Recent developments in the calculation of correlation functions of Yang-Mills theory

> Markus Q. Huber
> arXiv:1808.05227

Institute of Theoretical Physics, Giessen University Institute of Physics, University of Graz

JUSTUS-LIEBIG-
T UNIVERSITAT

- GIESSEN
$68^{\text {th }}$ Annual Meeting of the Austrian Physical Society
Graz, Austria
September 13, 2018

Hadronic bound states

Bound state equations:

Ingredients:

- Interaction kernel K
- Quark propagator S

Hadronic bound states

Bound state equations:

Ingredients:

- Interaction kernel K

Approaches:

- Phenomenological:

Model interactions

- Quark propagator S

Hadronic bound states

Bound state equations:

Ingredients:

- Interaction kernel K

Approaches:

- Phenomenological:

Model interactions

- From first principles: Piecing together the pieces

- Quark propagator S

\rightarrow Couples to infinity of equations.

QCD phase diagram

Questions:

- Phases and transitions between them, critical point
- Experimental signatures

Theoretical challenges:

- Model description
- Mathematical, e.g., complex action for lattice QCD
- Complexity, e.g., truncations of function eqs.
- ...

QCD phase diagram

Questions:

- Phases and transitions between them, critical point
- Experimental signatures

Theoretical challenges:

- Model description
- Mathematical, e.g., complex action for lattice QCD
- Complexity, e.g., truncations of function eqs.
- ...

Truncations

- Influence of higher correlation functions?
qualitative? quantitative? negligible?

Truncations

- Influence of higher correlation functions? qualitative? quantitative? negligible?
- Hierarchy of diagrams/correlation functions?
negligible diagrams? irrelevant correlation functions for specific questions?

Truncations

- Influence of higher correlation functions? qualitative? quantitative? negligible?
- Hierarchy of diagrams/correlation functions? negligible diagrams? irrelevant correlation functions for specific questions?
- Model dependence \leftrightarrow Self-contained truncation? conflicting requirements for models? parameter-free solution?

Truncations

- Influence of higher correlation functions? qualitative? quantitative? negligible?
- Hierarchy of diagrams/correlation functions? negligible diagrams? irrelevant correlation functions for specific questions?
- Model dependence \leftrightarrow Self-contained truncation? conflicting requirements for models? parameter-free solution?
- How to realize resummation?
higher loop contributions?

Truncations

- Influence of higher correlation functions? qualitative? quantitative? negligible?
- Hierarchy of diagrams/correlation functions? negligible diagrams? irrelevant correlation functions for specific questions?
- Model dependence \leftrightarrow Self-contained truncation? conflicting requirements for models? parameter-free solution?
- How to realize resummation?
higher loop contributions?
- Equivalence between different functional methods?

FRG, DSEs, nPI, Hamiltonian approach

Dyson-Schwinger equations

Coupled systems of Dyson-Schwinger equations

quark propagator +3 -point functions: [Williams, Fischer, Heupel '15] \rightarrow application to bound states

Coupled systems of Dyson-Schwinger equations

Coupled systems of Dyson-Schwinger equations

3PI system of equations

Three-loop expansion of PI effective action [Berges '04]:

Propagators and ghost-gluon vertex with three-gluon vertex model

One-loop truncation of gluon propagator with an optimized effective model (contains zero crossing) [MQH, von Smekal '13]:

Good quantitative agreement for ghost and gluon dressings.

Propagators and ghost-gluon vertex with three-gluon vertex model

One-loop truncation of gluon propagator with an optimized effective model (contains zero crossing) [MQH, von Smekal '13]:

Good quantitative agreement for ghost and gluon dressings.
QCD is only this:

$$
\begin{aligned}
& \mathcal{L}=-\frac{1}{2} T_{r}\left(F_{\mu \nu} F^{\mu}\right)+\sum_{j} \bar{\varphi}_{j}\left[i r^{*} D_{\mu}-m_{j}\right] \varphi_{j} \\
& \text { WODEE } \quad F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}+i g\left[A_{\mu}, A_{\nu}\right] \\
& \text { WND } D_{\mu}=\partial_{\mu}+i g A_{\mu}
\end{aligned}
$$

Can we do with only that?

UV behavior of the gluon propagator

Resummed one-loop order: anomalous dimension $\gamma=-13 / 22$

$$
\left(1+\frac{\alpha(s) 11 N_{c}}{12 \pi} \ln \frac{p^{2}}{s}\right)^{\gamma}
$$

One-loop anomalous dimension

Origin in resummation of higher order diagrams.
However, one-loop truncation discards some terms.

UV behavior of the gluon propagator

Resummed one-loop order: anomalous dimension $\gamma=-13 / 22$

$$
\left(1+\frac{\alpha(s) 11 N_{c}}{12 \pi} \ln \frac{p^{2}}{s}\right)^{\gamma}
$$

One-loop anomalous dimension

Origin in resummation of higher order diagrams.
However, one-loop truncation discards some terms.

\rightarrow Puts constraints on UV behavior of vertices [von Smekal, Hauck, Alkofer '97].
Way out: Include in models (for now).

Resummed behavior

Minimal requirements to obtain one-loop resummed behavior:

- Squint diagram
- Correct anomalous dimensions of three-point functions
- Correct renormalization (constants)

Resummed behavior

Minimal requirements to obtain one-loop resummed behavior:

- Squint diagram
- Correct anomalous dimensions of three-point functions
- Correct renormalization (constants)

[propagator+ghost-gluon eqs. full, 3-gluon vertex model, bare 4-gluon vertex]
- Resummed behavior is recovered [MQH '17].

