Infrared analysis of Yang-Mills theory in the maximally Abelian gauge and the Landau gauge

Markus Q. Huber

in collaboration with: Reinhard Alkofer, Kai Schwenzer, Silvio P. Sorella

Institute of Physics, Karl-Franzens-University Graz

Mar. 10, 2010

Non-Perturbative Methods in Quantum Field Theory, Hévíz

Contents of the talk

- Infrared of Yang-Mills theory: What can we learn from it?
- Maximally Abelian gauge: Why do we need this complicated gauge, anyway? And what is its infrared behavior?
- Landau gauge: Does (partly) solving the Gribov problem change the infrared behavior?
- Non-perturbative tool: Dyson-Schwinger equations; is there an easy way to derive them?

Confinement of quarks and gluons

- One expects that the property of being confined is encoded in the particles' propagators.

Confinement of quarks and gluons

- Confinement is a long-range
 ← IR phenomenon: We do not see individual
 ~ infinitely separated quarks or gluons.
 What's the mechanism behind it?
- One expects that the property of being confined is encoded in the particles' propagators.
- Different confinement criteria for the propagators:
 - Positivity violations: negative norm contributions → not a particle of the physical state space
 - Kugo-Ojima: quartet mechanism, e. g. Gupta-Bleuler formalism in QED: time-like and longitudinal photon cancel each other.
 - Gribov-Zwanziger (Landau gauge, Coulomb gauge): IR suppression of the gluon propagator due to Gribov horizon \to no long-distance propagation.
 - Already manifest at perturbative level with Gribov-Zwanziger Lagrangian!

KO and GZ in Landau gauge Yang-Mills theory:

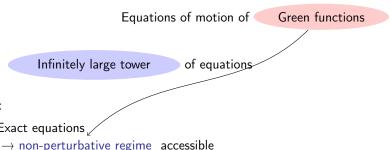
$$p^2 \rightarrow 0$$
: $D_{gluon} \rightarrow 0$, $p^2 D_{ghost} \rightarrow \infty$

Equations of motion of

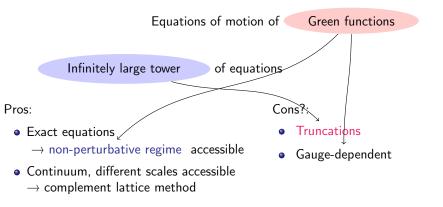
Green functions

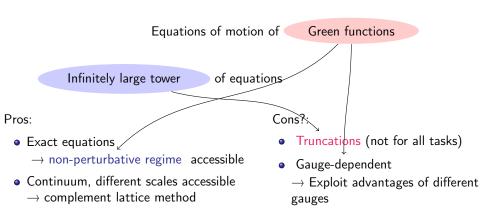
Infinitely large tower

of equations



- Pros:
 - Exact equations
 - Continuum, different scales accessible
 - → complement lattice method





Scaling solution [Alkofer, Fischer, Gies, Maas, Pawlowski, von Smekal, ...]

- Qualitative IR solution of ALL correlation functions is known.
- IR vanishing gluon (→ gluon confinement) and IR enhanced ghost propagator (→ long-range force to confine quarks).

Decoupling solution

- Gluon massive, ghost tree-level like.
- Seen in most lattice calculations [Bogolubsky, Bornyakov, Cucchieri, Ilgenfritz, Maas, Mendes, Müller-Preussker, Pawlowski, Spielmann, Sternbeck, von Smekal, ...], in the refined Gribov-Zwanziger scenario [Dudal et al.] and in DSEs/FRGEs [Boucaud et al., Aguilar et al., Fischer et al.]
- Different renormalization of the ghost propagator
 ⇔ boundary condition for DSEs [Fischer et al., Ann. Phys. 324; Maas, 0907.5185]

Both: Gluon propagator violates positivity, confining Polyakov loop potential [Braun, Gies, Pawlowski, PLB684].

