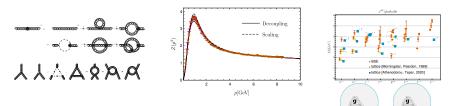
From correlation functions to bound states: A gauge-dependent way to observables



Markus Q. Huber

Institute of Theoretical Physics, Giessen University

Institute of Physics, Graz, Austria February 24, 2021

Der Wissenschaftsfonds.

Markus Q. Huber

**Giessen University** 

JUSTUS-LIEBIG-

GIESSEN

DFG Deutsche Forschungsgemeinschaft

a

February 24, 2021

## Gauge theories

Gauge theory: Lagrangian with gauge fields (+matter fields)

 $\rightarrow$  Defines propagators and vertices of elementary fields.

## Gauge theories

Gauge theory: Lagrangian with gauge fields (+matter fields)

 $\rightarrow$  Defines propagators and vertices of elementary fields.

Use propagators and vertices:

- Expansion in coupling: Perturbative methods work well if coupling small (despite being a divergent series).
- Nonperturbative calculation with one of various functional methods

Calculations with propagators and vertices require fixing of the gauge to remove physically equivalent configurations.

Gauge dependence must cancel for observables.

## Gauge theories

Gauge theory: Lagrangian with gauge fields (+matter fields)

 $\rightarrow$  Defines propagators and vertices of elementary fields.

Use propagators and vertices:

- Expansion in coupling: Perturbative methods work well if coupling small (despite being a divergent series).
- Nonperturbative calculation with one of various functional methods

Calculations with propagators and vertices require fixing of the gauge to remove physically equivalent configurations.

Gauge dependence must cancel for observables.

• Alternative: Numerical evaluation of the path integral  $\rightarrow$  lattice methods

#### oduction QCD

# Quantum chromodynamics

Many facets to study:

- Hadron masses: Origin? (Symmetry) patterns? Numbers?
- Searches for new physics in high- and low-energy regimes
  - e.g., background at hadron colliders, anomalous magnetic moment of muon
- Dense system: neutron stars  $\rightarrow$  astrophysics
- Hot system: evolution of the universe  $\rightarrow$  cosmology

• . . .

#### oduction QCD

# Quantum chromodynamics

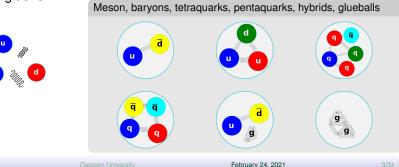
Many facets to study:

- Hadron masses: Origin? (Symmetry) patterns? Numbers?
- Searches for new physics in high- and low-energy regimes
   a balance of bal
  - e.g., background at hadron colliders, anomalous magnetic moment of muon
- Dense system: neutron stars  $\rightarrow$  astrophysics
- Hot system: evolution of the universe  $\rightarrow$  cosmology

• . . .

Markus Q. Huber

Quarks and gluons





- Quark models: Descriptive picture of bound states
- Effective theories can capture the relevant degrees of freedom, e.g., chiral perturbation theory, quark-meson model. Underlying dynamics is absorbed in effective parameters.



- Quark models: Descriptive picture of bound states
- Effective theories can capture the relevant degrees of freedom, e.g., chiral perturbation theory, quark-meson model. Underlying dynamics is absorbed in effective parameters.

So why consider gluons alone (Yang-Mills theory)?



- Quark models: Descriptive picture of bound states
- Effective theories can capture the relevant degrees of freedom, e.g., chiral perturbation theory, quark-meson model. Underlying dynamics is absorbed in effective parameters.

So why consider gluons alone (Yang-Mills theory)?

• Gluons a challenge (IR behavior) for functional methods.

Warning: Adding quarks not trivial after all.



- Quark models: Descriptive picture of bound states
- Effective theories can capture the relevant degrees of freedom, e.g., chiral perturbation theory, quark-meson model. Underlying dynamics is absorbed in effective parameters.

So why consider gluons alone (Yang-Mills theory)?

• Gluons a challenge (IR behavior) for functional methods.

Warning: Adding quarks not trivial after all.

 Important for dynamics, e.g., dynamical chiral symmetry breaking strongly dependent on gauge sector (if calculated and not modeled).



- Quark models: Descriptive picture of bound states
- Effective theories can capture the relevant degrees of freedom, e.g., chiral perturbation theory, quark-meson model. Underlying dynamics is absorbed in effective parameters.

So why consider gluons alone (Yang-Mills theory)?

