Bound states in strong interaction physics (from a functional point of view)

Markus Q. HuberPhysik-Combo (RTG 2522 Jena Leipzig)JUSTUS-LIEBIG-
GIESSENJena, GermanyMarch 27-28, 2023

Content and what to expect

• Bound states and quantum chromodynamics

- Bound states and quantum chromodynamics
- Functional formalism: bound state equations, correlation functions

- Bound states and quantum chromodynamics
- Functional formalism: bound state equations, correlation functions
- How to solve a bound state equation (BSE)

- Bound states and quantum chromodynamics
- Functional formalism: bound state equations, correlation functions
- How to solve a bound state equation (BSE)
- First application to QCD: dynamic mass creation and mesons

- Bound states and quantum chromodynamics
- Functional formalism: bound state equations, correlation functions
- How to solve a bound state equation (BSE)
- First application to QCD: dynamic mass creation and mesons
- Application to different systems: 2, 3, 4 (or more) constituents

- Bound states and quantum chromodynamics
- Functional formalism: bound state equations, correlation functions
- How to solve a bound state equation (BSE)
- First application to QCD: dynamic mass creation and mesons
- Application to different systems: 2, 3, 4 (or more) constituents
- Input and truncations: Models and first-principle

- Bound states and quantum chromodynamics
- Functional formalism: bound state equations, correlation functions
- How to solve a bound state equation (BSE)
- First application to QCD: dynamic mass creation and mesons
- Application to different systems: 2, 3, 4 (or more) constituents
- Input and truncations: Models and first-principle
- Application to glueball spectrum

What (not) to expect

• Personal, biased selection of examples

- Personal, biased selection of examples
- Dyson-Schwinger/Bethe-Salpeter (DS/BS) framework only

- Personal, biased selection of examples
- Dyson-Schwinger/Bethe-Salpeter (DS/BS) framework only
- No pentaquarks, hybrids (status: exploratory)

- Personal, biased selection of examples
- Dyson-Schwinger/Bethe-Salpeter (DS/BS) framework only
- No pentaquarks, hybrids (status: exploratory)
- Focus on spectrum \rightarrow no form factors etc.

- Personal, biased selection of examples
- Dyson-Schwinger/Bethe-Salpeter (DS/BS) framework only
- No pentaquarks, hybrids (status: exploratory)
- Focus on spectrum \rightarrow no form factors etc.
- Challenges of functional bound state calculations

Reading material

This presentation (with links): mqh.at/physics/presentations

A small selection to get started:

- R. Alkofer and L. von Smekal, "The Infrared behavior of QCD Green's functions: Confinement dynamical symmetry breaking, and hadrons as relativistic bound states", Phys. Rept. 353 (2001) 281, hep-ph/0007355
- P. Maris and C. D. Roberts, "Dyson-Schwinger equations: A Tool for hadron physics", Int. J. Mod. Phys. E 12 (2003) 297, nucl-th/0301049
- A. Bashir, L. Chang, I. C. Cloet, B. El-Bennich, Y. X. Liu, C. D. Roberts and P. C. Tandy, "Collective perspective on advances in Dyson-Schwinger Equation QCD", Commun. Theor. Phys. 58 (2012) 79, arXiv:1201.3366
- Baryons: G. Eichmann, H. Sanchis-Alepuz, R. Williams, R. Alkofer, C.S. Fischer, "Baryons as relativistic three-quark bound states", Progress in Particle and Nuclear Physics 91 (2016) 1-100, arXiv:1606.09602
- Christian S. Fischer, Hadron physics with functional methods, Internationale Universitätswochen f
 ür Theoretische Physik, Admont, 2017

Markus Q. Huber (Giessen University)

Bound states in strong interaction physics

March 27-28, 2023

4/68

Reading material, cont.

Special topics:

- Tetraquarks: G. Eichmann, C. S. Fischer, W. Heupel, N. Santowsky and P. C. Wallbott, "Four-Quark States from Functional Methods", Few Body Syst. 61 (2020) no.4, 38, arXiv:2008.10240
- Glueballs: M. Q. Huber, C. S. Fischer and H. Sanchis-Alepuz, "Higher spin glueballs from functional methods", Eur. Phys. J. C 81 (2021) no.12, 1083, arXiv:2110.09180
- Correlation functions: M. Q. Huber, "Nonperturbative properties of Yang-Mills theories", Phys. Rept. 879 (2020) 1, arXiv:1808.05227; M. Q. Huber, "Correlation functions of Landau gauge Yang-Mills theory", Phys. Rev. D 101 (2020), 114009, arXiv:2003.13703

If you want to know (technical) details:

- Derivation of correlation functions: M. Q. Huber, A. K. Cyrol and J. M. Pawlowski, "DoFun 3.0: Functional equations in Mathematica", Comput. Phys. Commun. 248 (2020), 107058, arXiv:1908.02760
- Technical basics: see webpage (material from Doctoral Training Program 2022, ECT*, Trento)
- Advanced techniques: H. Sanchis-Alepuz and R. Williams, "Recent developments in bound-state calculations using the Dyson–Schwinger and Bethe–Salpeter equations", Comput. Phys. Commun. 232 (2018), 1-21, arXiv:1710.04903

Markus Q. Huber (Giessen University)

Bound states

Constituents bound by some force.

- Localized
- Attractive force
- Behaves as a single object (under certain conditions)
- Discrete spectrum (as opposed to free constituents)
- 2 or more constituents

Bound states

Constituents bound by some force.

- Localized
- Attractive force
- Behaves as a single object (under certain conditions)
- Discrete spectrum (as opposed to free constituents)
- 2 or more constituents

2 fermions in QED:

- Example: Hydrogen atom
- one-photon exchange
- Coulomb potential $\propto 1/r$
- spin-orbit coupling: fine splitting
- spin-spin coupling: hyperfine splitting

Bound states

Constituents bound by some force.

- Localized
- Attractive force
- Behaves as a single object (under certain conditions)
- Discrete spectrum (as opposed to free constituents)
- 2 or more constituents

2 fermions in QED:

- Example: Hydrogen atom
- one-photon exchange
- Coulomb potential $\propto 1/r$
- spin-orbit coupling: fine splitting
- spin-spin coupling: hyperfine splitting

We will look for poles in *n*-point functions/scattering matrices!