Hypothesis of Abelian dominance

Dual superconductor picture of confinement [Mandelstam, 't Hooft]

- Picture a conventional superconductor, where the electric charges condense and force the magnetic flux into vortices.
- Change "electric" and "magnetic" components and you get a dual superconductor, where condensed magnetic monopoles squeeze the electric flux into flux tubes.
- QCD: No free chromoelectric charges. Are they confined by condensed magnetic monopoles?

 $\frac{\mbox{Hypothesis of Abelian dominance [Ezawa, Iwazaki, PRD 25 (1981)]:}}{\mbox{Magnetic monopoles live in Abelian part of the theory.}}$

→ Abelian part dominates in the IR?

Definition of the maximally Abelian gauge

Look for dominance of Abelian part. What is the Abelian part? Gauge field components:

$$A_{\mu} = \textbf{A}_{\mu}^{\textbf{i}} \, \textbf{T}^{\textbf{i}} + \textbf{B}_{\mu}^{\textbf{a}} \, \textbf{T}^{\textbf{a}}, \quad \textbf{i} = 1, \dots, N-1, \quad \textbf{a} = N, \dots, N^2-1$$

Abelian subalgebra: $[T^i, T^j] = 0$, can be written as diagonal matrices

Abelian \leftrightarrow diagonal fields A, non-Abelian \leftrightarrow off-diagonal fields B.

E. g.
$$T^1 = \frac{1}{2}\lambda^3$$
, $T^2 = \frac{1}{2}\lambda^8$ for $SU(3)$.

Definition of the maximally Abelian gauge

Look for dominance of Abelian part. What is the Abelian part? Gauge field components:

$$A_{\mu} = A_{\mu}^{i} T^{i} + B_{\mu}^{a} T^{a}, \quad i = 1, ..., N-1, \quad a = N, ..., N^{2} - 1$$

Abelian subalgebra: $[T^i, T^j] = 0$, can be written as diagonal matrices

Abelian \leftrightarrow diagonal fields A, non-Abelian \leftrightarrow off-diagonal fields B.

E. g.
$$T^1 = \frac{1}{2}\lambda^3$$
, $T^2 = \frac{1}{2}\lambda^8$ for $SU(3)$.

Which interactions are possible ($[T^r, T^s] = i f^{rst} T^t$)?

	<i>SU</i> (2)	SU(N > 2)
f ^{ijk}	0	0
f ^{ija}	0	0
fiab	✓	✓
fabc	0	√

 \Rightarrow 2 off-diagonal and 1 diagonal field can interact; 3 off-diagonal fields can only interact in SU(N > 2)

 $\rightarrow SU(2)$ and SU(3) different .

Gauge fixing condition

Stress role of diagonal fields \Rightarrow minimize norm of off-diagonal field B:

$$||B_U|| = \int dx \, B_U^a B_U^a o \text{minimize wrt. gauge transformations } U$$

$$D_{\mu}^{ab} B_{\mu}^{b} = (\delta_{ab} \partial_{\mu} - g f^{abi} A_{\mu}^{i}) B_{\mu}^{b} = 0 \qquad \text{non-linear gauge fixing condition!}$$

Gauge fixing condition

Stress role of diagonal fields \Rightarrow minimize norm of off-diagonal field B:

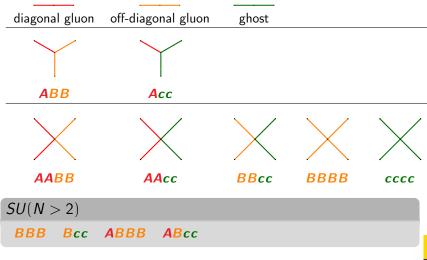
$$||B_U|| = \int dx \, B_U^a B_U^a \to \text{minimize wrt. gauge transformations } U$$

$$D_{\mu}^{ab} B_{\mu}^{b} = (\delta_{ab} \partial_{\mu} - g f^{abi} A_{\mu}^{i}) B_{\mu}^{b} = 0$$
 non-linear gauge fixing condition!