• Gluons a challenge (IR behavior) for functional methods.

Warning: Adding quarks not trivial after all.

 Important for dynamics, e.g., dynamical chiral symmetry breaking strongly dependent on gauge sector (if calculated and not modeled).
 Gluoballs

• Glueballs.



- Quark models: Descriptive picture of bound states
- Effective theories can capture the relevant degrees of freedom, e.g., chiral perturbation theory, quark-meson model. Underlying dynamics is absorbed in effective parameters.

So why consider gluons alone (Yang-Mills theory)?

• Gluons a challenge (IR behavior) for functional methods.

Warning: Adding quarks not trivial after all.

- Important for dynamics, e.g., dynamical chiral symmetry breaking strongly dependent on gauge sector (if calculated and not modeled).
- Glueballs.
- Template for other gauge theories.



## Hadrons

Hadron masses from correlation functions of color singlet operators.



Hadron masses from correlation functions of color singlet operators.

Example: For  $J^{PC} = 0^{++}$  glueball take  $O(x) = F_{\mu\nu}(x)F^{\mu\nu}(x)$ :

$$D(x - y) = \langle O(x)O(y) \rangle$$

 $\rightarrow$  Lattice: Mass from this correlator by exponential Euclidean time decay.



Hadron masses from correlation functions of color singlet operators.

Example: For  $J^{PC} = 0^{++}$  glueball take  $O(x) = F_{\mu\nu}(x)F^{\mu\nu}(x)$ :

$$D(x-y) = \langle O(x)O(y) \rangle$$

 $\rightarrow$  Lattice: Mass from this correlator by exponential Euclidean time decay.

 $A^4$ -part of D(x - y), total momentum on-shell:

$$\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$$



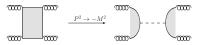
## Hadrons

QCD

 $A^4$ -part of D(x - y), total momentum on-shell:



For bound state equations, consider general four-point function:  $\rightarrow$  Bethe-Salpeter wave functions





## Hadrons

 $A^4$ -part of D(x - y), total momentum on-shell:

For bound state equations, consider general four-point function:  $\rightarrow$  Bethe-Salpeter wave functions





Four-point functions is gauge dependent

#### The pole is gauge invariant!

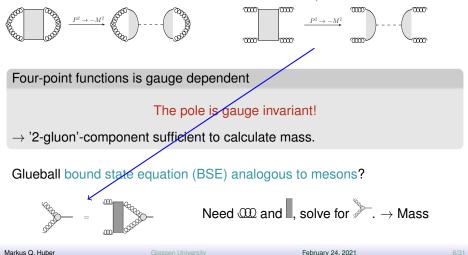


QCD

# Hadrons

 $A^4$ -part of D(x - y), total momentum on-shell:

For bound state equations, consider general four-point function:  $\rightarrow$  Bethe-Salpeter wave functions



# Calculation of correlation functions

#### Various functional methods

- Dyson-Schwinger equations
- Equations of motion for an *n*PI effective action
- Functional renormalization group
- Nielsen identities
- Bound state equations

# Calculation of correlation functions

#### Various functional methods

- Dyson-Schwinger equations
- Equations of motion for an *n*PI effective action
- Functional renormalization group
- Nielsen identities
- Bound state equations
- Work with fully dressed quantities
- Infinite sets of equations
- Process of making them finite: Truncation

# Calculation of correlation functions

#### Various functional methods

- Dyson-Schwinger equations
- Equations of motion for an *n*PI effective action
- Functional renormalization group
- Nielsen identities
- Bound state equations
- Work with fully dressed quantities
- Infinite sets of equations
- Process of making them finite: Truncation

- Large scale separations
- Fermions technically 'straightforward'
- Kinematic dependences can be resolved
- Higher correlation functions accessible
- (Time-like momenta accessible)

### Truncations

Neglecting/Modeling some part

- Guidance from analysis of asymptotic behavior (UV, IR).
- Systematic tests possible by extending a truncation.

### Truncations

Neglecting/Modeling some part

- Guidance from analysis of asymptotic behavior (UV, IR).
- Systematic tests possible by extending a truncation.

Even truncated equations can, e.g.,

- elucidate chiral symmetry breaking (dynamical mass creation)
- give hints on the internal structure (tetraquarks)
- identify dominant contributions.

## Truncations

Neglecting/Modeling some part

- Guidance from analysis of asymptotic behavior (UV, IR).
- Systematic tests possible by extending a truncation.

