 tensors (results show that only 5 required).

Dyson-Schwinger equations

Extending truncations

Summary and conclusions

The two-ghost-two-gluon vertex

Non-primitively divergent correlation function \rightarrow No guide from tree-level tensor. \rightarrow Use full basis.

<u>Lorentz basis</u> transverse wrt gluon legs \rightarrow 5 tensors $\tau^i_{\mu\nu}(p,q;r,s)$, (anti-)symmetric under exchange of gluon legs. <u>Color basis:</u> 8 tensors (results show that only 5 required).

Two-ghost-two-gluon vertex

$$\mathbf{\Gamma}_{\mu\nu}^{AA\bar{c}c,\epsilon}$$
 with

$${}^{AA\bar{c}c,abcd}_{\mu\nu}(p,q;r,s) = {}^{40}_{g} \sum_{k=1}^{40} \rho^{k,abcd}_{\mu\nu} D^{AA\bar{c}c}_{k(i,j)}(p,q;r,s)$$

$$\rho_{\mu\nu}^{k,abcd} = \sigma_i^{abcd} \tau_{\mu\nu}^j, \qquad k = k(i,j) = 5(i-1) + j$$

Markus Q. Huber

Ĝ

Giessen University, University of Graz

Dyson-Schwinger equations

Extending truncations

Summary and conclusions

The two-ghost-two-gluon vertex DSE

2 DSEs, choose the one with the ghost leg attached to the bare vertex \rightarrow Truncation discards only one diagram.

Markus Q. Huber

Giessen University, University of Graz

Dyson-Schwinger equations

Extending truncations

Summary and conclusions

The two-ghost-two-gluon vertex DSE

2 DSEs, choose the one with the ghost leg attached to the bare vertex \rightarrow Truncation discards only one diagram.

Dyson-Schwinger equations

Extending truncations

Summary and conclusions

Results for the two-ghost-two-gluon vertex

Kinematic approximation: one-momentum configuration

 \rightarrow Two classes of dressings: 13 very small, 12 not small

 \rightarrow No nonzero solution for $\{\sigma_6, \sigma_7, \sigma_8\}$ found.

Markus Q. Huber

Giessen University, University of Graz

September 13, 2018

18/21

[MQH '17]

Markus Q. Huber

Giessen University, University of Graz

Dyson-Schwinger equations

Extending truncations

Summary and conclusions

Results for 3PI system

Note: Two solutions with different renormalization parameter D(0) on top of each other.

Dyson-Schwinger equations

Extending truncations

Summary and conclusions

Results for 3PI system

Note: Two solutions with different renormalization parameter D(0) on top of each other.

Dyson-Schwinger equations

Extending truncations

Summary and conclusions

Results for 3PI system

Note: Two solutions with different renormalization parameter D(0) on top of each other.

- Details of renormalization crucial!
- Other details also important.

Markus Q. Huber

Giessen University, University of Graz

September 13, 2018

20/21

Dyson-Schwinger equations

Extending truncations

Summary and conclusions

Summary and conclusions

Towards a systematic understanding of truncations of functional equations to establish them as a first principles method.

Dyson-Schwinger equations

Extending truncations

Summary and conclusions

Summary and conclusions

Towards a systematic understanding of truncations of functional equations to establish them as a first principles method.

- Hierarchy of correlation functions exists.
- Negligible diagrams identified.
- Cancelations between diagrams.

Dyson-Schwinger equations

Extending truncations

Summary and conclusions

Summary and conclusions

Towards a systematic understanding of truncations of functional equations to establish them as a first principles method.

- Hierarchy of correlation functions exists.
- Negligible diagrams identified.
- Cancelations between diagrams.

Outlook and possibilities:

- Non-classical tensors in gluonic vertices
- Fully coupled systems
- Add quarks
- Finite temperature
- Bound states
- Finite density

۲

Markus Q. Huber

Giessen University, University of Graz

Dyson-Schwinger equations

Extending truncations

Summary and conclusions

Summary and conclusions

Towards a systematic understanding of truncations of functional equations to establish them as a first principles method.

- Hierarchy of correlation functions exists.
- Negligible diagrams identified.
- Cancelations between diagrams.

Outlook and possibilities:

- Non-classical tensors in gluonic vertices
- Fully coupled systems
- Add quarks
- Finite temperature
- Bound states
- Finite density

۲

Markus Q. Huber

Giessen University, University of Graz

September 13, 2018

Thank you for your attention!