Remaining symmetry of diagonal part: $U(1)^{N-1}$

Fix gauge of diag. gluon field A by Landau gauge condition: $\partial_{\mu}\textbf{A}_{\mu}=0$ \Rightarrow diagonal ghosts decouple (like in QED).

Lagrangian for the MAG



Deriving Dyson-Schwinger equations

Integral of a total derivative vanishes:

$$\int [D\varphi] \frac{\delta}{\delta \varphi} e^{-S+J \cdot \Phi} = \int [D\varphi] \left(J - \frac{\delta S}{\delta \varphi} \right) e^{-S+J \cdot \Phi} = 0.$$

 \Rightarrow DSEs for all Green functions (full, connected, 1PI) by further differentiations.

Doing it by hand?

Deriving Dyson-Schwinger equations

Integral of a total derivative vanishes:

$$\int [D\varphi] \frac{\delta}{\delta \varphi} e^{-S+J \cdot \Phi} = \int [D\varphi] \left(J - \frac{\delta S}{\delta \varphi} \right) e^{-S+J \cdot \Phi} = 0.$$

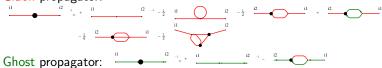
⇒ DSEs for all Green functions (full, connected, 1PI) by further differentiations.

Doing it by hand?

Example: Landau gauge, only 2 propagators (AA, cc), 3 interactions (Acc. AAA, AAAA)

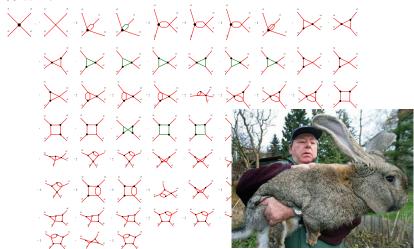
Landau Gauge: Propagators

Gluon propagator:



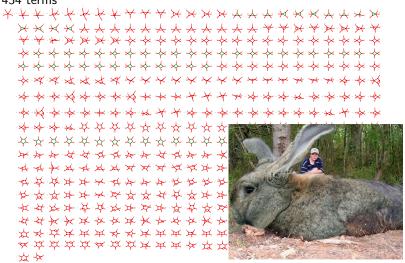
Landau Gauge: Four-Gluon Vertex

66 terms



Landau Gauge: Five-Gluon Vertex

434 terms



DoDSE

$\Rightarrow DoDSE$ [Alkofer, M.Q.H., Schwenzer, CPC 180 (2009)]

Given a structure of interactions, the DSEs are derived symbolically using *Mathematica*.

Example (Landau gauge):

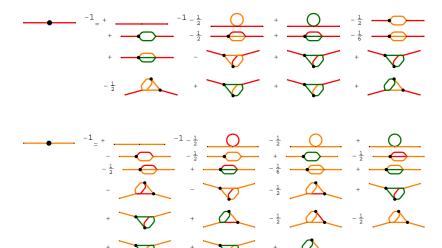
- only input: interactions in Lagrangian (AA, AAA, AAAA, cc, Acc)
- Which DSE do I want?
- Step-by-step calculations possible.
- Can handle mixed propagators (then there are really many diagrams;
 e. g. in Gribov-Zwanziger action).

Upgrade: Symb2Alg

Provide Feynman rules and get complete algebraic expressions.

 \rightarrow E. g. calculate color algebra with *FORM* and integrals with *C*.

