d=3 YM

QCD

Summary and conclusions

From three-dimensional Yang-Mills theory to QCD

University of Graz, Institute of Physics

Quantum seminar, TPI Friedrich-Schiller-Universität Jena June 9, 2016

Der Wissenschaftsfonds.

d=3 YM

QC

Summary and conclusions

Motivation: QCD phase diagram

 $\frac{1}{4}F^a_{\mu\nu}F^{a,\mu\nu}+\bar{q}(i\not\!\!D-M)q$

d=3 YM

QCD

Summary and conclusions

100	 	 ~	 0	
		-	-	

C

Summary and conclusions

Int	20	 	~		1	n
			-		-	

0

Summary and conclusions

l n	+	-		~	٠		
		~		-		-	

- Region $\mu > T$ unknown: (position) critical endpoint? phases?
- Challenges for all methods, e.g.
 - Lattice QCD: complex action problem
 - Models: parameters
 - Functional methods: reliability of truncations

Functional methods and the QCD phase diagram

Functional equations: Exact equations derived from QCD action.

$$\frac{1}{4}F^a_{\mu
u}F^{a,\mu
u}+ar{q}(iar{D}-M)q$$

Functional methods and the QCD phase diagram

Functional equations: Exact equations derived from QCD action.

Functional methods and the QCD phase diagram

Functional equations: Exact equations derived from QCD action.

Functional methods and the QCD phase diagram

Functional equations: Exact equations derived from QCD action.

Difficulty

Infinitely large systems of equations without obvious ordering scheme.

QCI

QCD phase diagram from functional equations

2+1 flavor QCD from DSEs

Positions of critical endpoint:

```
\sim (168 MeV, 115 MeV)
```

```
lattice gluon from T = 0, vertex model
```

QCD phase diagram from functional equations

Positions of critical endpoint:

 \sim (168 MeV, 115 MeV)

lattice gluon from T = 0, vertex model

 \sim (122 MeV, 126 MeV)

rainbow approximation

1	 0	~	 ~	٠	0	-
	9		-		-	

Input for DSEs:

- model for quark-gluon vertex (parameters fixed at $\mu = 0$)
- fits for gluon propagators at $\mu={\rm 0}$ from the lattice

1	 0	~	 ~	٠	0	-
	9		-		-	

Input for DSEs:

- model for quark-gluon vertex (parameters fixed at $\mu = 0$)
- fits for gluon propagators at $\mu={\rm 0}$ from the lattice

Possible improvements:

- fully dynamical propagators
- fully dynamical quark-gluon vertex

1	 0	~	 ~	٠	0	-
	9		-		-	

Input for DSEs:

- model for quark-gluon vertex (parameters fixed at $\mu = 0$)
- fits for gluon propagators at $\mu={\rm 0}$ from the lattice

Possible improvements:

- fully dynamical propagators \rightarrow require other vertices
- fully dynamical quark-gluon vertex \rightarrow requires propagators & other vertices

1	 0	~	 ~	٠	0	-
	9		-		-	

Input for DSEs:

- model for quark-gluon vertex (parameters fixed at $\mu = 0$)
- fits for gluon propagators at $\mu={\rm 0}$ from the lattice

Possible improvements:

- fully dynamical propagators \rightarrow require other vertices
- fully dynamical quark-gluon vertex \rightarrow requires propagators & other vertices

Ultimately, full control over Yang-Mills part required!

1 -	+	-		~	٠		
		~	 •	-		-	

Comparison: DSEs and flow equations

Dyson-Schwinger equations (DSEs)	Functional RG equations (FRGEs)
'integrated flow equations'	'differential DSEs'
effective action $\Gamma[\phi]$	effective average action $\Gamma^k[\phi]$
_	regulator
n-loop structure (n <i>const</i> .)	1-loop structure
exactly only bare vertex per diagram	no bare vertices
$\frac{\partial}{\partial b} \Gamma[\phi] = + + + + + + + + + + + + + + + + + + $	$k \frac{\partial}{\partial k} \Gamma^k[\phi] =$

- Both systems of equations are exact.
- Both contain infinitely many equations.

						٠	
-		-	-	-	 -		
					-		

QCI

Summary and conclusions

Landau gauge Yang-Mills theory

Gluonic sector of quantum chromodynamics: Yang-Mills theory

$$\begin{split} \mathcal{L} &= \frac{1}{2} F^2 + \mathcal{L}_{gf} + \mathcal{L}_{gh} \\ F_{\mu\nu} &= \partial_{\mu} \mathbf{A}_{\nu} - \partial_{\nu} \mathbf{A}_{\mu} + i \, g \left[\mathbf{A}_{\mu}, \mathbf{A}_{\nu} \right] \end{split}$$

Landau gauge

• simplest one for functional equations

•
$$\partial_{\mu} \boldsymbol{A}_{\mu} = 0$$
: $\mathcal{L}_{gf} = rac{1}{2\xi} (\partial_{\mu} \boldsymbol{A}_{\mu})^2$, $\xi o 0$

• requires ghost fields: $\mathcal{L}_{gh} = \bar{c} \left(-\Box + g \mathbf{A} \times \right) c$

QCI

The tower of DSEs

QCI

The tower of DSEs

Infinitely many equations. In QCD, every *n*-point function depends on (n + 1)-and possibly (n + 2)-point functions.