The strong interaction

Quantum chromodynamics:

gauge theory

The strong interaction

gauge theory

$$\mathcal{L}_{QED} = \overline{\psi} (-\not{D} + m)\psi$$
$$+ \frac{1}{2} \operatorname{Tr} \{F_{\mu\nu} F^{\mu\nu}\}$$
$$F_{\mu\nu} = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu}$$

The strong interaction

Quantum chromodynamics: non-Abelian gauge theory

$$\mathcal{L}_{\textbf{QCD}} = \sum_{\text{flavor } f} \overline{\psi}_{f} (-\not{D} + m) \psi_{f} \\ + \frac{1}{2} \operatorname{Tr} \{F_{\mu\nu} F^{\mu\nu}\} \\ F_{\mu\nu} = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu} + i g [A_{\mu}, A_{\nu}] \\ A_{\mu} = T^{a} A_{\mu}^{a}$$

gauge group $SU(3) \rightarrow 3$ colors for quarks, 8 gluons

The strong interaction

1

Quantum chromodynamics: non-Abelian gauge theory

$$\begin{split} \mathcal{C}_{\text{(CCD)}} &= \sum_{\text{flavor } f} \overline{\psi}_f (-\not{\!\!D} + m) \psi_f \\ &+ \frac{1}{2} \operatorname{Tr} \{ F_{\mu\nu} F^{\mu\nu} \} \\ F_{\mu\nu} &= \partial_\mu A_\nu - \partial_\nu A_\mu + i g \left[A_\mu, A_\nu \right] \\ A_\mu &= T^a A^a_\mu \end{split}$$

gauge group $SU(3) \rightarrow 3$ colors for quarks, 8 gluons

Properties of the strong interaction

- Confinement: "no free quarks or gluons" dual superconductor picture, center vortices, Kugo-Ojima, ... many open questions
- Dynamical mass creation:
 - light quarks $\sim MeV$
 - proton $\sim GeV$
 - ullet ightarrow chiral symmetry and its breaking
- Rich spectrum: mesons, baryons, exotics (XYZ states, multiquark states, states with gluonic content)

From protons to quarks

Status 1947: Electron, proton, neutron, photon \rightarrow Build the world around us.

Cosmic rays: positron, pions, muon (Rabi: "Who ordered that?") hypothesized: neutrino

1947-1950: Kaons, Lambda

"Particle zoo": Many new particles (hadrons) found Pauli: "Had I foreseen that, I would have gone into botany."

Quark model: 1964, Gell-Mann, Zweig, hadrons are composite of quarks

Deep inelastic scattering experiments 1968: point-like particles inside protons

Alexander Gorfer (quant.uni-graz.at), CC-BY-SA 4.0, mod.

Bound states of the strong interaction

Quark model 1964:

- Solve Schrödinger equation with a given potential, e.g., Cornell: $V(r) = -\frac{4}{3} \frac{\alpha_s}{r} + \sigma r + \text{const.}$
- Abundance of states

- Yang-Mills (infinitely heavy quarks): potential rises linearly
- $\bullet~$ QCD: string between quarks can break $\rightarrow~$ creation of quark/antiquark pair

[Bali et al., Phys. Rev. D 71 (2005)]

Bound states of the strong interaction

Quark model 1964:

- Solve Schrödinger equation with a given potential, e.g., Cornell: $V(r) = -\frac{4}{3} \frac{\alpha_s}{r} + \sigma r + \text{const.}$
- Abundance of states

Exotics:

Markus Q. Huber (Giessen University)

Bound states in strong interaction physics

Multiplets

Quark model

 $\label{eq:classification in terms of mesons} or \ baryons \rightarrow multiplets$

 $\begin{array}{l} \text{Outside this classification} \\ \rightarrow \text{exotics} \end{array}$

Multiplets

Classification not always easy, e.g., scalar sector $J^{PC} = 0^{++}$. \rightarrow tetraquarks, glueballs

Markus Q. Huber (Giessen University)

Bound states in strong interaction physics

March 27-28, 2023

Hadron masses from correlation functions of color singlet operators.

Hadron masses from correlation functions of color singlet operators.

Examples: $J^{PC} = 0^{-+} \operatorname{meson} \rightarrow O(x) = \overline{\psi}(x)\gamma_5\psi(x)$ $J^{PC} = 0^{++} \operatorname{glueball} \rightarrow O(x) = F_{\mu\nu}(x)F^{\mu\nu}(x)$ $D(x - y) = \langle O(x)O(y) \rangle$

Hadron masses from correlation functions of color singlet operators.

Examples:

$$J^{PC} = 0^{-+} \text{ meson} \rightarrow O(x) = \overline{\psi}(x)\gamma_5\psi(x)$$

 $J^{PC} = 0^{++} \text{ glueball} \rightarrow O(x) = F_{\mu\nu}(x)F^{\mu\nu}(x)$
 $D(x - y) = \langle O(x)O(y) \rangle$

Lattice: Mass from exponential Euclidean time decay

$$\lim_{t \to \infty} \langle O(x) O(0)
angle \sim e^{-tM}$$

Hadron masses from correlation functions of color singlet operators.

+ 3-loop diagrams [MQH, Cyrol, Pawlowski, Comput.Phys.Commun. 248 (2020)]

Leading order: [Windisch,

MQH, Alkofer, Phys.Rev.D87 (2013)]

Bound state equations Derivation

Derivation of bound state equations I

For more details see [Eichmann, Sanchis-Alepuz, Williams, Alkofer, Fischer, Prog.Part.Nucl.Phys. 91 (2016)]

n-particle bound state

Pole in a 2*n*-point function.

For simplicity here n = 2.

Bound state equations Derivation

Derivation of bound state equations I

For more details see [Eichmann, Sanchis-Alepuz, Williams, Alkofer, Fischer, Prog.Part.Nucl.Phys. 91 (2016)]

n-particle bound state

Pole in a 2*n*-point function.

For simplicity here n = 2.

Full 4-point function:

 \rightarrow scattering matrix T (amputated, conn. part of G)

Markus Q. Huber (Giessen University)

Derivation of bound state equations I

For more details see [Eichmann, Sanchis-Alepuz, Williams, Alkofer, Fischer, Prog.Part.Nucl.Phys. 91 (2016)]

n-particle bound state Pole in a 2*n*-point function.