DSEs of the MAG



Infrared power counting

Generic propagator

$$T_{(ij)} \cdot \frac{D(p^2)}{p^2},$$

assume power law behavior at low p^2

$$D^{IR}(p^2) = A \cdot (p^2)^{\delta}$$

- Vertices also assume power law behavior [Alkofer, Fischer, Llanes-Estrada, PLB 611 (2005) (skeleton expansion)].
- Limit of all momenta approaching zero simultaneously.
- Upon integration all momenta converted into powers of external momenta. ⇒ Counting of IR exponents

IR exponent

System of inequalities

- IR exponent for every diagram
- Ihs is dominated by at least one diagram on rhs and rhs cannot be more divergent than Ihs. $\rightarrow \delta_{\textit{Ihs}} \leq \delta_{\textit{rhs},\textit{any diagram}}$.
- Not knowing which diagram is leading on the rhs, we can write inequalities from all diagrams.

$$-\frac{1}{2} + \frac{1}{2} + \frac{$$

$$-\delta_{gl} \le 2\delta_{gl} + \delta_{3g}, \qquad -\delta_{gl} \le 2\delta_{gh} + \delta_{gg}, \qquad \dots$$

That's the basic idea.

Still, for a large system a lot of work.

System of inequalities

- IR exponent for every diagram
- Ihs is dominated by at least one diagram on rhs and rhs cannot be more divergent than Ihs. $\rightarrow \delta_{\textit{Ihs}} \leq \delta_{\textit{rhs},\textit{any diagram}}$.
- Not knowing which diagram is leading on the rhs, we can write inequalities from all diagrams.

$$-\delta_{gl} \le 2\delta_{gl} + \delta_{3g}, \qquad -\delta_{gl} \le 2\delta_{gh} + \delta_{gg}, \qquad \dots$$

That's the basic idea.

Still, for a large system a lot of work.

All inequalities relevant?

Relevant inequalities

A closed form for all relevant inequalities can be derived from DSEs and FRGEs [Huber, Schwenzer, Alkofer, 0904.1873].

type		derived from	#
dressed vertices	$C_1 := \delta_{vertex} + \frac{1}{2} \sum_{j=1}^{n} \delta_j \geq 0$	FRGEs	infinite
	legs <i>j</i> of vertex		
prim. div. vertices	$\mathcal{C}_2 \coloneqq rac{1}{2} \sum \delta_j \geq 0$	DSEs+FRGEs	finite
	legs j of prim. div. vertex		

Some inequalities are contained within others.

E. g. in MAG: $\delta_B \geq 0$ and $\delta_c \geq 0$ render $\delta_B + \delta_c \geq 0$ useless.

Scaling relations

General analysis of propagator DSEs

[M.Q.H., Schwenzer, Alkofer, arXiv:0804.1873]

- At least one inequality from a prim. divergent vertex has to be saturated, i. e. $C_2^i = 0$ for at least one i.
- Necessary condition for a scaling solution.
- Related to bare vertices in DSEs: Fischer-Pawlowski consistency condition DSEs

 FRGEs [Fischer, Pawlowski, PRD 75 (2007)].
- ⇒ One primitively divergent vertex is not IR enhanced.

The non-enhancement of at least one primitively divergent vertex is now established for all scaling type solutions.

How to obtain a scaling relation: MAG

Many interactions \Rightarrow many inequalities, but some of them are contained within others \Rightarrow reduces number of possibilities.

- Look at all inequalities for primitively divergent vertices, i. e. at C_2^i .
- **2** Try all possibilities of $C_2^i = 0$.
- Ohoose the non-trivial solutions.

How to obtain a scaling relation: MAG

Many interactions \Rightarrow many inequalities, but some of them are contained within others \Rightarrow reduces number of possibilities.

- **Q** Look at all inequalities for primitively divergent vertices, i. e. at C_2^i .
- ② Try all possibilities of $C_2^i = 0$.
- Choose the non-trivial solutions.