Markus Q. Huber

							٠		
In	tr	0	c	u	C	t	п	0	n

QC

Summary and conclusions

Truncating the equations

Guides

- Perturbation theory
- Symmetries
- Lattice
- Analytic results

							٠		
In	tr	0	c	u	C	t	п	0	n

QC

Summary and conclusions

Truncating the equations

Guides

- Perturbation theory
- Symmetries
- Lattice
- Analytic results

Truncation

- Drop quantities (unimportant?)
- Use fits
- Model quantities (good models available? 'true' or 'effective'?)

Ideally: Find a truncation that has (I) no parameters and yields (II) quantitative results.

Markus Q. Huber

Truncation of Yang-Mills system

Neglect all non-primitively divergent Green functions. \rightarrow Self-contained.

QCD

Truncation of Yang-Mills system

Neglect all non-primitively divergent Green functions. \rightarrow Self-contained.

Full propagator equations (two-loop diagrams!):

QCD

Truncation of Yang-Mills system

Neglect all non-primitively divergent Green functions. \rightarrow Self-contained.

Full propagator equations (two-loop diagrams!):

Truncated three-point functions:

Truncated four-gluon vertex:

 $\begin{array}{c} i & -1 \\ j & \swarrow & i \\ +3 \end{array} \xrightarrow{k} \left(\begin{array}{c} i \\ +3 \end{array} \right) \xrightarrow{k} \left(\begin{array}{c}$

QCD

Truncation of Yang-Mills system

Neglect all non-primitively divergent Green functions. \rightarrow Self-contained.

Full propagator equations (two-loop diagrams!):

Truncated three-point functions:

Truncated four-gluon vertex:

Technical questions: spurious divergences in gluon propagator, RG resummation

Automated derivation

Derivation by hand becomes tedious:

- Large Lagrangians.
- Higher Green functions.
- Larger truncations.
- Error-prone.

Automated derivation

Derivation by hand becomes tedious:

- Large Lagrangians.
- Higher Green functions.
- Larger truncations.
- Error-prone.

d=3 YM

QCD

Summary and conclusions

Automated derivation

Derivation by hand becomes tedious:

- Large Lagrangians.
- Higher Green functions.
- Larger truncations.
- Error-prone.