Tole in a 27-point function.

For simplicity here n = 2.

Full 4-point function:

 \rightarrow scattering matrix ${\cal T}$ (amputated, conn. part of ${\it G})$

Dyson equations: nonperturbative resummations! Compare:

$$f(x) = \frac{1}{1-x} = 1 + x + x^2 + \ldots = 1 + x f(x) = 1 + x + x^2 f(x)$$

Scattering kernel K: 2-particle irreducible with respect to horizontal quarks lines (created by iteration)

Markus Q. Huber (Giessen University)

Bound states in strong interaction physics

Bound state equations Derivation

Derivation of bound state equations II

On-shell: at pole position $P^2 = -M^2$

Pole position: mass M

Residues: $\Gamma \overline{\Gamma}, \Psi \overline{\Psi}$

Bethe-Salpeter amplitude Γ is the amputated

wave function, $\Psi = G_0 \Gamma$. Markus Q. Huber (Giessen University)
Bound state equations Derivation

Derivation of bound state equations II

On-shell: at pole position $P^2 = -M^2$

Bethe-Salpeter amplitude Γ is the amputated wave function, $\Psi = G_0 \Gamma$.

Markus Q. Huber (Giessen University)

Pole position: mass M

Residues: $\Gamma \overline{\Gamma}$. $\Psi \overline{\Psi}$

Plug into Dyson equations: homogeneous **Bethe-Salpeter equations**

Elements of a BSE

Elements of a BSE

Symmetry constraints: Propagators and kernels are not independent!

Relevant for QCD: Chiral symmetry in quark sector \rightarrow axial-vector Ward-Takahashi identity

Markus Q. Huber (Giessen University)

Bound states in strong interaction physics

Functional elements

Central object

1PI effective action $\Gamma[\Phi]$

 $\Gamma[\Phi]$ is the generating functional of 1PI correlation functions. \rightarrow Vertex expansion:

$$\Gamma[\Phi] = \sum_{i=0}^{\infty} \frac{1}{\mathcal{N}^{i_1 \dots i_n}} \sum_{i_1, \dots, i_n} \Gamma^{i_1 \dots i_n} \Phi_{i_1} \dots \Phi_{i_n}$$

$$\uparrow$$
vertices

Generating functionals

Example: Scalar theory (Keep things simple...)

$$S[\phi] = \int dx \left(\phi(-\partial^2 + m^2)\phi + \frac{\lambda_3}{3!}\phi^3 + \frac{\lambda_4}{4!}\phi^4 \right)$$

Generating functionals

Example: Scalar theory (Keep things simple...)

$$S[\phi] = \int dx \left(\phi(-\partial^2 + m^2)\phi + rac{\lambda_3}{3!}\phi^3 + rac{\lambda_4}{4!}\phi^4
ight)$$

Path integral:

$$Z[J] = \int D[\phi] e^{-S[\phi] + \int dx \phi(x) J(x)} = e^{W[J]}$$

 $W[J] \rightarrow$ Generating functional for connected correlation functions

1PI effective action

Legendre transform: New variable $\Phi(x)$ (averaged field Φ in presence of external source *J*)

$$\Phi(\mathbf{x}) := \langle \phi(\mathbf{x}) \rangle_J = \frac{\delta W[J]}{\delta J(\mathbf{x})} = Z[J]^{-1} \int D[\phi] \phi(\mathbf{x}) e^{-S[\phi] + \int dy \phi(y) J(y)} \qquad \left(J(\mathbf{x}) = \frac{\delta \Gamma[\Phi]}{\delta \Phi(\mathbf{x})} \right)$$
$$\Gamma[\Phi] = -W[J] + \int dx \Phi(\mathbf{x}) J(\mathbf{x})$$

1PI effective action

Legendre transform: New variable $\Phi(x)$ (averaged field Φ in presence of external source *J*)

$$\Phi(\mathbf{x}) := \langle \phi(\mathbf{x}) \rangle_J = \frac{\delta W[J]}{\delta J(\mathbf{x})} = Z[J]^{-1} \int D[\phi] \phi(\mathbf{x}) e^{-S[\phi] + \int dy \phi(y) J(y)} \qquad \left(J(\mathbf{x}) = \frac{\delta \Gamma[\Phi]}{\delta \Phi(\mathbf{x})} \right)$$
$$\Gamma[\Phi] = -W[J] + \int dx \Phi(\mathbf{x}) J(\mathbf{x})$$

 $\Gamma[\Phi] \rightarrow 1PI$ effective action, generating functional of one-particle irreducible correlation functions

(All correlation functions can be constructed from 1PI correlation functions.)

Markus Q. Huber (Giessen University)

Bound states in strong interaction physics

Propagators and vertices

Propagator:

$$D(x,y) = D(x-y) = \frac{\delta^2 W[J]}{\delta J(x) \delta J(y)} \bigg|_{J=0} = \langle \phi(x)\phi(y) \rangle - \langle \phi(x) \rangle \langle \phi(y) \rangle$$
$$D(x,y)^J := \frac{\delta^2 W[J]}{\delta J(x) \delta J(y)} = \left(\frac{\delta^2 \Gamma[\Phi]}{\delta \Phi(x) \delta \Phi(y)}\right)^{-1}$$

1

Propagators and vertices

Propagator:

$$D(x,y) = D(x-y) = \frac{\delta^2 W[J]}{\delta J(x) \delta J(y)} \bigg|_{J=0} = \langle \phi(x)\phi(y) \rangle - \langle \phi(x) \rangle \langle \phi(y) \rangle$$
$$D(x,y)^J := \frac{\delta^2 W[J]}{\delta J(x) \delta J(y)} = \left(\frac{\delta^2 \Gamma[\Phi]}{\delta \Phi(x) \delta \Phi(y)}\right)^{-1}$$

Derivatives of 1PI effective action:

(Note $J \neq 0$ and "—" by convention.)

$$\Gamma(x_1,\ldots,x_n)^J:=-\frac{\delta\Gamma[\Phi]}{\delta\Phi(x_1)\cdots\delta\Phi(x_n)}$$