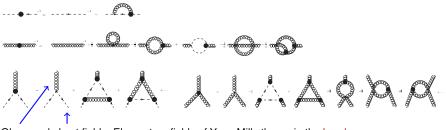
Even truncated equations can, e.g.,

- elucidate chiral symmetry breaking (dynamical mass creation)
- give hints on the internal structure (tetraquarks)
- identify dominant contributions.

Improving truncations

Iterative procedure: Define one, test it, learn from it, find a better one

# Equations of motion from 3-loop 3PI effective action

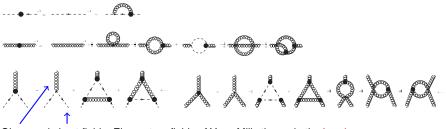


Gluon and ghost fields: Elementary fields of Yang-Mills theory in the Landau gauge

Self-contained system of equations with the scale as the only input.

#### Truncation?

# Equations of motion from 3-loop 3PI effective action

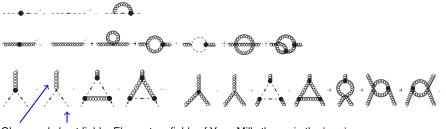


Gluon and ghost fields: Elementary fields of Yang-Mills theory in the Landau gauge

Self-contained system of equations with the scale as the only input.

#### Truncation? $\rightarrow$ 3-loop expansion of 3PI effective action

# Equations of motion from 3-loop 3PI effective action



Gluon and ghost fields: Elementary fields of Yang-Mills theory in the Landau gauge

Self-contained system of equations with the scale as the only input.

Truncation?  $\rightarrow$  3-loop expansion of 3PI effective action

- 4 coupled integral equations with full kinematic dependence.
- Sufficient numerical accuracy required for renormalization.
- One- and two-loop diagrams [Meyers, Swanson '14; MQH '17].

Landau gauge

# **Technical tools**

DoFun [Alkofer, MQH, Schwenzer '08; MQH, Braun '11; MQH, Cyrol, Pawlowski '19]

Collection of Mathematica packages for

- Deriving functional equations: Dyson-Schwinger eqs., flow eqs., correlation functions for composite operators
- Automatization of Feynman rules
- https://github.com/markusqh/DoFun

#### CrasyDSE [MQH, Mitter '11]

C++ framework for

- Interpolation
- Integration
- Kernel code creation from Mathematica

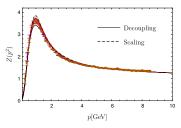
#### Other tools

- FORM (code optimization for higher correlation functions) [Ruijl, Ueda, Vermaseren '17]
- Self-made Mathematica packages for color and Lorentz algebra

Landau gauge

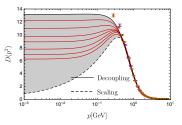
# Landau gauge propagators

Gluon dressing function:

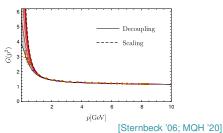


- Family of solutions: Nonperturbative completions of Landau gauge [Maas '10]
- Realized by condition on G(0) [Fischer, Maas, Pawlowski '08; Alkofer, Huber, Schwenzer '08]

Gluon propagator:



Ghost dressing function:



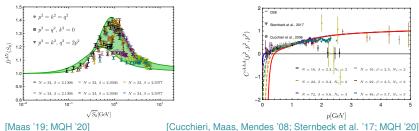
**Giessen Univers** 

Landau gauge

Three-gluon vertex:

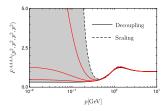
# Landau gauge vertices





- Nontrivial kinematic dependence of ghost-gluon vertex
- Simple kinematic dependence of three-gluon vertex
- Four-gluon vertex from solution

Four-gluon vertex:



February 24, 2021

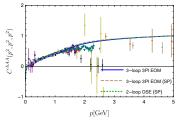
[MQH '20]

Landau gauge

# Concurrence of functional methods

Exemplified with three-gluon vertex.

3PI vs. 2-loop DSE:



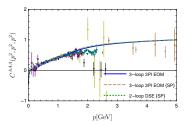
[Cucchieri, Maas, Mendes '08; Sternbeck et al. '17; MQH '20]

Landau gauge

# Concurrence of functional methods

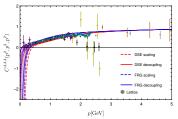
Exemplified with three-gluon vertex.