 $\left[2 \text{ g}^{2} \text{ Nc Z1 DAAA}\left[\text{y, qs}+\text{y}+2 \text{ sp}\left[\text{q, q1}\right], \frac{-\text{y}-\text{sp}\left[\text{q, q1}\right]}{\sqrt{\text{v}\left(\text{qs}+\text{y}+2 \text{ sp}\left[\text{q, q1}\right]\right)}}\right]\right]$ DAAA [x2+y+2sp[p,q], qs+x2-2sp[p,q]], $\frac{-x2-sp[p,q]+sp[p,q]+sp[q,q1]}{\sqrt{(x2+y+2sp[p,q])(qs+x2-2sp[p,q1])}} Dql[qs]Dql[qs+x2-2sp[p,q1]]Dql$ $sp[p, q]^{4} (sp[p, q1]^{2} sp[q, q1] (y + sp[q, q1]) + qs x2 (y (9 qs + 6 (x2 + y)) + (5 qs + 6 x2 + 10 y) sp[q, q1]) - sp[p, q1] (qs y (5 qs + 6 x2 + 10 y) sp[q, q1]) - sp[p, q1] (qs + 6 x2 + 10 y) sp[q, q1]) - sp[q, q1] (qs + 6 x2 + 10 y) sp[q, q1]) - sp[q, q1] (qs + 6 x2 + 10 y) sp[q, q1]) - sp[q, q1] (qs + 10 x) sp[q, q1] (qs + 10 x) sp[q, q1]) - sp[q, q1] (qs + 10 x) sp[q, q1] (qs + 10 x) sp[q, q1]) - sp[q, q1] (qs + 10 x) sp[q, q1]) - sp[q, q1] (qs + 10 x) sp[q, q1] (qs + 10 x) sp[q$ $sp[p, q]^{3}(2sp[p, q1]^{3}(qsy - sp[q, q1]^{2}) + sp[p, q1](qsy(10qs^{2} + (-5x2 - 3y)y + qs(19x2 + 3y)) + (3qs^{3} + 8qsx2y + 21qs^{2})) + (3qs^{3} + 8qsx2y + 21qs^{2})$ $gs x^{2} (y (-9 gs^{2} + 3 x2^{2} + 7 x2 y + 3 y^{2} + 2 gs (x2 + y)) + (-10 gs^{2} + gs (-3 x2 - 19 y) + x2 (3 x2 + 5 y)) sp [q, q1] + (-16 gs - 7 x2 - 11 gs^{2} + gs (-3 x2 - 19 y) + x2 (3 x2 + 5 y)) sp [q, q1] + (-16 gs - 7 x2 - 11 gs^{2} + gs (-3 x2 - 19 y) + x2 (-3 x2 - 19 x) +$ sp[p, q1]² (qs (-16 qs - 11 x2 - 7 y) y + (-5 qs² + qs (-9 x2 - 19 y) + 2 y (5 x2 + 3 y)) sp[q, q1] + (-5 qs + 12 (x2 + y)) sp[q, q1]² + sp[p, q]² (sp[p, q]⁴ sp[q, q1] (qs + sp[q, q1]) + sp[p, q1]³ (qs y (7 qs + 11 x2 + 16 y) + (-6 qs² + y (9 x2 + 5 y) + qs (-10 x2 + 19 y) $gs x2 (y (-3 gs^{3} - 10 gs^{2} (x2 + y) - 6 x2 y (x2 + y) + gs (-3 x2^{2} - 19 x2 y - 3 y^{2})) + (-6 gs^{3} + gs^{2} (-21 x2 - 32 y) + gs (-9 x2^{2} - 60 x2 y)) + (-6 gs^{3} + gs^{2} (-21 x2 - 32 y)) + (-6 gs^{3} + gs^{2} + 2 g$ (-15 gs² - 15 x2² + gs (-46 x2 - 41 y) - 41 x2 y - 12 y²) sp[g, g1]² + (-7 gs - 16 x2 - 11 y) sp[g, g1]³ + sp[p, g1]² (gs y (-15 gs² - 15 x2² + gs (-46 x2 - 41 y) - 41 x2 y - 12 y²) sp[g, g1]² + (-7 gs - 16 x2 - 11 y) sp[g, g1]³ + sp[p, g1]² (gs y (-15 gs² - 15 x2² + gs (-46 x2 - 41 y) - 41 x2 y - 12 y²) sp[g, g1]² + (-7 gs - 16 x2 - 11 y) sp[g, g1]³ + sp[p, g1]² (gs y (-15 gs² - 15 x2² + gs (-46 x2 - 41 y) - 41 x2 y - 12 y²) sp[g, g1]² + (-7 gs - 16 x2 - 11 y) sp[g, g1]³ + sp[p, g1]² (gs y (-15 gs² - 15 x2² + 15 x $(3 gs^3 + gs^2 (5 x2 - 39 y) + gs (-81 x2 - 39 y) + y^2 (5 x2 + 3 y)) sp[q, q1] + (12 qs^2 + 12 x2^2 + 3 x2 y + 12 y^2 + 3 qs (x2 + y)) sp[q, q1] + (12 qs^2 + 12 x2^2 + 3 x2 y + 12 y^2 + 3 qs (x2 + y)) sp[q, q1] + (12 qs^2 + 12 x2^2 + 3 x2 y + 12 y^2 + 3 qs (x2 + y)) sp[q, q1] + (12 qs^2 + 12 x2^2 + 3 x2 y + 12 y^2 + 3 qs (x2 + y)) sp[q, q1] + (12 qs^2 + 12 x2^2 + 3 x2 y + 12 y^2 + 3 qs (x2 + y)) sp[q, q1] + (12 qs^2 + 12 x2^2 + 3 x2 y + 12 y^2 + 3 qs (x2 + y)) sp[q, q1] + (12 qs^2 + 12 x2^2 + 3 x2 y + 12 y^2 + 3 qs (x2 + y)) sp[q, q1] + (12 qs^2 + 12 x2^2 + 3 x2 y + 12 y^2 + 3 qs (x2 + y)) sp[q, q1] + (12 qs^2 + 12 x2^2 + 3 x2 y + 12 y^2 + 3 qs (x2 + y)) sp[q, q1] + (12 qs^2 + 12 x2^2 + 3 x2 y + 12 y^2 + 3 qs (x2 + y)) sp[q, q1] + (12 qs^2 + 12 x2^2 + 3 x2 y + 12 y^2 + 3 qs (x2 + y)) sp[q, q1] + (12 qs^2 + 12 x2^2 + 3 x2 y + 12 y^2 + 3 qs (x2 + y)) sp[q, q1] + (12 qs^2 + 12 x2^2 + 3 