
From correlation functions to bound states:
A gauge-dependent way to observables
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Introduction Gauge theories

Gauge theories

Gauge theory: Lagrangian with gauge fields (+matter fields)

→ Defines propagators and vertices of elementary fields.

Use propagators and vertices:
Expansion in coupling: Perturbative
methods work well if coupling small
(despite being a divergent series).
Nonperturbative calculation with one
of various functional methods

Calculations with propagators
and vertices require fixing of the
gauge to remove physically
equivalent configurations.

Gauge dependence must
cancel for observables.

Alternative: Numerical evaluation of the path integral→ lattice methods
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Introduction QCD

Quantum chromodynamics

Many facets to study:
Hadron masses: Origin? (Symmetry) patterns? Numbers?
Searches for new physics in high- and low-energy regimes

e.g., background at hadron colliders, anomalous magnetic moment of muon
Dense system: neutron stars→ astrophysics
Hot system: evolution of the universe→ cosmology
. . .

Quarks and gluons

u

ud u

d d

Meson, baryons, tetraquarks, pentaquarks, hybrids, glueballs
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Introduction QCD

Yang-Mills theory

Quark models: Descriptive picture of bound states
Effective theories can capture the relevant degrees of freedom, e.g.,
chiral perturbation theory, quark-meson model. Underlying dynamics is
absorbed in effective parameters.

So why consider gluons alone (Yang-Mills theory)?
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So why consider gluons alone (Yang-Mills theory)?

Gluons a challenge (IR behavior) for functional methods.
Warning: Adding quarks not trivial after all.

Important for dynamics, e.g., dynamical chiral symmetry breaking
strongly dependent on gauge sector (if calculated and not modeled).
Glueballs.
Template for other gauge theories.
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Introduction QCD

Hadrons

Hadron masses from correlation functions of color singlet operators.

Example: For JPC = 0++ glueball take O(x) = Fµν(x)Fµν(x):

D(x − y) = 〈O(x)O(y)〉

→ Lattice: Mass from this correlator by exponential Euclidean time decay.

A4-part of D(x − y), total momentum on-shell:

P 2 → −M 2

Markus Q. Huber Giessen University February 24, 2021 5/31



Introduction QCD

Hadrons

Hadron masses from correlation functions of color singlet operators.

Example: For JPC = 0++ glueball take O(x) = Fµν(x)Fµν(x):

D(x − y) = 〈O(x)O(y)〉

→ Lattice: Mass from this correlator by exponential Euclidean time decay.

A4-part of D(x − y), total momentum on-shell:

P 2 → −M 2

Markus Q. Huber Giessen University February 24, 2021 5/31



Introduction QCD

Hadrons

Hadron masses from correlation functions of color singlet operators.

Example: For JPC = 0++ glueball take O(x) = Fµν(x)Fµν(x):

D(x − y) = 〈O(x)O(y)〉

→ Lattice: Mass from this correlator by exponential Euclidean time decay.

A4-part of D(x − y), total momentum on-shell:

P 2 → −M 2

Markus Q. Huber Giessen University February 24, 2021 5/31



Introduction QCD

Hadrons

A4-part of D(x − y), total momentum
on-shell:

For bound state equations, consider
general four-point function:
→ Bethe-Salpeter wave functions

P 2 → −M 2
P 2 → −M 2

Four-point functions is gauge dependent

The pole is gauge invariant!

→ ’2-gluon’-component sufficient to calculate mass.

Glueball bound state equation (BSE) analogous to mesons?

Need and , solve for . → Mass
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Correlation functions Functional equations

Calculation of correlation functions

Various functional methods
Dyson-Schwinger equations
Equations of motion for an nPI effective action
Functional renormalization group
Nielsen identities
Bound state equations

Work with fully dressed
quantities
Infinite sets of equations
Process of making them
finite: Truncation

Large scale separations
Fermions technically ’straightforward’
Kinematic dependences can be resolved
Higher correlation functions accessible
(Time-like momenta accessible)
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Correlation functions Functional equations

Truncations

Neglecting/Modeling some part

Guidance from analysis of asymptotic behavior (UV, IR).
Systematic tests possible by extending a truncation.