3PI vs. 2-loop DSE:



[Cucchieri, Maas, Mendes '08; Sternbeck et al. '17; MQH '20]

DSE vs. FRG:



[Cucchieri, Maas, Mendes '08; Sternbeck et al. '17; Cyrol et al. '16; MQH '20]

February 24, 2021

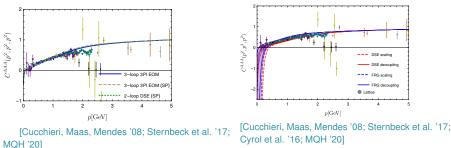
Landau gauge

DSE vs. FRG:

# Concurrence of functional methods

Exemplified with three-gluon vertex.

3PI vs. 2-loop DSE:



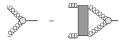
#### Beyond this truncation

- Further dressings of three-gluon vertex [Eichmann, Williams, Alkofer, Vujinovic '14]
- Effects of four-point functions [MQH '16, MQH '17, MQH '18]

Glueballs

Glueball equations

# Glueballs as bound states



Need @@ and  $\$ , solve for >.  $\rightarrow$  Mass

Glueballs

## Glueballs as bound states



Gluons couple to ghosts  $\rightarrow$  Include 'ghostball'-part.

Glueballs

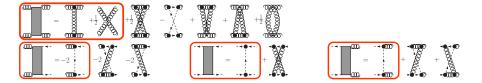
### Glueballs as bound states



Gluons couple to ghosts  $\rightarrow$  Include 'ghostball'-part.

Construction of kernel

**3-loop expansion of 3PI effective action** [Fukuda '87; McKay, Munczek '89; Sanchis-Alepuz, Williams '15; MQH, Fischer, Sanchis-Alepuz '20]



• Some diagrams vanish for certain quantum numbers.

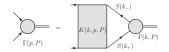
• Full QCD: Same for quarks  $\rightarrow$  Mixing with mesons.

Giessen University

February 24, 2021

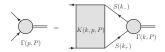
Glueball equations

# Solving a BSE



Glueball equations

#### Solving a BSE



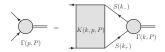
Consider the eigenvalue problem ( $\Gamma$  is the BSE amplitude)

$$\mathcal{K} \cdot \Gamma(\mathbf{P}) = \lambda(\mathbf{P}) \Gamma(\mathbf{P}).$$

 $\lambda(P^2) = 1$  is a solution to the BSE  $\Rightarrow$  Glueball mass  $P^2 = -M^2$ 

Glueball equations

#### Solving a BSE



Consider the eigenvalue problem ( $\Gamma$  is the BSE amplitude)

$$\mathcal{K} \cdot \Gamma(\mathbf{P}) = \lambda(\mathbf{P}) \Gamma(\mathbf{P}).$$

 $\lambda(P^2) = 1$  is a solution to the BSE  $\Rightarrow$  Glueball mass  $P^2 = -M^2$ 

Calculation requires quantities for

$$k_{\pm}^2 = P^2 + k^2 \pm 2\sqrt{P^2 k^2} \cos \theta = -M^2 + k^2 \pm 2 i M \sqrt{k^2} \cos \theta.$$

 $\Rightarrow$  Complex momentum arguments.

Propagators for complex momenta

- Reconstruction from Euclidean results: mathematically ill-defined, bias in solution
- Direct calculation from functional methods possible

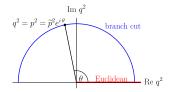
#### Propagators for complex momenta

- Reconstruction from Euclidean results: mathematically ill-defined, bias in solution
- Direct calculation from functional methods possible
- Special techniques necessary: Respect analyticity

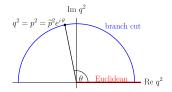
[Fischer, MQH '20]

Simpler truncation:

$$\overline{\alpha}$$



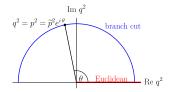
Appearance of branch cuts for complex momenta forbids integration directly to cutoff.



Appearance of branch cuts for complex momenta forbids integration directly to cutoff.

Deformation of integration contour necessary [Maris '95]. Recent resurgence:

[Alkofer et al. '04; Windisch, MQH, Alkofer, '13; Williams '19; Miramontes, Sanchis-Alepuz '19; Eichmann et al. '19], ...

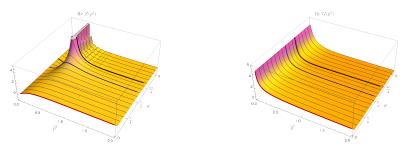


Appearance of branch cuts for complex momenta forbids integration directly to cutoff.