Physical vertices

$$\Gamma(x_1,\ldots,x_n):=\Gamma(x_1,\ldots,x_n)^{J=0}, \quad n>2$$

Markus Q. Huber (Giessen University)

Bound states in strong interaction physics

Derivation of DSEs

Details in appendix

Integral of a total derivative vanishes:

$$0 = \int D[\phi] \frac{\delta}{\delta \phi} e^{-S + \int dy \phi(y) J(y)} = \int D[\phi] \left(-\frac{\delta S}{\delta \phi(x)} + J(x) \right) e^{-S + \int dy \phi(y) J(y)}$$

Derivation of DSEs

Details in appendix

Integral of a total derivative vanishes:

$$0 = \int D[\phi] \frac{\delta}{\delta \phi} e^{-S + \int dy \phi(y) J(y)} = \int D[\phi] \left(-\frac{\delta S}{\delta \phi(x)} + J(x) \right) e^{-S + \int dy \phi(y) J(y)}$$

Master DSE for 1PI correlation functions

$$\frac{\delta \Gamma[\Phi]}{\delta \Phi(x)} = \frac{\delta S}{\delta \phi(x)} \bigg|_{\phi(x') = \Phi(x') + \int dz \, D(x',z)^J \, \delta / \delta \Phi(z)}$$

Get DSE for *n*-point function by applying n - 1 derivatives.

$$\frac{\delta}{\delta\phi}\Gamma[\phi] = + + + + +$$

Markus Q. Huber (Giessen University)

Bound states in strong interaction physics

Automatized derivation with DoFun

Derivation of functional equations

[Alkofer, MQH, Schwenzer, '08; MQH, Braun, '11; MQH, Cyrol, Pawlowski, '19]

 \rightarrow https://github.com/markusqh/DoFun/

Works in two steps:

- Symbolic derivation (no Feynman rules, just types of fields)
- Algebraic: Plug in Feynman rules

See also QMeS-Derivation

[Pawlowski, Schneider, Wink, CPC 287 (2023)]

→ https://github.com/ OMeS-toolbox/

Markus Q. Huber (Giessen University)

doDSE

doDSE[ac,	flis,	[<i>opts</i>]]	derives the DSE from the action <i>ac</i> for the fields contained in <i>flis</i> .	
doDSE[ac,	flis,	props,	[<i>opts</i>]] derives the DSE only with propagators contained in prop	
<i>doDSE</i> [<i>ac</i> , Allowed prop	<i>flist</i> , agator	<i>vtest</i> , s will be t	[<i>opts</i>] derives the DSE only with vertices allowed by <i>vtest</i> . aken from <i>ac</i> if the <i>props</i> argument is not given.	

Details

- The following options can be given:

sources7ero

True

21/68

$\mathsf{DSEs} \leftrightarrow \mathsf{flow} \ \mathsf{equations}$

Dyson-Schwinger equations (DSEs)	Functional RG equations (FRGEs)
'integrated flow equations'	'differential DSEs'
effective action $\Gamma[\phi]$	effective average action $\Gamma^{k}[\phi]$
-	regulator
n-loop structure (n <i>const</i> .)	1-loop structure
exactly only bare vertex per diagram	no bare vertices
$\frac{\delta}{\delta\phi}\Gamma[\phi] = + + + + + +$	$k \frac{\partial}{\partial k} \Gamma^k[\phi] = \bigcirc$

- Both systems of equations are exact.
- Both contain infinitely many equations.

Quark propagator

Described by 2 dressing functions:

$$(S^{ij})^{-1} = \delta^{ij} (i \not p A(p^2) + B(p^2))$$

$$S^{ij} = \delta^{ij} \frac{-i \not p A(p^2) + B(p^2)}{p^2 A(p^2)^2 + B(p^2)^2}$$

$$= \delta^{ij} \frac{Z_f(p^2)}{p^2 + M(p^2)^2} (-i \not p + M(p^2))$$

Quark renormalization function $Z_f(p^2) = 1/A(p^2)$

Quark mass function $M(p^2) = B(p^2)/A(p^2)$

Markus Q. Huber (Giessen University)

Quark propagator

Described by 2 dressing functions:

$$(S^{ij})^{-1} = \delta^{ij} (i \not p A(p^{2}) + B(p^{2}))$$

$$S^{ij} = \delta^{ij} \frac{-i \not p A(p^{2}) + B(p^{2})}{p^{2} A(p^{2})^{2} + B(p^{2})^{2}}$$

$$= \delta^{ij} \frac{Z_{t}(p^{2})}{p^{2} + M(p^{2})^{2}} (-i \not p + M(p^{2}))$$
Quark renormalization function
$$Z_{t}(p^{2}) = 1/A(p^{2})$$
Quark mass function
$$M(p^{2}) = B(p^{2})/A(p^{2})$$

$$M(p^{2}) = B(p^{2})/A(p^{2})$$

Quark propagator Dyson-Schwinger equation

• (Use a model.)

Quark propagator Dyson-Schwinger equation

- (Use a model.)
- Calculate the propagator.

Dyson-Schwinger equation (exact!):

$$egin{aligned} & \mathcal{S}(p)^{-1} = \mathcal{S}_0^{-1} - \Sigma(p), \ & \Sigma(p) = -\mathcal{C}_F \, g^2 \int rac{d^4 q}{(2\pi)^4} \mathrm{tr}\{\gamma^\mu \mathcal{S}(q) \mathcal{D}_{\mu
u}(k) \Gamma^
u(-k;-p,q)\} \end{aligned}$$

• Gluon propagator
$$D_{\mu
u}(k) = \left(g_{\mu
u} - \frac{k_{\mu}k_{\nu}}{k^2}\right) Z(k^2)$$

• Quark-gluon vertex $\Gamma^{a,\nu}(\boldsymbol{k};\boldsymbol{p},\boldsymbol{q}) = i g T^a \sum_{i=1}^{\infty} \tau_i^{\mu}(\boldsymbol{k};\boldsymbol{p},\boldsymbol{q}) h_i(\boldsymbol{k};\boldsymbol{p},\boldsymbol{q})$

Markus Q, Huber (Giessen University)

Approximations: Simple model input

Bare vertex: γ_{μ}

Gluon propagator:

Munczek-Nemirovsky model (local in momentum space):

 $D_{\mu\nu}(k) \propto \delta_{\mu\nu}\delta(k) \rightarrow$ algebraic equations Mass creation

Nambu-Jona-Lasinio/contact model (local in position space):

 $D_{\mu\nu}(k) \propto \delta_{\mu\nu} c/\Lambda^2 \rightarrow$ four-fermi interaction (cutoff as add. parameter)

Critical behavior in coupling \rightarrow dynamical symmetry breaking

Approximations: Rainbow

Need the gluon propagator $(Z(k^2))$ and the quark-gluon vertex $(h_i(k; p, q))$.