Even truncated equations can, e.g.,
elucidate chiral symmetry breaking (dynamical mass creation)
give hints on the internal structure (tetraquarks)
identify dominant contributions.

Improving truncations

Iterative procedure: Define one, test it, learn from it, find a better one
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Correlation functions Landau gauge

Equations of motion from 3-loop 3PI effective action
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Gluon and ghost fields: Elementary fields of Yang-Mills theory in the Landau gauge

Self-contained system of equations with the scale as the only input.

Truncation?

→ 3-loop expansion of 3PI effective action

4 coupled integral equations with full kinematic dependence.
Sufficient numerical accuracy required for renormalization.
One- and two-loop diagrams [Meyers, Swanson ’14; MQH ’17].
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Correlation functions Landau gauge

Technical tools
DoFun [Alkofer, MQH, Schwenzer ’08; MQH, Braun ’11; MQH, Cyrol, Pawlowski ’19]

Collection of Mathematica packages for
Deriving functional equations: Dyson-Schwinger eqs., flow eqs.,
correlation functions for composite operators
Automatization of Feynman rules
https://github.com/markusqh/DoFun

CrasyDSE [MQH, Mitter ’11]

C++ framework for
Interpolation
Integration
Kernel code creation from Mathematica

Other tools
FORM (code optimization for higher correlation functions) [Ruijl, Ueda, Vermaseren ’17]

Self-made Mathematica packages for color and Lorentz algebra
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Correlation functions Landau gauge

Landau gauge propagators

Gluon dressing function:
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Family of solutions:
Nonperturbative completions of
Landau gauge [Maas ’10]

Realized by condition on G(0)
[Fischer, Maas, Pawlowski ’08; Alkofer, Huber,

Schwenzer ’08]

Ghost dressing function:
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[Sternbeck ’06; MQH ’20]
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Correlation functions Landau gauge

Landau gauge vertices

Ghost-gluon vertex:
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Three-gluon vertex:
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DSE

Sternbeck et al., 2017

Cucchieri et al., 2008

[Maas ’19; MQH ’20] [Cucchieri, Maas, Mendes ’08; Sternbeck et al. ’17; MQH ’20]

Nontrivial kinematic dependence
of ghost-gluon vertex
Simple kinematic dependence of
three-gluon vertex
Four-gluon vertex from solution

Four-gluon vertex:
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[MQH ’20]
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Correlation functions Landau gauge

Concurrence of functional methods

Exemplified with three-gluon vertex.

3PI vs. 2-loop DSE:

3-loop 3PI EOM

3-loop 3PI EOM (SP)

2-loop DSE (SP)
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[Cucchieri, Maas, Mendes ’08; Sternbeck et al. ’17;
MQH ’20]

DSE vs. FRG:
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DSE scaling

DSE decoupling

FRG scaling

FRG decoupling

Lattice

[Cucchieri, Maas, Mendes ’08; Sternbeck et al. ’17;
Cyrol et al. ’16; MQH ’20]

Beyond this truncation

Further dressings of three-gluon vertex [Eichmann, Williams, Alkofer, Vujinovic ’14]

Effects of four-point functions [MQH ’16, MQH ’17, MQH ’18]
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Glueballs Glueball equations

Glueballs as bound states

Need and , solve for . → Mass

Gluons couple to ghosts→ Include ’ghostball’-part.

Construction of kernel
3-loop expansion of 3PI effective action [Fukuda ’87; McKay, Munczek ’89; Sanchis-Alepuz,

Williams ’15; MQH, Fischer, Sanchis-Alepuz ’20]

Some diagrams vanish for certain quantum numbers.
Full QCD: Same for quarks → Mixing with mesons.
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Glueballs Glueball equations

Solving a BSE

=

Γ(p, P )
Γ(k, P )

S(k+)

S(k−)

K(k, p, P )

Consider the eigenvalue problem (Γ is the BSE amplitude)

K · Γ(P) = λ(P) Γ(P).