Extending truncations

Various ways to extend truncations:

- Vertex tensors beyond tree-level
- Neglected diagrams
- Neglected correlation functions

Extensions also test the previous truncations!

Three-gluon vertex: Kinematic dependence

- Kinematic dependence weak.
- In the following: One-momentum approximation

Three-gluon vertex DSE

Three-gluon vertex DSE

Full DSE:

$+\frac{1}{2}$

Perturbative one-loop truncation [Blum, MQH, Mitter von Smekal '14; Eichmann, Alkofer, Vujinovic '14]:

Three-gluon vertex DSE

Full DSE:

Perturbative one-loop truncation [Blum, MQH, Mitter von Smekal '14; Eichmann, Alkofer, Vujinovic '14]:

Non-perturbative one-loop truncation [MQH '17]:

Coupled system of ghost-gluon, three-gluon and four-gluon vertices with and without two-ghost-two-gluon vertex [MQH '17]:

Influence of two-ghost-two-gluon vertex

Coupled system of ghost-gluon, three-gluon and four-gluon vertices with and without two-ghost-two-gluon vertex [MQH '17]:

- Small influence on ghost-gluon vertex ($<1.7 \%$)
- Negligible influence on three- and four-gluon vertices.

Three-gluon vertex results

Three-gluon vertex results

Three-gluon vertex results

Three-gluon vertex results

- Two-loop truncation: All diagrams except the one with a five-point function.

Three-gluon vertex results

- Difference between two-loop DSE and 3 PI smaller than lattice error.
- Resolves ambiguity in zero crossing due to RG improvement [Blum et al. '14; Eichmann et al. '14; Williams et al. '16]
- Zero crossing in agreement with other approaches, e.g., [Pelaez et al. '13; Aguilar et al. '13; Athenodorou et al. '16;

Duarte et al. '16; Sternbeck et al. '17]

The two-ghost-two-gluon vertex

Non-primitively divergent correlation function \rightarrow No guide from tree-level tensor. \rightarrow Use full basis.

The two-ghost-two-gluon vertex

Non-primitively divergent correlation function \rightarrow No guide from tree-level tensor. \rightarrow Use full basis.

Lorentz basis transverse wrt gluon legs $\rightarrow 5$ tensors $\tau_{\mu \nu}^{i}(p, q ; r, s)$, (anti-)symmetric under exchange of gluon legs.
Color basis: 8 tensors (results show that only 5 required).

The two-ghost-two-gluon vertex

Non-primitively divergent correlation function \rightarrow No guide from tree-level tensor. \rightarrow Use full basis.

Lorentz basis transverse wrt gluon legs $\rightarrow 5$ tensors $\tau_{\mu \nu}^{i}(p, q ; r, s)$, (anti-)symmetric under exchange of gluon legs.
Color basis: 8 tensors (results show that only 5 required).

Two-ghost-two-gluon vertex

$$
\begin{aligned}
& \Gamma_{\mu \nu}^{A A \bar{c} c, a b c d}(p, q ; r, s)=g^{4} \sum_{k=1}^{40} \rho_{\mu \nu}^{k, a b c d} D_{k(i, j)}^{A A \bar{c} c}(p, q ; r, s) \\
& \text { with } \\
& \qquad \rho_{\mu \nu}^{k, a b c d}=\sigma_{i}^{a b c d} \tau_{\mu \nu}^{j}, \quad k=k(i, j)=5(i-1)+j
\end{aligned}
$$

The two-ghost-two-gluon vertex DSE

2 DSEs, choose the one with the ghost leg attached to the bare vertex \rightarrow Truncation discards only one diagram.

The two-ghost-two-gluon vertex DSE

2 DSEs, choose the one with the ghost leg attached to the bare vertex \rightarrow Truncation discards only one diagram.

Results for the two-ghost-two-gluon vertex

Kinematic approximation: one-momentum configuration

- Dimensionless dressing functions \bar{D}_{k}.
- Each plot one Lorentz tensor.

\rightarrow Two classes of dressings: 13 very small, 12 not small
\rightarrow No nonzero solution for $\left\{\sigma_{6}, \sigma_{7}, \sigma_{8}\right\}$ found.

3PI system of primitively divergent correlation functions

Four-gluon vertex included to calculate Z_{4}.

Results for 3PI system

Note: Two solutions with different renormalization parameter $D(0)$ on top of each other.

Results for 3PI system

Note: Two solutions with different renormalization parameter $D(0)$ on top of each other.

Results for 3PI system

Note: Two solutions with different renormalization parameter $D(0)$ on top of each other.

- Details of renormalization crucial!
- Other details also important.

Summary and conclusions

Towards a systematic understanding of truncations of functional equations to establish them as a first principles method.

Summary and conclusions

Towards a systematic understanding of truncations of functional equations to establish them as a first principles method.

- Hierarchy of correlation functions exists.
- Negligible diagrams identified.
- Cancelations between diagrams.

Summary and conclusions

Towards a systematic understanding of truncations of functional equations to establish them as a first principles method.

- Hierarchy of correlation functions exists.
- Negligible diagrams identified.
- Cancelations between diagrams.

Outlook and possibilities:

- Non-classical tensors in gluonic vertices
- Fully coupled systems
- Add quarks
- Finite temperature
- Bound states
-
-

Summary and conclusions

Towards a systematic understanding of truncations of functional equations to establish them as a first principles method.

- Hierarchy of correlation functions exists.
- Negligible diagrams identified.
- Cancelations between diagrams.

Outlook and possibilities:

- Non-classical tensors in gluonic vertices
- Fully coupled systems
- Add quarks
- Finite temperature

Thank you for your attention!

- Bound states
-

0