•
$$\Gamma^{a,\nu}(\boldsymbol{k};\boldsymbol{p},\boldsymbol{q}) \propto \gamma^{\nu} h_1(\boldsymbol{k};\boldsymbol{p},\boldsymbol{q})$$

• $\frac{g^2}{4\pi} Z(k^2) h_1(\boldsymbol{k};\boldsymbol{p},\boldsymbol{q}) \propto \alpha(\boldsymbol{k}^2)$

Iteration \rightarrow only 'rainbow-like' diagrams

Markus Q. Huber (Giessen University)

Approximations: Rainbow

Need the gluon propagator $(Z(k^2))$ and the quark-gluon vertex $(h_i(k; p, q))$.

Bound state equations Quark propagator

Example for a model: Maris-Tandy interaction

[Maris, Roberts, Tandy, Phys. Rev. C 56 (1997); Maris, Tandy, Phys. Rev. C 60 (1999)]:

- Scale \wedge from f_{π}
- Quark masses $m_u = m_d$, m_s from m_π , m_K
- Parameter η: window of small sensitivity (for meson masses and decay constants)
- α_{UV}: Phenomenologically irrelevant, provides correct perturbative running to quark propagator

Markus Q. Huber (Giessen University)

Kernel approximations

Kernel: "all interactions which are two-particle irreducbible with respect to two horizontal guark lines"

- Pertubation theory: one-particle exchange
- Models
- Systematic derivation from effective actions (see glueballs)

Analog to rainbow truncation: ladder truncation

Chiral symmetry

Massless QCD with 3 flavors: $U_V(1) \times SU_V(3) \times U_A(1) \times SU_A(3)$ flavor symmetry

Consequence of chiral symmetry for bound state equations: Relation between quark selfenergy and kernel

Chiral symmetry

Massless QCD with 3 flavors: $U_V(1) \times SU_V(3) \times U_A(1) \times SU_A(3)$ flavor symmetry

Consequence of chiral symmetry for bound state equations: Relation between quark selfenergy and kernel

Chiral symmetry spontaneously broken \rightarrow Goldstone theorem: massless bosons (π , K, η)

Chiral symmetry

Massless QCD with 3 flavors: $U_V(1) \times SU_V(3) \times U_A(1) \times SU_A(3)$ flavor symmetry

Consequence of chiral symmetry for bound state equations: Relation between quark selfenergy and kernel

Chiral symmetry spontaneously broken \rightarrow Goldstone theorem: massless bosons (π , K, η)

Explicitly broken by quark masses, but quark masses small. \rightarrow Goldstone bosons are light.

- \rightarrow Nontrivial to fulfill!
 - Rainbow-ladder:
 - Explicit construction for beyond rainbow-ladder, e.g., [Bender, Roberts, von Smekal, Phys.Lett.B 380 (1996); Williams, Fischer, Heupel, Phys. Rev. D 93 (2016); Qin, Roberts, Chin.Phys.Lett. 38 (2021)] → Cumbersome.

Markus Q. Huber (Giessen University)

Bound states in strong interaction physics

March 27-28, 2023

Bound state equations Kernel

Dynamic mass creation

- Consequence of dynamical breaking of chiral symmetry. Order parameters: M(0), chiral condensate $\langle \overline{\psi}\psi \rangle \sim \int dq \operatorname{Tr} S(q)$
- UV: quark mass as external parameter from QCD, "current quark mass"
- IR: created mass, "constituent quark mass"
- Most (visible) mass is created by QCD and not the EBH effect!
- Proton: \sim 940 MeV, 3 light quarks \sim 15 MeV

quark mass from Englert-Brout-Higgs effect

Markus Q. Huber (Giessen University)

Bound states in strong interaction physics

Amplitudes

 $\Gamma = K G_0 \Gamma$

 $J^{PC} \rightarrow$ Encoded in amplitude Γ :

$$\Gamma(\boldsymbol{P}, \boldsymbol{p}) = \sum_{i=1}^{n} \tau^{i}(\boldsymbol{P}, \boldsymbol{p}) h_{i}(\boldsymbol{P}, \boldsymbol{p})$$

 $\begin{array}{l} \text{Quark-antiquark-state} \rightarrow \text{Dirac indices} \\ \text{Spin} \rightarrow \text{Lorentz indices} \end{array}$

31/68

Amplitudes

 $\Gamma = K G_0 \Gamma$

 $J^{PC} \rightarrow$ Encoded in amplitude Γ :

$$\Gamma(P,p) = \sum_{i=1}^{n} \tau^{i}(P,p) h_{i}(P,p)$$

Finite number of tensors τ_i compatible with given J^{PC} !

 $\begin{array}{l} \text{Quark-antiquark-state} \rightarrow \text{Dirac indices} \\ \text{Spin} \rightarrow \text{Lorentz indices} \end{array}$

Example: (pseudo)scalar mesons ($J^{PC} = 0^{\pm +}$)scalar (P = +1):pseudoscalar (P = -1): $\tau^i(P, p) = \{1, i \not P, i \not p, [\not p, \not P]\}$ $\tau^i(P, p)\gamma_5$

Markus Q. Huber (Giessen University)

Mass

 $\lambda(P)\Gamma(P) = \mathcal{K} \cdot \Gamma(P)$

 \rightarrow Eigenvalue problem for $\Gamma(P)$

Mass

Markus Q. Huber (Giessen University)

Bound states in strong interaction physics

March 27-28, 2023

32/68

Calculation for $P^2 = -M^2$

$$\boldsymbol{\lambda(P)}\boldsymbol{\Gamma(P)} = \mathcal{K} \cdot \boldsymbol{\Gamma(P)}$$

→ Eigenvalue problem for Γ(*P*): Find *P* with $\lambda(P) = 1$. ⇒ $M^2 = -P^2$

Calculation for $P^2 = -M^2$

Propagators are probed at
$$\left(q \pm \frac{P}{2}\right)^2 = \frac{P^2}{4} + q^2 \pm \sqrt{P^2 q^2} \cos \theta = -\frac{M^2}{4} + q^2 \pm i M \sqrt{q^2} \cos \theta$$

 \rightarrow Complex for $P^2 < 0!$

Time-like quantities ($P^2 < 0$) \rightarrow Correlation functions for complex arguments.