x2 y + 12 y^2 + 3 qs (x2 + y)) sp[q, q1] + (12 qs^2 + 12 x2^2 + 3 x2 y + 12 y^2 + 3 qs (x2 + y)) sp[q, q1] + (12 qs^2 + 12 x2^2 + 3 x2 y + 12 y^2 + 3 qs (x2 + y)) sp[q, q1] + (12 qs^2 + 12 x2^2 + 3 x2 y + 12 y^2 + 3 qs (x2 + y)) sp[q, q1] + (12 qs^2 + 12 x2^2 + 3 x2 y + 12 y^2 + 3 qs (x2 + y)) sp[q, q1] + (12 qs^2 + 12 x2^2 + 3 x2 y + 12 y^2 + 3 qs (x2 + y)) sp[q, q1] + (12 qs^2 + 12 x2^2 + 3 x2 y + 12 y^2 + 3 qs (x2 + y)) sp[q, q1] + (12 qs^2 + 12 x2^2 + 3 x2 y + 12 y^2 + 3 qs (x2 + y)) sp[q, q1] + (12 qs^2 + 12 x2^2 + 3 x2 y + 12 y^2 + 3 qs (x2 + y)) sp[q, q1] + (12 qs^2 + 12 x2^2 + 3 x2 y + 12 y^2 + 3 qs (x2 + y)) sp[q, q1] + (12 qs^2 + 12 x2^2 + 3 x2 y + 12 y^2 + 3 qs (x2 + y)) sp[q, q1] + (12 qs^2 + 12 x2^2 + 3 x2 y + 12 y^2 + 3 y^2 + 3 x^2 +$ sp[p, q1] (qs y (6 qs³ + qs² (32 x2 + 21 y) + qs (25 x2² + 60 x2 y + 9 y²) + x2 (3 x2² + 25 x2 y + 15 y²)) + (15 qs³ (x2 + y) + x2 y (-3 x2 + 15 y²)) + (15 qs³ (x2 + y) + x2 y (-3 x2 + 15 y²)) + (15 qs³ (x2 + y) + x2 y (-3 x2 + 15 y²)) + (15 qs³ (x2 + y) + x2 y (-3 x2 + 15 y²)) + (15 qs³ (x2 + y) + x2 y (-3 x2 + 15 y²)) + (15 qs³ (x2 + y) + x2 y (-3 x2 + 15 y²)) + (15 qs³ (x2 + y) + x2 y (-3 x2 + 15 y²)) + (15 qs³ (x2 + y) + x2 y (-3 x2 + 15 y²)) + (15 qs³ (x2 + y) + x2 y (-3 x2 + 15 y²)) + (15 qs³ (x2 + y) + x2 y (-3 x2 + 15 y²)) + (15 qs³ (x2 + y) + (15 qs³ (x2 + y) + x2 y (-3 x2 + 15 y²))) + (15 qs³ (x2 + y) + (15 qs³ (x2 + y)) $\left(-3 \, q s^3 + x 2^2 \, \left(-3 \, x 2 - 5 \, y\right) + q s^2 \, \left(39 \, x 2 - 5 \, y\right) + q s \, x 2 \, \left(39 \, x 2 + 81 \, y\right)\right) \\ sp\left[q, q1\right]^2 + \left(-6 \, q s^2 + q s \, \left(19 \, x 2 - 10 \, y\right) + x 2 \, \left(5 \, x 2 + 9 \, y\right)\right) \\ sp\left[q, q1\right]^2 + \left(-6 \, q s^2 + q s \, \left(19 \, x 2 - 10 \, y\right) + x 2 \, \left(5 \, x 2 + 9 \, y\right)\right) \\ sp\left[q, q1\right]^2 + \left(-6 \, q s^2 + q s \, \left(19 \, x 2 - 10 \, y\right) + x 2 \, \left(5 \, x 2 + 9 \, y\right)\right) \\ sp\left[q, q1\right]^2 + \left(-6 \, q s^2 + q s \, \left(19 \, x 2 - 10 \, y\right) + x 2 \, \left(5 \, x 2 + 9 \, y\right)\right) \\ sp\left[q, q1\right]^2 + \left(-6 \, q s^2 + q s \, \left(19 \, x 2 - 10 \, y\right) + x 2 \, \left(5 \, x 2 + 9 \, y\right)\right) \\ sp\left[q, q1\right]^2 + \left(-6 \, q s^2 + q s \, \left(19 \, x 2 - 10 \, y\right) + x 2 \, \left(5 \, x 2 + 9 \, y\right)\right) \\ sp\left[q, q1\right]^2 + \left(-6 \, q s^2 + q s \, \left(19 \, x 2 - 10 \, y\right) + x 2 \, \left(5 \, x 2 + 9 \, y\right)\right) \\ sp\left[q, q1\right]^2 + \left(-6 \, q s^2 + q s \, \left(19 \, x 2 - 10 \, y\right) + x 2 \, \left(5 \, x 2 + 9 \, y\right)\right) \\ sp\left[q, q1\right]^2 + \left(-6 \, q s^2 + q s \, \left(19 \, x 2 - 10 \, y\right) + x 2 \, \left(5 \, x 2 + 9 \, y\right)\right) \\ sp\left[q, q1\right]^2 + \left(-6 \, q s^2 + q s \, \left(19 \, x 2 - 10 \, y\right) + x 2 \, \left(5 \, x 2 + 9 \, y\right)\right) \\ sp\left[q, q1\right]^2 + \left(-6 \, q s^2 + q s \, \left(19 \, x 2 - 10 \, y\right) + x 2 \, \left(5 \, x 2 + 9 \, y\right)\right) \\ sp\left[q, q1\right]^2 + \left(-6 \, q s^2 + q s \, \left(19 \, x 2 - 10 \, y\right) + x 2 \, \left(5 \, x 2 + 9 \, y\right)\right) \\ sp\left[q, q1\right]^2 + \left(-6 \, q s^2 + q s \, \left(19 \, x 2 - 10 \, y\right) + x 2 \, \left(5 \, x 2 + 9 \, y\right)\right) \\ sp\left[q, q1\right]^2 + \left(-6 \, q s^2 + q s \, \left(19 \, x 2 - 10 \, y\right) + x 2 \, \left(5 \, x 2 + 9 \, y\right)\right) \\ sp\left[q, q1\right]^2 + \left(-6 \, q s^2 + q s \, \left(19 \, x 2 + 10 \, y\right)\right] \\ sp\left[q, q1\right]^2 + \left(-6 \, q s^2 + q s \, \left(19 \, x 2 + 10 \, y\right)\right] \\ sp\left[q, q1\right]^2 + \left(-6 \, q s^2 + q s \, \left(19 \, x 2 + 10 \, y\right)\right] \\ sp\left[q, q1\right]^2 + \left(-6 \, q s^2 + 10 \, y\right) \\ sp\left[q, q1\right]^2 + \left(-6 \, q s^2 + 10 \, y\right) \\ sp\left[q, q1\right]^2 + \left(-6 \, q s^2 + 10 \, y\right) \\ sp\left[q, q1\right]^2 + \left(-6 \, q s^2 + 10 \, y\right) \\ sp\left[q, q1\right]^2 + \left(-6 \, q s^2 + 10 \, y\right) \\ sp\left[q, q1\right]^2 + \left(-6 \, q s^2 + 10 \, y\right) \\ sp\left[q, q1\right]^2 + \left(-6 \, q s^2 + 10 \, y\right) \\ sp\left[q, q1\right]^2 + \left(-6 \, q s^2 + 10 \, y\right) \\ sp\left[q, q1\right]^2 + \left(-6 \, q s^2 + 10 \, y\right) \\ sp\left[q, q1\right]^2 + \left(-6 \, q s^2 + 10 \, y\right) \\ sp\left[q, q1\right]^2 + \left(-6 \, q s^2 + 10 \, y\right) \\ sp\left$ $x2 y (-sp[p, q1]^{5} (qs + sp[q, q1]) + sp[p, q1]^{4} (qs (6 qs + 6 x2 + 9 y) + (10 qs + 6 x2 + 5 y) sp[q, q1]) - qs (qs y - sp[q, q1]^{2}) (x2 (-sp[p, q1]^{5} (qs + sp[q, q1]) + sp[p, q1]^{4} (qs (6 qs + 6 x2 + 9 y) + (10 qs + 6 x2 + 5 y) sp[q, q1]) - qs (qs y - sp[q, q1]^{2}) (x2 (-sp[q, q1]) + sp[p, q1]^{4} (qs (6 qs + 6 x2 + 9 y) + (10 qs + 6 x2 + 5 y) sp[q, q1]) - qs (qs y - sp[q, q1]^{2}) (qs (6 qs + 6 x2 + 9 y) + (10 qs + 6 x2 + 5 y) sp[q, q1]) - qs (qs y - sp[q, q1]^{2}) (qs (6 qs + 6 x2 + 9 y) + (10 qs + 6 x2 + 5 y) sp[q, q1]) - qs (qs y - sp[q, q1]^{2}) (qs (6 qs + 6 x2 + 9 y) + (10 qs + 6 x2 + 5 y) sp[q, q1]) - qs (qs y - sp[q, q1]^{2}) (qs (6 qs + 6 x2 + 9 y) + (10 qs + 6 x2 + 5 y) sp[q, q1]) - qs (qs y - sp[q, q1]^{2}) (qs (6 qs + 6 x2 + 9 y) + (10 qs + 6 x2 + 5 y) sp[q, q1]) - qs (qs y - sp[q, q1]^{2}) (qs (6 qs + 6 x2 + 9 y) + (10 qs + 6 x2 + 5 y) sp[q, q1]) - qs (qs y - sp[q, q1]) - qs ($ $(6 gs + 9 x2 + 6 y) sp[q, q1]^{2} + sp[q, q1]^{3}) + sp[p, q1]^{3} (qs (-3 qs^{2} - 3 x2^{2} + qs (-7 x2 - 2 y) - 2 x2 y + 9 y^{2}) + (-3 x2^{2} + 3 x2 y + 1) + (-3 x2^{2} + 3 x2 y$ $sp[p, q1]^{2} \left(qs \left(-3 qs^{2} \left(2 x2 + y \right) + qs \left(-6 x2^{2} - 19 x2 y - 10 y^{2} \right) + y \left(-3 x2^{2} - 10 x2 y - 3 y^{2} \right) \right) + \left(-3 qs^{3} - 25 qs^{2} \left(x2 + y \right) + qs \left(-15 x2 y - 10 y^{2} + y \right) + y \left(-3 x2^{2} - 10 x2 y - 3 y^{2} \right) \right) + \left(-3 y^{2} - 10 x^{2} + y \right) + y \left(-3 y^{2} - 10 x^{2} + y \right) + y \left(-3 y^{2} - 10 x^{2} + y \right) + y \left(-3 y^{2} - 10 x^{2} + y \right) + y \left(-3 y^{2} - 10 x^{2} + y \right) + y \left(-3 y^{2} - 10 x^{2} + y \right) + y \left(-3 y^{2} - 10 x^{2} + y \right) + y \left(-3 y^{2} - 10 x^{2} + y \right) + y \left(-3 y^{2} - 10 x^{2} + y \right) + y \left(-3 y^{2} - 10 x^{2} + y \right) + y \left(-3 y^{2} - 10 x^{2} + y \right) + y \left(-3 y^{2} +$ $(-12 \text{ gs}^2 - 15 \text{ x2}^2 - 46 \text{ x2} \text{ y} - 15 \text{ y}^2 - 41 \text{ gs} (\text{x2} + \text{y})) \text{ sp}[\text{q}, \text{q1}]^2 + (-11 \text{ gs} - 16 \text{ x2} - 7 \text{ y}) \text{ sp}[\text{q}, \text{q1}]^3)$