Deformation of integration contour necessary [Maris '95]. Recent resurgence: [Alkofer et al. '04; Windisch, MQH, Alkofer, '13; Williams '19; Miramontes, Sanchis-Alepuz '19; Eichmann et al. '19], ...

Ray technique for self-consistent solution of a DSE: [Strauss, Fischer, Kellermann; Fischer, MQH '20].

Markus Q. Huber



- Method works,
- but current truncation leads to a pole-like structure in the gluon propagator.
- Analyticity up to 'pole' confirmed by various tests (Cauchy-Riemann, Schlessinger, reconstruction)
- Warning: No proof of existence of complex conjugate poles.

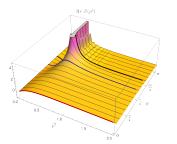
[Fischer, MQH '20]

Glueball masses

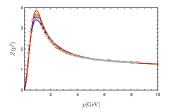
## Input for glueballs

VS.

Low quality results in complex plane



Quantitative results for real momenta



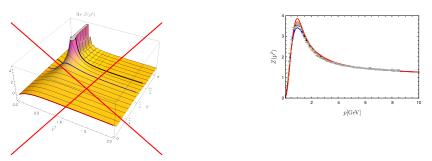
Glueball masses

## Input for glueballs

VS.

Low quality results in complex plane

Quantitative results for real momenta



 $\Rightarrow$  Solve eigenvalue problem for  $P^2 > 0$  and extrapolate  $\lambda(P^2)$  to glueball mass.



#### Extrapolation method

- Extrapolation to time-like P<sup>2</sup> using Schlessinger's continued fraction method (proven superior to default Padé approximants) [Schlessinger '68]
- Average over extrapolations using subsets of points for error estimate



Extrapolation method

- Extrapolation to time-like P<sup>2</sup> using Schlessinger's continued fraction method (proven superior to default Padé approximants) [Schlessinger '68]
- Average over extrapolations using subsets of points for error estimate

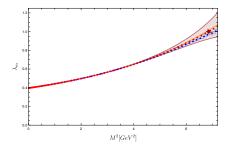
Test extrapolation for solvable system: Heavy meson

```
Glueballs Glueball masses Extrapolation of \lambda(P^2)
```

Extrapolation method

- Extrapolation to time-like P<sup>2</sup> using Schlessinger's continued fraction method (proven superior to default Padé approximants) [Schlessinger '68]
- Average over extrapolations using subsets of points for error estimate

Test extrapolation for solvable system: Heavy meson



[MQH, Sanchis-Alepuz, Fischer '20]

| Markus Q. Huber | Giessen University | February 24, 2021 | 20/31 |
|-----------------|--------------------|-------------------|-------|
|                 |                    |                   |       |

Glueball masses

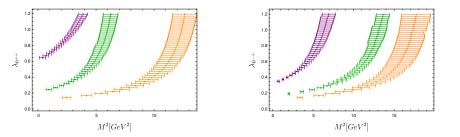
# Extrapolation of $\lambda(P^2)$ for glueballs

Higher eigenvalues: Excited states.

Glueball masses

# Extrapolation of $\lambda(P^2)$ for glueballs

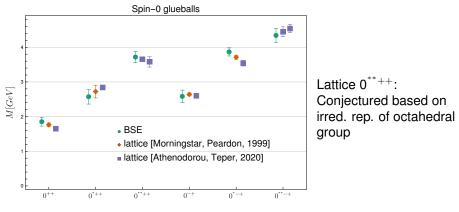
Higher eigenvalues: Excited states.



Physical solutions for  $\lambda(P^2) = 1$ .

Glueball masses

# Glueballs with $J = 0^{\pm +}$



All results for  $r_0 = 1/418(5)$  MeV.

[MQH, Fischer, Sanchis-Alepuz '20]

Glueball masses

## Extension to J > 0

How is spin determined in a BSE?



Glueball masses

## Extension to J > 0

How is spin determined in a BSE?

Encoded in basis tensors for BSE amplitudes.



Glueball masses

#### Extension to J > 0

How is spin determined in a BSE?

Encoded in basis tensors for BSE amplitudes.

Example:

 $g_{\mu\nu}$  and  $p_{\mu}p_{\nu}$  correspond to an amplitude with two gluon legs and spin 0, P = 1.

#### Extension to J > 0

How is spin determined in a BSE?

Encoded in basis tensors for BSE amplitudes.

Example:

 $g_{\mu\nu}$  and  $p_{\mu}p_{\nu}$  correspond to an amplitude with two gluon legs and spin 0, P=1.