Markus Q. Huber (Giessen University)

33/68

Quark propagator for complex arguments

Integration region (M = 1 GeV):

Markus Q. Huber (Giessen University)

Quark propagator for complex arguments

Integration region (M = 1 GeV):

Analytic structure with Maris-Tandy model:

[Windisch, Phys. Rev. C 95 (2017)]

Markus Q, Huber (Giessen University)

Bound states in strong interaction physics

March 27-28, 2023

34/68

Quark propagator for complex arguments

Integration region (M = 1 GeV):

 \Rightarrow Accessible *M* determined by poles in propagator.

Analytic structure with Maris-Tandy model:

[Windisch, Phys. Rev. C 95 (2017)]

Markus Q. Huber (Giessen University)

Bound states in strong interaction physics

March 27-28, 2023

34/68
Mesons from rainbow-ladder with Maris-Tandy interaction

[Fischer, Kubrak, Williams, Eur.Phys.J.A50 (2014)]

- Well investigated for more than 20 years
- Describes pseudoscalar and vector ground states well
- Not so good for other ۲ quantum numbers
- Also 'exotic' quantum numbers

Mesons from rainbow-ladder with Maris-Tandy interaction

[Fischer, Kubrak, Williams, Eur.Phys.J.A50 (2014)]

- Well investigated for more than 20 years
- Describes pseudoscalar and vector ground states well
- Not so good for other ۲ quantum numbers
- Also 'exotic' quantum numbers

Results for hadronic bound states

Baryons

Baryons: 3-body bound state equation

[Eichmann, Sanchis-Alepuz, Williams, Alkofer, Fischer, Prog.Part.Nucl.Phys. 91 (2016)]

proton: *uud* quarks \rightarrow three constituents (u = d: nucleon)

Baryons: 3-body bound state equation

[Eichmann, Sanchis-Alepuz, Williams, Alkofer, Fischer, Prog.Part.Nucl.Phys. 91 (2016)]

proton: *uud* quarks \rightarrow three constituents (u = d: nucleon)

Three-body bound states in six-point functions. \rightarrow Faddeev equation

Baryons: 3-body bound state equation

[Eichmann, Sanchis-Alepuz, Williams, Alkofer, Fischer, Prog.Part.Nucl.Phys. 91 (2016)]

proton: *uud* quarks \rightarrow three constituents (u = d: nucleon)

Three-body bound states in six-point functions. \rightarrow Faddeev equation

2- and 3-body interactions

Baryons: 3-body bound state equation

[Eichmann, Sanchis-Alepuz, Williams, Alkofer, Fischer, Prog.Part.Nucl.Phys. 91 (2016)]

proton: *uud* quarks \rightarrow three constituents (u = d: nucleon)

Three-body bound states in six-point functions. \rightarrow Faddeev equation

- 2- and 3-body interactions
- 3 momenta (1 total, 2 relative)

Baryons: 3-body bound state equation

[Eichmann, Sanchis-Alepuz, Williams, Alkofer, Fischer, Prog.Part.Nucl.Phys. 91 (2016)]

proton: *uud* quarks \rightarrow three constituents (u = d: nucleon)

Three-body bound states in six-point functions. \rightarrow Faddeev equation

- 2- and 3-body interactions
- 3 momenta (1 total, 2 relative)
- Leading contribution (via three-gluon vertex) of 3-body interaction vanishes due to color

Markus Q. Huber (Giessen University)

Bound states in strong interaction physics

Baryon masses

[Eichmann, Sanchis-Alepuz, Williams, Alkofer, Fischer,

Prog.Part.Nucl.Phys. 91 (2016)]

Markus Q. Huber (Giessen University)

Approximation

- Rainbow-ladder
- Maris-Tandy interaction

- First covariant 3-body calculation of nucleon N: [Eichmann, Alkofer, Krassnigg, Nicmorus, Phys. Rev. Lett. 104 (2010); Eichmann, Phys. Rev. D 84 (2011)]
- Δ: [Sanchis-Alepuz, Eichmann, Villalba-Chavez, Alkofer, Phys. Rev. D 84 (2011)]

Results for hadronic bound states

Baryons

Barvon masses

[Eichmann, Sanchis-Alepuz, Williams, Alkofer, Fischer,

Prog.Part.Nucl.Phys. 91 (2016)]

Markus Q. Huber (Giessen University)

Approximation

- Rainbow-ladder
- Maris-Tandy interaction

- First covariant 3-body calculation of nucleon N: [Eichmann, Alkofer, Krassnigg, Nicmorus, Phys. Rev. Lett. 104 (2010); Eichmann, Phys. Rev. D 84 (2011)]
- Δ : [Sanchis-Alepuz, Eichmann, Villalba-Chavez, Alkofer, Phys. ۲ Rev. D 84 (2011)]
- ρ meson: [Maris, Tandy, Phys. Rev. C 60 (1999)] ~ Consistent description of baryons and mesons with one approximation.