Application to the MAG:

$$\bullet \ \delta_B \geq 0, \ \delta_c \geq 0, \ \delta_A + \delta_B \geq 0, \ \delta_A + \delta_c \geq 0$$

b
$$\delta_c = 0$$

c
$$\delta_A + \delta_B = 0$$

$$d \quad \delta_A + \delta_c = 0$$

$$\delta_A = \delta_B = \delta_c = 0$$

b
$$\delta_A = \delta_B = \delta_c = 0$$

$$\delta_A + \delta_B = 0$$

d
$$\delta_A + \delta_c = 0$$

Scaling relation of the MAG: $\delta_B = \delta_c = -\delta_A = \kappa_{MAG} \ge 0$

IR scaling solution of the MAG

$$\delta_B = \delta_c = -\delta_A = \kappa_{MAG} \ge 0$$

- The Abelian fields are IR enhanced. → Realization of Abelian dominance?
- Off-diagonal fields are IR suppressed.
- SU(2) and SU(N > 2) have the same solution.
- Qualitative solutions for tower of all Green functions.

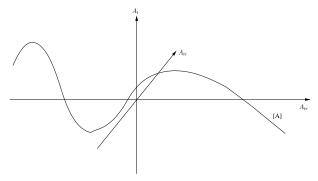
Relation Landau gauge & MAG

Landau gauge	maximally Abelian gauge
ghost dominance	Abelian (gluon) dominance
Gribov region bounded	Gribov region unbounded in diagonal direction
	[Capri et al., PRD79]

Greensite, Olejnik, Zwanziger, PRD78:

Abelian configurations $\xrightarrow{\text{Landau gauge}}$ on Gribov horizon

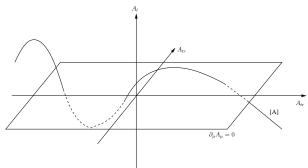
Gauge orbits and Gribov copies



Gauge equivalent configurations (gauge orbit [A]) \Rightarrow integration in path integral is overcomplete:

$$Z[J] = \int [D\phi]e^{-S+\phi J}$$

Gauge orbits and Gribov copies

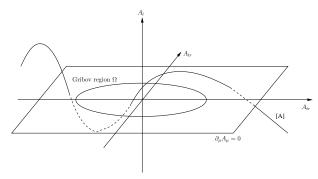


Faddeev and Popov: Restriction of integration to single representative of each gauge orbit possible? Gauge symmetry replaced by BRST symmetry!

——Faddeev-Popov operator

$$Z[J] = \int [D\phi] \delta(\partial_{\mu} \mathbf{A}_{\mu}) \det \mathbf{M} e^{-S + \phi J}$$

Gauge orbits and Gribov copies



Restriction to Gribov region Ω : almost unique gauge fixing.

$$\Omega := \{A; \ \partial_{\mu}A_{\mu} = 0, \ M > 0\}$$

Local renormalizable action

Non-local term can be localized with auxiliary fields $(\bar{\varphi}_{\mu}^{ab},\,\varphi_{\mu}^{ab},\,\bar{\omega}_{\mu}^{ab},\,\omega_{\mu}^{ab}) \to \text{local Gribov-Zwanziger action:}$

$$\mathcal{L}_{\textit{GZ}} = \mathcal{L}_{\textit{FP}} + \bar{\phi}_{\mu}^{\textit{ac}} \textit{M}^{\textit{ab}} \phi_{\mu}^{\textit{bc}} - \bar{\omega}_{\mu}^{\textit{ac}} \textit{M}^{\textit{ab}} \omega_{\mu}^{\textit{bc}} + \gamma^{2} \textbf{g} \, \textbf{f}^{\textit{abc}} \textbf{A}_{\mu}^{\textit{a}} (\phi_{\mu}^{\textit{bc}} - \bar{\phi}_{\mu}^{\textit{bc}})$$

• Mixing at the level of two-point functions, e. g. $\langle A_{\mu}^{a} \varphi_{\nu}^{bc} \rangle$. \Rightarrow (3x3)-matrix relation between propagators and two-point functions:

$$D^{\phi\phi} = (\Gamma^{\phi\phi})^{-1}, \qquad \phi \in \{A, \phi, \bar{\phi}\}$$

More fields . . .