For higher *J*, construct most general (J + 2)-dimensional tensor basis and apply spin projector.  $\rightarrow$  Traceless, symmetric, transverse in spin indices.

 $\rightarrow$  At most 4/5 tensors for  $P = \pm 1$  [MQH, Sanchis-Alepuz, Fischer, in prep.].

### Extension to J > 0

How is spin determined in a BSE?

Encoded in basis tensors for BSE amplitudes.

Example:

 $g_{\mu\nu}$  and  $p_{\mu}p_{\nu}$  correspond to an amplitude with two gluon legs and spin 0, P = 1.

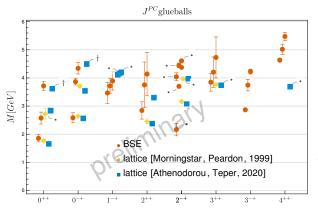
For higher *J*, construct most general (J + 2)-dimensional tensor basis and apply spin projector.  $\rightarrow$  Traceless, symmetric, transverse in spin indices.

ightarrow At most 4/5 tensors for  $P=\pm 1$  [MQH, Sanchis-Alepuz, Fischer, in prep.].

Repeat calculations...

Glueball masses

#### **Glueball masses**



Lattice:

\*: identification with some uncertainty

<sup>†</sup>: conjecture based on irred. rep of octahedral group

[MQH, Fischer, Sanchis-Alepuz, in preparation]

## Linear covariant gauges

• The Landau gauge is the endpoint ( $\xi = 0$ ) of linear covariant gauges.

• 
$$\mathcal{L}_{gf} = \frac{1}{2\xi} (\partial \cdot A)^2 - \overline{c} M c$$
  
• Gluon propagator:  $D(p^2) = \left(g_{\mu\nu} - \frac{p_{\mu}p_{\nu}}{p^2}\right) \frac{Z(p^2)}{p^2} + \xi \frac{p_{\mu}p_{\nu}}{p^4}$ 

## **Nielsen identities**

- Describe gauge parameter dependence of correlation functions by a differential equation.
- Traditional use: Show gauge parameter independence of pole masses.

## Nielsen identities

- Describe gauge parameter dependence of correlation functions by a differential equation.
- Traditional use: Show gauge parameter independence of pole masses.
- Here: Solve them for the propagators

 $\partial_{\xi} Z(p^2;\xi) = K_Z(p^2;\xi) Z(p^2;\xi), \qquad \partial_{\xi} G(p^2;\xi) = K_G(p^2;\xi) G(p^2;\xi)$ 

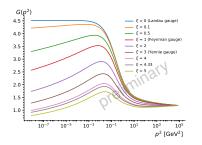
- Initial condition: Landau gauge ( $\xi = 0$ )
- K<sub>Z</sub>, K<sub>G</sub>: nonperturbative one-loop integrals



Correlation functions

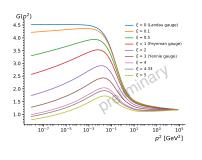
Linear covariant gauges

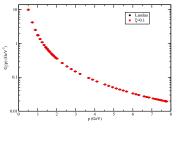
## Ghost propagator

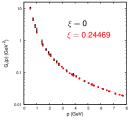


- Logarithmic IR suppression for ξ > 0
   [Aguilar, Binosi, Papavassiliou '15; MQH '15]
- Otherwise effects small for low  $\xi$ .

## Ghost propagator







#### [Napetschnig, Alkofer, MQH, Pawlowski, in prep.]

#### [Cucchieri et al. '18]

Markus Q. Huber

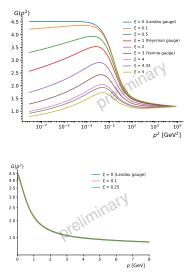
Giessen University

February 24, 2021

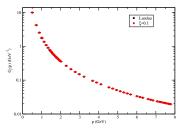
Correlation functions

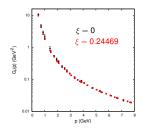
Linear covariant gauges

# Ghost propagator



[Napetschnig, Alkofer, MQH, Pawlowski, in prep.]