λ(P2) = 1 is a solution to the BSE⇒ Glueball mass P2 = −M2

Calculation requires quantities for

k2
± = P2 + k2 ± 2

√
P2 k2 cos θ = −M2 + k2 ± 2 i M

√
k2 cos θ.

⇒ Complex momentum arguments.
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Glueballs Analytic structure of correlation functions

Landau gauge propagators in the complex plane

Propagators for complex momenta

Reconstruction from Euclidean results: mathematically ill-defined, bias
in solution
Direct calculation from functional methods possible

Special techniques necessary: Respect analyticity [Fischer, MQH ’20]

Simpler truncation: −1

=
−1 −1

2 +
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Glueballs Analytic structure of correlation functions

Landau gauge propagators in the complex plane

Appearance of branch cuts for complex momenta forbids integration directly
to cutoff.

Deformation of integration contour necessary [Maris ’95]. Recent resurgence:
[Alkofer et al. ’04; Windisch, MQH, Alkofer, ’13; Williams ’19; Miramontes, Sanchis-Alepuz ’19; Eichmann et

al. ’19], . . .

Ray technique for self-consistent solution of a DSE: [Strauss, Fischer, Kellermann;

Fischer, MQH ’20].
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Glueballs Analytic structure of correlation functions

Landau gauge propagators in the complex plane

Method works,
but current truncation leads to a pole-like structure in the gluon
propagator.
Analyticity up to ’pole’ confirmed by various tests (Cauchy-Riemann,
Schlessinger, reconstruction)

Warning: No proof of existence of complex conjugate poles.
[Fischer, MQH ’20]
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Glueballs Glueball masses

Input for glueballs

Low quality results in complex
plane

vs. Quantitative results for real
momenta

2 4 6 8 10

0
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2

3

4

⇒ Solve eigenvalue problem for P2 > 0 and extrapolate λ(P2) to glueball
mass.
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Glueballs Glueball masses

Extrapolation of λ(P2)

Extrapolation method

Extrapolation to time-like P2 using Schlessinger’s continued fraction
method (proven superior to default Padé approximants) [Schlessinger ’68]

Average over extrapolations using subsets of points for error estimate

Test extrapolation for solvable system: Heavy meson
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[MQH, Sanchis-Alepuz, Fischer ’20]
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Average over extrapolations using subsets of points for error estimate

Test extrapolation for solvable system: Heavy meson
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Glueballs Glueball masses

Extrapolation of λ(P2) for glueballs

Higher eigenvalues: Excited states.
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Glueballs Glueball masses

Glueballs with J = 0±+

BSE

lattice [Morningstar, Peardon, 1999]

lattice [Athenodorou, Teper, 2020]

0

1
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3

4

Spin-0 glueballs

Lattice 0
∗∗++:

Conjectured based on
irred. rep. of octahedral
group

All results for r0 = 1/418(5)MeV. [MQH, Fischer, Sanchis-Alepuz ’20]
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Glueballs Glueball masses

Extension to J > 0

How is spin determined in a BSE?

Encoded in basis tensors for BSE amplitudes.

Example:
gµν and pµpν correspond to an amplitude with two gluon legs and spin 0,
P = 1.

For higher J, construct most general (J + 2)-dimensional tensor basis and
apply spin projector. → Traceless, symmetric, transverse in spin indices.

→ At most 4/5 tensors for P = ±1 [MQH, Sanchis-Alepuz, Fischer, in prep.].

Repeat calculations...
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Glueballs Glueball masses

Glueball masses

**

**

*
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BSE

lattice [Morningstar , Peardon, 1999]

lattice [Athenodorou , Teper, 2020]
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Lattice:
*: identification with some
uncertainty
†: conjecture based on
irred. rep of octahedral
group

[MQH, Fischer, Sanchis-Alepuz, in preparation]
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Correlation functions Linear covariant gauges

Linear covariant gauges

The Landau gauge is the endpoint (ξ = 0) of linear covariant gauges.