Simplify to (2x2)-matrix relation by splitting into real and imaginary part [Zwanziger, 0904.2380]:

$$\varphi = \frac{1}{\sqrt{2}} (U + i V), \quad \bar{\varphi} = \frac{1}{\sqrt{2}} (U - i V).$$

$$\begin{split} \mathcal{L}_{GZ}^{\prime} &= \mathcal{L}_{U} + \mathcal{L}_{V} + \mathcal{L}_{UV} - \bar{\omega}_{\mu}^{ac} \mathit{M}^{ab} \omega_{\mu}^{bc}, \\ \mathcal{L}_{U} &= \frac{1}{2} \mathit{U}_{\mu}^{ac} \mathit{M}^{ab} \mathit{U}_{\mu}^{bc}, \\ \mathcal{L}_{V} &= \frac{1}{2} \mathit{V}_{\mu}^{ac} \mathit{M}^{ab} \mathit{V}_{\mu}^{bc} + \textit{i} \, \textit{g} \, \gamma^{2} \sqrt{2} \textit{f}^{abc} \textit{A}_{\mu}^{a} \textit{V}_{\mu}^{bc}, \\ \mathcal{L}_{UV} &= \frac{1}{2} \textit{i} \, \textit{g} \textit{f}^{abc} \mathit{U}_{\mu}^{ad} \mathit{V}_{\mu}^{bd} \partial_{\nu} \mathit{A}_{\nu}^{c} \overset{\mathit{LG}}{=} 0, \end{split}$$

Simplify even further:

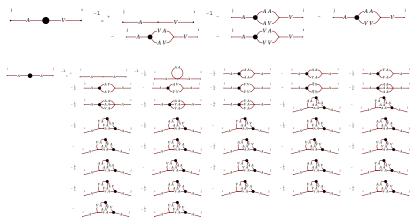
$$c. \bar{c}. U. \omega. \bar{\omega} \longrightarrow n. \bar{n}$$

DSEs of Gribov-Zwanziger action

Just to give an impression:

DSEs of Gribov-Zwanziger action

Just to give an impression:



Complete analysis of all diagrams!

Propagators and two-point functions

Mixing at two-point level:

$$D^{\Phi\Phi} = (\Gamma^{\Phi\Phi})^{-1}, \qquad \Phi \in \{A, V\}$$

 \Rightarrow Non-trivial relationship between propagators and two-point functions.

Example: VV-two-point function,

$$\Gamma^{VV,abcd}_{\mu\nu} = \delta^{ac}\delta^{bd}p^2 {\color{blue}c_{V}(p^2)}g_{\mu\nu}$$

dressing function $c_V(p^2) \xrightarrow{p^2 \to 0} d_V \cdot (p^2)^{\mathbf{K}_V}$ infrared exponent

Propagators and two-point functions

Mixing at two-point level:

$$D^{\Phi\Phi} = (\Gamma^{\Phi\Phi})^{-1}, \qquad \Phi \in \{A, V\}$$

⇒ Non-trivial relationship between propagators and two-point functions.

Example: VV-two-point function,

$$\Gamma^{\textit{VV},abcd}_{\mu\nu} = \delta^{\textit{ac}} \delta^{\textit{bd}} p^2 \textit{c}_{\textit{V}}(\textit{p}^2) \textit{g}_{\mu\nu}$$

dressing function $c_V(p^2) \xrightarrow{p^2 \to 0} d_V \cdot (p^2)^{K_V} \leftarrow$ infrared exponent

$$\begin{split} D_{\mu\nu}^{VV,abcd} &= \frac{1}{p^2} \frac{1}{c_V(p^2)} \delta^{ac} \delta^{bd} g_{\mu\nu} - \\ &- f^{abe} f^{cde} \frac{1}{p^2} P_{\mu\nu} \frac{2 c_{AV}^2(p^2)}{c_A^\perp(p^2) c_V^2(p^2) + 2 N \, c_{AV}^2(p^2) c_V(p^2)} \end{split}$$