Baryons

Quark-diquark approximation

3-body equation: transparent but numerically intricate (many Lorentz invariants and tensors)

Diquarks:

[Barabanov et al., Prog.Part.Nucl.Phys, 116 (2021)]

- Diguarks: From simple models to rich dynamical structure
- Quark-guark correlations in T matrix

Quark-diquark approximation

3-body equation: transparent but numerically intricate (many Lorentz invariants and tensors)

Diquarks:

[Barabanov et al., Prog.Part.Nucl.Phys. 116 (2021)]

- Physics: Diquark clustering in baryons? ightarrow Quark-diquark models in spirit of quark model
- Diquarks: From simple models to rich dynamical structure
- Quark-quark correlations in T matrix

Derivation of 2-body equation

- Interactions (approximation)
- Peplace scattering kernels K by two-body matrices T (exact)
- ③ Expansion in term of diquark correlations (approximation)

 \Rightarrow Fewer kinematic variables, smaller tensor basis (e.g., 8 instead of 64 for nucleon)

Baryons

Quark-diquark approximation

Faddeev equation:

•
$$\Gamma = \sum_{i} \Gamma_{i} = \sum_{i} K_{i} G_{0} \Gamma$$

• Replace scattering kernels K_i by two-body matrices T_i : $T_i = (1 + T_i G_0) K_i$

•
$$T_i G_0 \Gamma = (1 + T_i G_0) \underbrace{K_i G_0 \Gamma}_{\Gamma_i}$$

• $\Gamma_i = T_i G_0 (\Gamma - \Gamma_i) = T_i G_0 (\Gamma_j + \Gamma_k)$

Quark-diquark approximation

Faddeev equation:

•
$$\Gamma = \sum_{i} \Gamma_{i} = \sum_{i} K_{i} G_{0} \Gamma$$

• Replace scattering kernels K_i by two-body matrices T_i : $T_i = (1 + T_i G_0)K_i$

•
$$T_i G_0 \Gamma = (1 + T_i G_0) \underbrace{K_i G_0 \Gamma}_{\Gamma_i}$$

• $\Gamma_i = T_i G_0 (\Gamma - \Gamma_i) = T_i G_0 (\Gamma_j + \Gamma_k)$

Diquark approximation:

Quark-quark scattering matrix \rightarrow sum over diquark correlations

Scalar and axialvector diquarks lightest \rightarrow important in nucleon and Δ

Markus Q. Huber (Giessen University)

Bound states in strong interaction physics

Nucleon and Δ

- Rainbow-ladder with Maris-Tandy interaction
- Parameters fixed in meson sector
- In good agreement with experiment
- 3-body agrees with quark-diquark calculation

Nucleon and Δ

- Rainbow-ladder with Maris-Tandy interaction
- Parameters fixed in meson sector
- In good agreement with experiment
- 3-body agrees with quark-diquark calculation

[Eichmann, Sanchis-Alepuz, Williams, Alkofer, Fischer, Prog.Part.Nucl.Phys. 91 (2016); Eichmann, Few Body Syst. 63 (2022)]

Bound states in strong interaction physics

Overview

DSE/BSE/Faddeev landscape (2015)									
level of complexity									
			$\mathbb{D} \cdot \mathbb{D}$	<u> </u>		• • • • • • • • • • • • • • • • • • • •			
	I) NJL/cont interactio		II) Quark-diquark model	III) DSE (RL)		IV) DSE (bRL)			
umop/dn + N, 2 = N, 2 N -	Δ masses Δ em. FFs $\rightarrow \Delta \gamma$	* * *	1 1 1	1 1	√ √	√			
$\stackrel{+}{\underset{\mathbf{q}}{}} N^*,$	Δ^* masses $\rightarrow N^*/\Delta^*$	√ √	√ √						
γN^* , γN	Δ^* masses $\rightarrow N^*/\Delta^*$		~						
excit em. TFF	ind states ted states FF Fs		~						
grou excit	and states ted states								
		Cloet, Thomas, Roberts, Segovia, Chen, et al.	Oettel, Alkofer, Bloch, Roberts, Segovia, Chen, et al.	Eichmann, Alkofer, Krassnigg, Nicmorus, Sanchis-Alepuz, CF	Eichmann, Alkofer, Sanchis-Alepuz, CF, Qin, Roberts	Sanchis-Alepuz, Williams, CF			
Christian Fischer (University of Gießen)			Hadron physics with functional methods			71			

[Fischer, Lecture at Internationale Universtitätswochen für Theoretische Physik, Admont, 2017]

Markus Q. Huber (Giessen University)

Overview

DSE/BSE/Faddeev landscape (2021)									
level of complexity									
		$\mathbf{D} \cdot \mathbf{D}$	0		VO· 10· 10				
I) NJL/contact interaction		II) Quark-diquark model	III) DSE (RL)		IV) DSE (bRL)				
$ \begin{array}{c} \underset{\substack{ \parallel \\ m \neq n}}{\text{Wopd}} \\ \underset{\substack{ \parallel \\ m \neq n}}{\text{H}} & N, \Delta \text{ em. FFs} \\ \underset{\substack{ n \neq n}}{\text{H}} & N + \Delta \gamma \\ \hline \\ & \underset{\substack{ n \neq n}}{\text{H}} & N^*, \Delta^* \text{masses} \\ \end{array} $	* * *	* * *	×	1 1 1	✓				
N^*, Δ^* masses $\gamma N \to N^*/\Delta^*$	~	\checkmark	✓	~					
excited states em. FF TFFs	*	4	***	****					
ground states excited states	1	4		√ √					
	Cloet, Thomas, Roberts, Segovia, Chen, et al.	Oettel, Alkofer, Bloch, Roberts, Segovia, Chen, et al.	Eichmann, Alkofer, Krassnigg, Nicmorus, Sanchis-Alepuz, CF	Eichmann, Alkofer, Sanchis-Alepuz, CF, Qin, Roberts	Sanchis-Alepuz, Williams, CF				
Christian Fischer (University	of Gießen)	Hadron physics with functional methods			72				

[Fischer, Lecture at Internationale Universtitätswochen für Theoretische Physik, Admont, 2017]

Markus Q. Huber (Giessen University)

• Experimental discovery of exotic XZY states \rightarrow four-quark states?

- Experimental discovery of exotic XZY states → four-quark states?
- Light scalar mesons: (inverted) mass hierarchy [Jaffe, PRD15 (1977)]? History of σ meson, lightest scalar nonet is incompatible with $q \overline{q}$ picture:

- Experimental discovery of exotic XZY states → four-quark states?
- Light scalar mesons: (inverted) mass hierarchy [Jaffe, PRD15 (1977)]? History of σ meson, lightest scalar nonet is incompatible with $q \overline{q}$ picture:

Light tetraquarks

Tetraquark picture confirmed by functional calculations [Heupel, Eichmann, Fischer, Phys. Lett. B 718 (2012); Eichmann, Fischer, Heupel, Phys. Lett. B 753, 282 (2016)]: $\sigma(500)$ is (dominantly) a four-quark state

Mixing of $q\overline{q}$ and $q\overline{q}q\overline{q}$ states:

Light tetraquarks

Tetraquark picture confirmed by functional calculations [Heupel, Eichmann, Fischer, Phys. Lett. B 718 (2012); Eichmann, Fischer, Heupel, Phys. Lett. B 753, 282 (2016)]: $\sigma(500)$ is (dominantly) a four-quark state

Mixing of $q\overline{q}$ and $q\overline{q}q\overline{q}$ states:

43/68

Results for hadronic bound states

Tetraquarks

Structure of four-quark states

Consider heavy-light system, e.g., X(3872).