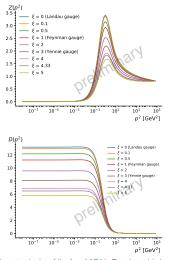
[Cucchieri et al. '18]

Giessen University

#### February 24, 2021

Linear covariant gauges

#### Gluon propagator



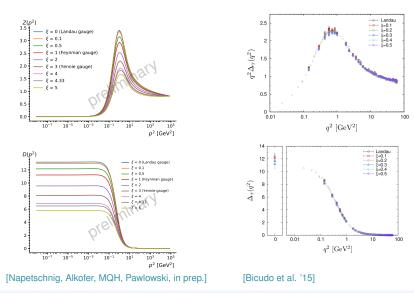
[Napetschnig, Alkofer, MQH, Pawlowski, in prep.]

[Bicudo et al. '15]

Markus Q. Huber

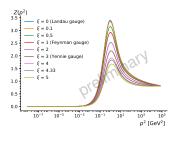
Giessen Universit

#### Gluon propagator



Giessen Universit

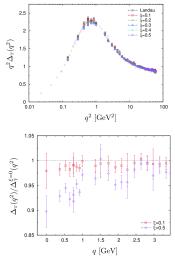
#### Gluon propagator





| $\xi = 0.1$ : | $\xi = 0.5$ : |
|---------------|---------------|
| 0 GeV: 0.98   | 0 GeV: 0.92   |
| 1 GeV: 0.98   | 1 GeV: 0.93   |
|               |               |

[Napetschnig, Alkofer, MQH, Pawlowski, in prep.]



[Bicudo et al. '15]

## Stability of solving Nielsen identities

Nontrivial check: UV behavior

## Stability of solving Nielsen identities

Nontrivial check: UV behavior

Exceptional values of  $\xi$  where 1-loop anomalous dimensions vanish

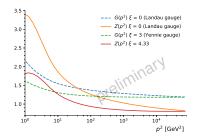
$$\begin{aligned} Z_{\text{UV}}(p^2) &= Z(s) \left(1 + \omega(s) \ln \frac{p^2}{s}\right)^{-\frac{13-3\xi}{22}} \\ G_{\text{UV}}(p^2) &= G(s) \left(1 + \omega(s) \ln \frac{p^2}{s}\right)^{-\frac{9-3\xi}{44}} \end{aligned}$$

## Stability of solving Nielsen identities

Nontrivial check: UV behavior

Exceptional values of  $\xi$  where 1-loop anomalous dimensions vanish

$$egin{split} Z_{ ext{UV}}(p^2) &= Z(s) \left(1+\omega(s)\lnrac{p^2}{s}
ight)^{-rac{13-3arepsilon}{22}} \ G_{ ext{UV}}(p^2) &= G(s) \left(1+\omega(s)\lnrac{p^2}{s}
ight)^{-rac{9-3arepsilon}{44}} \end{split}$$



[Napetschnig, Alkofer, MQH, Pawlowski, in prep.]

 $\rightarrow$  Exceptionally stable process.

Remaining uncertainties: vertices

Summary and outlook

### Summary

#### Parameter-free determination of glueball masses from functional methods.

Parameter-free determination of glueball masses from functional methods.

Functional equations:

• Quantitatively reliable correlation functions (Euclidean)

Parameter-free determination of glueball masses from functional methods.

- Quantitatively reliable correlation functions (Euclidean)
  - Comparison with lattice results

Parameter-free determination of glueball masses from functional methods.

- Quantitatively reliable correlation functions (Euclidean)
  - Comparison with lattice results
  - Concurrence of different functional methods

Parameter-free determination of glueball masses from functional methods.

- Quantitatively reliable correlation functions (Euclidean)
  - Comparison with lattice results
  - Concurrence of different functional methods
  - Connection to observables

Parameter-free determination of glueball masses from functional methods.

- Quantitatively reliable correlation functions (Euclidean)
  - Comparison with lattice results
  - Concurrence of different functional methods
  - Connection to observables
- Systematic improvements (now) possible

Parameter-free determination of glueball masses from functional methods.

- Quantitatively reliable correlation functions (Euclidean)
  - Comparison with lattice results
  - Concurrence of different functional methods
  - Connection to observables
- Systematic improvements (now) possible
- Direct access to analytic structure

Parameter-free determination of glueball masses from functional methods.