Lgf =
1
2ξ

(∂ · A)2 − c M c

Gluon propagator: D(p2) =

(
gµν −

pµpν

p2

)
Z (p2)

p2 + ξ
pµpν

p4
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Correlation functions Linear covariant gauges

Nielsen identities

Describe gauge parameter dependence of correlation functions by a
differential equation.
Traditional use: Show gauge parameter independence of pole masses.

Here: Solve them for the propagators

∂ξZ (p2; ξ) = KZ (p2; ξ)Z (p2; ξ), ∂ξG(p2; ξ) = KG(p2; ξ)G(p2; ξ)

Initial condition: Landau gauge (ξ = 0)
KZ , KG: nonperturbative one-loop integrals

=

χ

+

χ χ

+... =

χ

c∗

+...

c∗

χ χ χ

+=

A∗ A∗

χ

+...

A∗
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Correlation functions Linear covariant gauges

Ghost propagator

10−7 10−5 10−3 10−1 101 103 105

p2 [GeV2]

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5
G(p2)

ξ = 0 (Landau gauge)
ξ = 0.1
ξ = 0.5
ξ = 1 (Feynman gauge)
ξ = 2
ξ = 3 (Yennie gauge)
ξ = 4
ξ = 4.33
ξ = 5

prelim
inary

Logarithmic IR suppression for ξ > 0
[Aguilar, Binosi, Papavassiliou ’15; MQH ’15]

Otherwise effects small for low ξ.
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Correlation functions Linear covariant gauges

Ghost propagator
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Correlation functions Linear covariant gauges

Gluon propagator
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[Napetschnig, Alkofer, MQH, Pawlowski, in prep.] [Bicudo et al. ’15]
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Ratios from Nielsen identities:

ξ = 0.1:

0 GeV: 0.98

1 GeV: 0.98

ξ = 0.5:

0 GeV: 0.92

1 GeV: 0.93

[Napetschnig, Alkofer, MQH, Pawlowski, in prep.] [Bicudo et al. ’15]
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Correlation functions Linear covariant gauges

Stability of solving Nielsen identities

Nontrivial check: UV behavior

Exceptional values of ξ where 1-loop
anomalous dimensions vanish

ZUV(p2) = Z (s)
(

1 + ω(s) ln
p2

s

)− 13−3ξ
22

GUV(p2) = G(s)
(

1 + ω(s) ln
p2

s

)− 9−3ξ
44
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[Napetschnig, Alkofer, MQH, Pawlowski, in prep.]

→ Exceptionally stable process.

Remaining uncertainties: vertices
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Summary and outlook

Summary

Parameter-free determination of glueball masses from functional methods.

Functional equations:

Quantitatively reliable correlation functions (Euclidean)

I Comparison with lattice results
I Concurrence of different functional methods
I Connection to observables

Systematic improvements (now) possible
Direct access to analytic structure
Complementarity to lattice methods
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Summary and outlook

Outlook

Going beyond m =∞, p2 > 0, µ = T = 0, and SU(N):

Glueballs: Unquenching
Analytic structure: discard extrapolation procedure for glueballs; access
to spectral functions; decays; real-time properties
QCD phase diagram: From bottom-up to top-down approaches for

I fluctuations of conserved quantities
I transport coefficients
I equation of state

’QCD technology’ can be applied to other theories: From dark matter to
composite Higgs models

Thank your for your attention.
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Summary and outlook

Some properties of the Landau gauge solution

Renormalization: First
parameter-free subtraction of
quadratic divergences

Slavnov-Taylor identities (gauge
invariance): Vertex couplings
agree down to GeV regime

Full momentum dependence of
vertices:
Parametrization via permutation
group S3 superior [Eichmann, Williams,

Alkofer, Vujinovic ’14]
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Alkofer, Vujinovic ’14]
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DSEs in linear covariant gauges

DSE results from 2015 [MQH ’15]:
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DSE results from 2015 [MQH ’15]:

Much stronger effects for ξ > 0

Unnatural effects: Nonperturbative
features move too far to perturbative
regime.

Simple one-loop truncation which is
known to be insufficient for ξ = 0, so
not unexpected.
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