The four possibilities

Which part of the determinant $c_{\Delta}^{\perp}(p^2)c_V(p^2) + 2N c_{\Delta V}^2(p^2)$ dominates in the IR?

$$c_{ij}(p^2) = d_{ij} \cdot (p^2)^{\kappa_{ij}}$$

I:
$$c_{AV}^2 > c_A c_V \leftrightarrow \kappa_A + \kappa_V > 2\kappa_{AV}$$

II:
$$c_A c_V > c_{AV}^2 \leftrightarrow 2\kappa_{AV} > \kappa_A + \kappa_V$$

III:
$$c_{AV}^2 \sim c_A c_V \leftrightarrow \kappa_A + \kappa_V = 2\kappa_{AV}$$
, no cancelations

IV:
$$c_{AV}^2 \sim c_A c_V \leftrightarrow \kappa_A + \kappa_V = 2\kappa_{AV}$$
, cancelations

Cancelations: Leading contributions cancel and some less dominant term takes over.

The four possibilities

Which part of the determinant $c_A^{\perp}(p^2)c_V(p^2) + 2N\,c_{AV}^2(p^2)$ dominates in the IR?

$$c_{ij}(p^2) = d_{ij} \cdot (p^2)^{\kappa_{ij}}$$

1: $c_{AV}^2 > c_A c_V \leftrightarrow \kappa_A + \kappa_V > 2\kappa_{AV}$

II:
$$c_A c_V > c_{AV}^2 \leftrightarrow 2\kappa_{AV} > \kappa_A + \kappa_V$$

III: $c_{AV}^2 \sim c_A c_V \leftrightarrow \kappa_A + \kappa_V = 2\kappa_{AV}$, no cancelations

IV: $c_{AV}^2 \sim c_A c_V \leftrightarrow \kappa_A + \kappa_V = 2\kappa_{AV}$, cancelations

Cancelations: Leading contributions cancel and some less dominant term takes over.

Two solutions lead to inconsistencies [M.Q.H., R. Alkofer, S. P. Sorella, PRD 81].

Result: Qualitative behavior of the solutions

[M.Q.H., Alkofer, Sorella, PRD 81]

Scaling relation between FP ghost and gluon unaltered:

$$\kappa_A + 2\kappa_c = 0$$
.

- Gluon propagator is IR suppressed.
- Propagators of ghost and auxiliary fields are IR enhanced.
- Mixed propagators are IR suppressed.
- IR exponents of all vertices are obtained.
- Input for numerical solution of the equations.

Summary: Derivation of scaling relations

[M.Q.H., Schwenzer, Alkofer, 0904.1873]

- Existence and form of scaling solutions can easily be obtained directly from the interactions.
- Based on Fischer-Pawlowski consistency condition: compare DSEs and FRGEs.

- Scaling solution may exist in the MAG:
 - Abelian gluon propagator is IR enhanced. → Support of hypothesis of Abelian dominance.
 - Complete numerical solution required. ← Input for asymptotic behavior
 - Two-loop terms are IR leading ↔ UV/IR preserving truncation?
 - Relation to chromomagnetic monopoles?

The end

Thank you very much for your attention.

IR Scaling solutions for other gauges

The analysis can be used also for other gauges. Beware: This corresponds to a naive application!

Linear covariant gauges	Ghost-antighost symmetric gauges
scaling solution only, if the longitudinal part of the gluon propagator gets dressed, but gauge fixing condition ⇒ longitudinal part bare	$\begin{array}{l} \text{quartic ghost interaction} \rightarrow \delta_{gh} \geq 0 \\ \rightarrow \text{ with non-negative IREs only the} \\ \text{trivial solution can be realized} \end{array}$

This is valid for all possible dressings and agrees with the results from [Alkofer, Fischer, Reinhardt, v. Smekal, PRD 68 (2003)], where only certain dressings were considered.

- Fither the existence of a scaling solution is something special (?) or
- in these cases.