- Quantitatively reliable correlation functions (Euclidean)
  - Comparison with lattice results
  - Concurrence of different functional methods
  - Connection to observables
- Systematic improvements (now) possible
- Direct access to analytic structure
- Complementarity to lattice methods

Going beyond  $m = \infty$ ,  $p^2 > 0$ ,  $\mu = T = 0$ , and SU(N):

• Glueballs: Unquenching

- Glueballs: Unquenching
- Analytic structure: discard extrapolation procedure for glueballs; access to spectral functions; decays; real-time properties

- Glueballs: Unquenching
- Analytic structure: discard extrapolation procedure for glueballs; access to spectral functions; decays; real-time properties
- QCD phase diagram: From bottom-up to top-down approaches for

- Glueballs: Unquenching
- Analytic structure: discard extrapolation procedure for glueballs; access to spectral functions; decays; real-time properties
- QCD phase diagram: From bottom-up to top-down approaches for
  - fluctuations of conserved quantities

- Glueballs: Unquenching
- Analytic structure: discard extrapolation procedure for glueballs; access to spectral functions; decays; real-time properties
- QCD phase diagram: From bottom-up to top-down approaches for
  - fluctuations of conserved quantities
  - transport coefficients

- Glueballs: Unquenching
- Analytic structure: discard extrapolation procedure for glueballs; access to spectral functions; decays; real-time properties
- QCD phase diagram: From bottom-up to top-down approaches for
  - fluctuations of conserved quantities
  - transport coefficients
  - equation of state

- Glueballs: Unquenching
- Analytic structure: discard extrapolation procedure for glueballs; access to spectral functions; decays; real-time properties
- QCD phase diagram: From bottom-up to top-down approaches for
  - fluctuations of conserved quantities
  - transport coefficients
  - equation of state
- 'QCD technology' can be applied to other theories: From dark matter to composite Higgs models

- Glueballs: Unquenching
- Analytic structure: discard extrapolation procedure for glueballs; access to spectral functions; decays; real-time properties
- QCD phase diagram: From bottom-up to top-down approaches for
  - fluctuations of conserved quantities
  - transport coefficients
  - equation of state
- 'QCD technology' can be applied to other theories: From dark matter to composite Higgs models

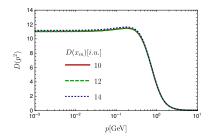
Going beyond  $m = \infty$ ,  $p^2 > 0$ ,  $\mu = T = 0$ , and SU(N):

- Glueballs: Unquenching
- Analytic structure: discard extrapolation procedure for glueballs; access to spectral functions; decays; real-time properties
- QCD phase diagram: From bottom-up to top-down approaches for
  - fluctuations of conserved quantities
  - transport coefficients
  - equation of state
- 'QCD technology' can be applied to other theories: From dark matter to composite Higgs models

Thank your for your attention.

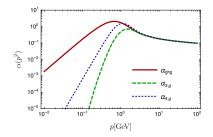
# Some properties of the Landau gauge solution

 Renormalization: First parameter-free subtraction of quadratic divergences



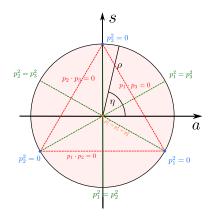
# Some properties of the Landau gauge solution

- Renormalization: First parameter-free subtraction of quadratic divergences
- Slavnov-Taylor identities (gauge invariance): Vertex couplings agree down to GeV regime



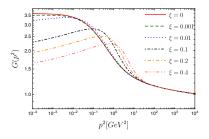
# Some properties of the Landau gauge solution

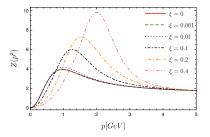
- Renormalization: First parameter-free subtraction of quadratic divergences
- Slavnov-Taylor identities (gauge invariance): Vertex couplings agree down to GeV regime
- Full momentum dependence of vertices:
   Parametrization via permutation group S<sub>3</sub> superior [Eichmann, Williams, Alkofer, Vujinovic '14]



#### DSEs in linear covariant gauges

#### DSE results from 2015 [MQH '15]:

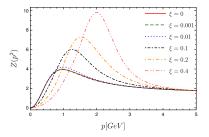




#### DSEs in linear covariant gauges

DSE results from 2015 [MQH '15]:

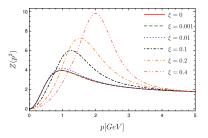
• Much stronger effects for  $\xi > 0$ 



#### DSEs in linear covariant gauges

DSE results from 2015 [MQH '15]:

- Much stronger effects for  $\xi > 0$
- Unnatural effects: Nonperturbative features move too far to perturbative regime.



#### DSEs in linear covariant gauges

DSE results from 2015 [MQH '15]:

- Much stronger effects for ξ > 0
- Unnatural effects: Nonperturbative features move too far to perturbative regime.
- Simple one-loop truncation which is known to be insufficient for ξ = 0, so not unexpected.