Markus Q. Huber

June 9, 2016

11/36

Automated derivation

Derivation by hand becomes tedious:

- Large Lagrangians.
- Higher Green functions.
- Larger truncations.
- Error-prone.

- Automated derivation of DSEs and flow equations: Mathematica package DoFun [Alkofer, MQH, Schwenzer '08; MQH, Braun '11] http://tinyurl.com/dofun2
- Framework for numeric handling: *C++* program *CrasyDSE* [MQH, Mitter '11]

http://tinyurl.com/crasydse

d=3 YM

QCD

Summary and conclusions

d=3 YM

QCD

Summary and conclusions

QCD

Summary and conclusions

QCD

Summary and conclusions

d=3 YM

QCD

[Cyrol, MQH, von Smekal '14]

d=3 YM

QCD

d=3 YM

QCD

Summary and conclusions

[MQH, Campagnari, Reinhardt '14]

d=3 YM

QCD

d=3 YM

QCD

d=3 YM

QCD

Summary and conclusions

d=3 YM

QCD

Summary and conclusions

d=3 YM

QCD

Summary and conclusions

QCD

... how do we know that the results are trustworthy?

 \ldots how do we know that the results are trustworthy? \rightarrow Compare with other methods.

- ... how do we know that the results are trustworthy?
- \rightarrow Compare with other methods.

Lattice results

Available for

• Vacuum

- ... how do we know that the results are trustworthy?
- \rightarrow Compare with other methods.

Lattice results

- Vacuum
- Propagators

- ... how do we know that the results are trustworthy?
- \rightarrow Compare with other methods.

Lattice results

- Vacuum
- Propagators
- *T* > 0

... how do we know that the results are trustworthy?

 \rightarrow Compare with other methods.

Lattice results

- Vacuum
- Propagators
- *T* > 0
- Three-point functions (restricted kinematics)

... how do we know that the results are trustworthy?

 \rightarrow Compare with other methods.

Lattice results

- Vacuum
- Propagators
- *T* > 0
- Three-point functions (restricted kinematics)
- $\mu > 0?$

But...

... how do we know that the results are trustworthy?

 \rightarrow Compare with other methods.

Lattice results

- Vacuum
- Propagators
- *T* > 0
- Three-point functions (restricted kinematics)
- $\mu > 0?$
- Four-point functions?

But...

- ... how do we know that the results are trustworthy?
- \rightarrow Compare with other methods.

Lattice results

Available for

- Vacuum
- Propagators
- *T* > 0
- Three-point functions (restricted kinematics)
- $\mu > 0?$
- Four-point functions?

 \rightarrow Comparison with lattice is helpful, but finally self-consistent checks are required.

Two words of caution:

- One cannot assume naturally that the hierarchy is the same for all T and μ .
- Even the effect of a single correlation function is difficult to estimate.

Yang-Mills theory in 3 dimensions

Historically interesting because cheaper on the lattice \rightarrow easier to reach the IR, e.g., [Cucchieri '99; Cucchieri, Mendes, Taurines '03; Cucchieri, Maas, Mendes, '08; Maas '08, '14; Maas, Pawlowski, Spielmann, Sternbeck, von Smekal '09; Cucchieri, Dudal, Mendes, Vandersickel '11; Bornyakov, Mitrjushkin, Rogalyov '11, '13; Cucchieri, Dudal, Mendes, Vandersickel '16]

Continuum results:

- Coupled propagator DSEs: [Maas, Wambach, Grüter, Alkofer '04]
- (R)GZ: [Dudal, Gracey, Sorella, Vandersickel, Verschelde '08]
- YM + mass term: [Tissier, Wschebor '10, '11]
- DSEs of PT-BFM: [Aguilar, Binosi, Papavassiliou '10]

Introduction	d=3 YM	QCD	Summary and	conclusions

Yang-Mills theory in 3 dimensions: Motivation

NB: Numerically not cheaper for functional equations of 2- and 3-point functions.

Yang-Mills theory in 3 dimensions: Motivation

NB: Numerically not cheaper for functional equations of 2- and 3-point functions.

Advantages:

- UV finite: no renormalization, no anomalous running
- Spurious divergences easier to handle

 \Rightarrow Many complications from d = 4 absent!

Quantitative study of truncation effects possible:

Vary equations and truncations.

d=3 YM

QCD

Regularization and UV behavior

Ways of regularization

- Lattice
- Pauli-Villars
- Analytic reg., proper time, ...; useful for analytic calculations
- Dimensional regularization \rightarrow numerical difficult, esp. for power law divergences [Phillips, Afnan, Henry-Edwards '99]
- UV cutoff:

$$\int_0^\infty dq o \int_0^\Lambda dq$$

- standard choice for numerical calculations
- breaks gauge invariance \rightarrow spurious divergences

d=3 YM

QCD

Regularization and UV behavior

Ways of regularization

- Lattice
- Pauli-Villars
- Analytic reg., proper time, ...; useful for analytic calculations
- Dimensional regularization \rightarrow numerical difficult, esp. for power law divergences [Phillips, Afnan, Henry-Edwards '99]
- UV cutoff:

$$\int_0^\infty dq o \int_0^\Lambda dq$$

- standard choice for numerical calculations
- breaks gauge invariance \rightarrow spurious divergences

Several methods for subtraction of spurious divergences used. Prerequisite for a quantitatively accurate description: a good understanding of how to subtract them. Subtraction of divergences of gluon propagator (d = 4)

- **(a)** Logarithmic divergences handled by subtraction at p_0 .
- 2 Quadratic divergences also subtracted, coefficient C_{sub} .

$$Z(p^2)^{-1} := Z_{\Lambda}(p^2)^{-1} - C_{sub} \left(\frac{1}{p^2} - \frac{1}{p_0^2}\right)$$

$$\uparrow$$
calculated right-hand side (log.
divergences handled)

How to determine C_{sub} ?

d=3 YM

QCD

Summary and conclusions

Calculation of C_{sub} (d = 4)

Can be calculated analytically!

d=3 YM

QC

Calculation of C_{sub} (d = 4)

Can be calculated analytically!

Use projector $P^{\zeta}_{\mu\nu}(p)=g_{\mu\nu}-\zeta p_{\mu}p_{\nu}/p^2$ for gluon propagator DSE.

Consider ghost loop:

Calculation of C_{sub} (d = 4)

Can be calculated analytically!

Use projector $P^{\zeta}_{\mu\nu}(p)=g_{\mu\nu}-\zeta p_{\mu}p_{\nu}/p^2$ for gluon propagator DSE.

Consider ghost loop:

Approximation: $G\left((p+q)^2
ight)
ightarrow G\left(q^2
ight) \Rightarrow$ perform angle integrals

$$I_{gh}(x) = \frac{N_c g^2}{192\pi^2} \int_x^{\Lambda^2} dy \Big(\underbrace{x (\zeta - 2)}_{\text{log. div. } \checkmark} - \underbrace{(\zeta - 4)y}_{\text{quad. div.}} \Big) \frac{G(y)^2}{xy} + \dots$$

 $x = p^2, y = q^2, z = (p+q)^2$

Calculation of C_{sub} (d = 4)

$$I_{gh}^{spur}(x) \propto rac{1}{x} \int_{x_1}^{\Lambda^2} dy \ G_{UV}^2(y)$$

d=3 YM

Summary and conclusions

Calculation of
$$C_{sub}$$
 ($d = 4$)

$$I_{gh}^{spur}(x) \propto rac{1}{x} \int_{x_1}^{\Lambda^2} dy \; G_{UV}^2(y)$$

If $G_{UV}(y)$ const.:

d=3 YM

Summary and conclusions

Calculation of
$$C_{sub}$$
 ($d = 4$)

$$I_{gh}^{spur}(x) \propto rac{1}{x} \int_{x_1}^{\Lambda^2} dy \; G_{UV}^2(y)$$

If $G_{UV}(y)$ const.:

$$ightarrow rac{\Lambda^2}{x} G_{UV}(y)$$

If $G_{UV}(y)$ runs logarithmically:

$$ightarrow rac{\Lambda_{
m QCD}^2}{x}(-1)^{2\delta}\Gamma(1+2\delta,-\ln(\Lambda^2/\Lambda_{
m QCD}^2))$$

d=3 YM

Summary and conclusions

Calculation of
$$C_{sub}$$
 ($d = 4$)

$$I_{gh}^{spur}(x) \propto rac{1}{x} \int_{x_1}^{\Lambda^2} dy \ G_{UV}^2(y)$$

If G_{UV}(y) const.:

$$ightarrow rac{\Lambda^2}{x} G_{UV}(y)$$

If $G_{UV}(y)$ runs logarithmically:

$$ightarrow rac{\Lambda_{
m QCD}^2}{x}(-1)^{2\delta}\Gamma(1+2\delta,-\ln(\Lambda^2/\Lambda_{
m QCD}^2))$$

What about the finite part?

- Perturbatively no mass term should be generated.
- Independent of UV parametrization.
- Dim. reg. calculation yields the same finite part.

Up to now approximated analytic calculation.

Form of spurious divergences

Up to now approximated analytic calculation.

Compare derivatives of analytic result with full numeric calculation:

- Full agreement \rightarrow Anal. expressions can be used.
- Independent of external momentum → Purely perturbative origin.
 ⇒ Subtraction should not interfere with non-perturbative part.

Form of spurious divergences

Up to now approximated analytic calculation.

Compare derivatives of analytic result with full numeric calculation:

- Full agreement \rightarrow Anal. expressions can be used.
- Independent of external momentum → Purely perturbative origin.
 ⇒ Subtraction should not interfere with non-perturbative part.

FRG [Cyrol, Fister, Mitter, Pawlowski, Strodthoff '16]: Relation between finetuning of UV gluon mass and decoupling/scaling solution?

d=3 YM

QCD

Spurious divergences in d = 3

Simplification in d = 3:

$$C_{sub} = a \Lambda + b \ln \Lambda$$

 \rightarrow fit (works for numeric vertices and two-loop diagrams)

NB: In d = 4 it is not $C_{sub} = a \Lambda^2$.

d=3 YM

QCD

Spurious divergences in d = 3

Simplification in d = 3:

$$C_{sub} = a \Lambda + b \ln \Lambda$$

 \rightarrow fit (works for numeric vertices and two-loop diagrams)

Small deviations \rightarrow large effect.

[MQH '16; lattice: Cucchieri, Maas, Mendes

d=3 YM

QCE

Summary and conclusions

Results: Three-point functions

QC

Results: Propagators

Introduction	d=3 YM	QCD	Sum

Summary and conclusions

Non-perturbative gauge fixing

Gribov copies: Gauge equivalent configurations that fulfill the Landau gauge condition $\partial A = 0$.

Up to here the minimal Landau gauge was shown for lattice data.

Non-perturbative gauge fixing

Gribov copies: Gauge equivalent configurations that fulfill the Landau gauge condition $\partial A = 0$.

Up to here the minimal Landau gauge was shown for lattice data.

Another possibility: Absolute Landau gauge (global minimum of gauge fixing functional)

 \rightarrow Different solutions on the lattice,

e.g. [Maas '09, '11; Cucchieri '97; Bogolubsky et al. '05; Sternbeck, Müller-Preussker '12].

NB: Different solutions also from functional equations [Boucaud et al. '08; Fischer, Maas, Pawlowski '08].

QCD

Summary and conclusions

Different solutions

QCD

Different solutions

QCE

Different solutions

 \rightarrow Scaling solution has the highest peak in the gluon dressing!

QCE

Different solutions

minimal Landau gauge absolute Landau gauge

Varying the renormalization prescription: Propagators with bare vertices [MQH '15]: Similar effect (but vertex effects neglected!) $Z(p^2)$

d=3 YM

QCD

Summary and conclusions

Varying the four-gluon vertex

How stable is the truncation?

d=3 YM

QCD

Varying the four-gluon vertex

How stable is the truncation?

Compare:

- full four-gluon vertex
- bare four-gluon vertex

d=3 YM

dyn. 4-gluon vertex

bare 4-gluon vertex

4

QCD

Varying the four-gluon vertex

Compare:

 $Z(p^2)$

1.5

1.0

0.5

- full four-gluon vertex
- bare four-gluon vertex

1

2

 \rightarrow Very similar results.

3

Solution from the 3PI effective action

Different set of functional equations: equations of motion from 3PI effective action (at three-loop level)

Solution from the 3PI effective action

Different set of functional equations: equations of motion from 3PI effective action (at three-loop level)

Introduction	d=3 YM	QCD	Summary and conclusions

Couplings

Perturbatively the couplings must agree due to Slavnov-Taylor identities.

Couplings

Perturbatively the couplings must agree due to Slavnov-Taylor identities.

 \Rightarrow Good agreement down to a few GeV!

[MQH '16]

d=3 YM

QC

Summary and conclusions

Gluon propagator: Single diagrams

- Squint important in midmomentum regime.
- Sunset contribution small.

[MQH '16]

d=3 YM

QCD

Summary and conclusions

Cancellations in gluonic vertices

Three-gluon vertex:

- Individual contributions large.
- Sum is small.

d=3 YM

QCD

Summary and conclusions

Cancellations in gluonic vertices

Three-gluon vertex:

Individual contributions large.

∜

Four-gluon vertex:

Higher contributions:

Sum is small.

- Higher vertices close to 'tree-level' ? \rightarrow Small.
- If pattern changes (higher vertices large): cancellations required.

[MQH '16]

Comparison d = 3 and d = 4

• Two-loop diagrams important in gluon propagator.

[Blum, MQH, Mitter, von Smekal '14; Meyers, Swanson '14]

- Two-loop diagrams not important in three-gluon vertex. [Blum, MQH, Mitter, von Smekal '14; Eichmann, Williams, Alkofer, Vujinovic '14]
- Vertices deviate only mildly from tree-level above 1 GeV. [Blum, MQH, Mitter, von Smekal '14; Eichmann, Williams, Alkofer, Vujinovic '14; Binosi, Ibanez, Papavassiliou '14; Cyrol, MQH, von Smekal '14]
- RG improvement irrelevant in d = 3. Role in d = 4?

[Eichmann, Williams, Alkofer, Vujinovic '14]

d=3 YM

QCD

Summary and conclusions

Unquenching: Propagators

Model

Spurious divergences

Handle via analytically calculated subtraction term.

Quark-gluon vertex

Model [Fischer, Alkofer '03]:

$$\Gamma^{a}_{\mu,ij} = i g T^{a}_{ij} \gamma_{\mu} V(k^{2}, p^{2}, q^{2}) W(k^{2}, p^{2}, q^{2})$$
$$W(k^{2}, p^{2}, q^{2}) = G(f(x, y, z))^{2}, V(k^{2}, p^{2}, q^{2}) = \frac{A(p^{2}) + A(q^{2})}{2}$$

Momentum arguments of W different for quark and gluon DSEs.

Quark-gluon vertex

Model [Fischer, Alkofer '03]:

$$\Gamma^{a}_{\mu,ij} = i g T^{a}_{ij} \gamma_{\mu} V(k^{2}, p^{2}, q^{2}) W(k^{2}, p^{2}, q^{2})$$
$$W(k^{2}, p^{2}, q^{2}) = G(f(x, y, z))^{2}, V(k^{2}, p^{2}, q^{2}) = \frac{A(p^{2}) + A(q^{2})}{2}$$

Momentum arguments of W different for quark and gluon DSEs.

Cf. quark-gluon vertex solution

[Hopfer '14; Windisch '14; Mitter, Pawlowski, Strodthoff '14; Williams, Fischer, Heupel '15] $g_i(p^2,p^2,2\pi/3)$ $g_i(p^2,p^2,2\pi/3)$

Results for propagators

Quenched quark propagator at non-zero temperatures

Input

- Model for quark-gluon vertex [Fischer, Müller '09]
- Fits from lattice gluon propagators [Fischer, Maas, Müller '10; Maas, Pawlowski, von Smekal, Spielmann '10]
 - \rightarrow Sets the scale and also determines the position of the phase transition

		1					
	 0						

Summary and conclusions

- Calculations of propagators, vertices and partially mixed systems show a coherent picture.
- Gluon propagator: basic quantity, still challenging: spurious divergences, RG resummation.
- Lessons from d = 3:
 - cancellations between diagrams
 - small deviations from tree-level for higher correlations
 - RG resummation
- Yang-Mills vertices 'simple', quark-gluon vertex 'complicated'

		1					
	 0						

Summary and conclusions

- Calculations of propagators, vertices and partially mixed systems show a coherent picture.
- Gluon propagator: basic quantity, still challenging: spurious divergences, RG resummation.
- Lessons from d = 3:
 - cancellations between diagrams
 - small deviations from tree-level for higher correlations
 - RG resummation
- Yang-Mills vertices 'simple', quark-gluon vertex 'complicated'

Thank you for your attention.