Possible clustering of states:

Not mutually exclusive: Superpositions!

Markus Q. Huber (Giessen University)

Bound states in strong interaction physics

[Eichmann, Fischer, Santowsky, Wallbott, Few-Body Syst.61 (2020)]

2-body interactions

3-body interaction 4-body interaction

[Kvinikhidze, Khvedelidze, Theor. Math. Phys. 90 (1992); Heupel, Eichman, Fischer, PLB 718 (2012); Eichman, Fischer, Heupel, PLB 753 (2016)]

- Negelect 3- and 4-body interactions
- Complicated kinematics (4 momenta):
 - dressings f(9 Lorentz scalar)
 - scalar tetraquark: 256 tensors
 - \rightarrow Approximations necessary, e.g., only 2-body interactions

Results for hadronic bound states Tetraquarks

Clustering

Dynamic distribution over different sectors:

Results for hadronic bound states

Tetraquarks

$\chi_{c1}(3872) [X(3872)]$

- Rainbow-ladder with Maris-Tandy
- Quark mass dependence
- DD^* : $c\overline{q}$, $q\overline{c}$ (molecule)
- $\omega J/\psi$: $c\overline{c}$, $q\overline{q}$ (hadrocharmonium)
- AS: cq, cq (diquark-antidiquark)

[Wallbott, Eichmann, Fischer, Phys. Rev. D 100 (2019)]

Heavy-light meson poles more important than diquark poles.

Summary so far

- Up to now only rainbow-ladder with effective interaction (Maris-Tandy)
- Good quantitative description of pseudoscalar and vector mesons, nucleon and Δ
- Insight into tetraquark composition
- Important: chiral symmetry → Goldstone bosons, mass creation. Encoded in axialvector WTI → nontrivial relations between quark selfenergy and kernels.

Beyond rainbow-ladder?

Glueballs

What makes glueballs special?

Mass dynamically created from massless (due to gauge invariance) gluons.

- No constituent matter particles \rightarrow bound states of pure radiation
- Experimentally largely unexplored. Though a history of candidates. Recent results from J/ψ decay: $f_0(1710)$, $f_0(1770)$ [Sarantsev, Denisenko, Thoma, Klempt, Phys. Lett. B 816 (2021); JPAC Coll., Rodas et al., Eur.Phys.J.C 82 (2022)]
- Theoretically not fully understood (existence, mixing, decays)

Experiment:

Production in glue-rich environments, e.g., $p\bar{p}$ annihilation (PANDA), pomeron exchange in pp (central exclusive production), radiative J/ψ decays

Markus Q. Huber (Giessen University)

Bound states in strong interaction physics

Results for hadronic bound states

Glueballs

Bound state equations for QCD

Require scattering kernel K and propagator.

Glueballs

Bound state equations for QCD

- Require scattering kernels K and propagators.
- Quantum numbers determine which amplitudes Γ couple.

Gluphalle

Bound state equations for QCD

- Require scattering kernels K and propagators.
- Quantum numbers determine which amplitudes Γ couple.
- Ghosts from gauge fixing

One framework

- Natural description of mixing.
- Similar equations for hadrons with more than two constituents

Results for hadronic bound states

Gluphalle

Bound state equations for QCD

Focus on pure glueballs.

- Require scattering kernels K and propagators.
- Quantum numbers determine which amplitudes Γ couple.
- Ghosts from gauge fixing

One framework

- Natural description of mixing.
- Similar equations for hadrons with more than two constituents

Gluphalle

3PI effective action

[Review: MQH, Phys.Rept. 879 (2020)]

Introduce sources for propagators and three-point functions into path integral and perform additional Legendre transformations:

$$egin{aligned} Z[J, R^{(2)}, R^{(3)}, \ldots] &= \int D[\phi] e^{-S + \phi_i J_i + rac{1}{2} R^{(2)}_{ij} \phi_i \phi_j + rac{1}{3!} R^{(3)}_{ijk} \phi_i \phi_j \phi_k} \ & \Gamma[\Phi] o \Gamma[\Phi, D, \Gamma^{(3)}] \end{aligned}$$

Results for hadronic bound states Glueballs

Kernel construction

$$K = -2 rac{\delta^2 \Gamma^{3I}}{\delta D^2}$$

\rightarrow Kernels constructed by cutting two legs: gluon/gluon, ghost/gluon, gluon/ghost, ghost/ghost

[Fukuda, Prog. Theor. Phys 78 (1987); McKay, Munczek, Phys. Rev. D 40 (1989); Sanchis-Alepuz, Williams, J. Phys: Conf. Ser. 631 (2015); MQH, Fischer, Sanchis-Alepuz, Eur.Phys.J.C80 (2020)]

Kernels

Systematic derivation from 3PI effective action: [Berges, PRD70 (2004); Carrington, Guo, PRD83 (2011)] Self-consistent treatment of 3-point functions requires 3-loop expansion.

[Fukuda, Prog. Theor. Phys 78 (1987); McKay, Munczek, Phys. Rev. D 40 (1989); Sanchis-Alepuz, Williams, J. Phys: Conf. Ser. 631 (2015); MQH. Fischer, Sanchis-Alepuz, Eur, Phys. J.C80 (2020)]

Markus Q. Huber (Giessen University)

Bound states in strong interaction physics

Reminder: Functional spectrum calculations in rainbow-ladder truncation

Success in describing many aspects of the hadron spectrum gualitatively and guantitatively (mostly) based on rainbow-ladder truncation!

Workhorse for more than 20 years: Rainbow-ladder truncation with an effective interaction. e.g.. Maris-Tandy (or similar).

Results for hadronic bound states Glueballs

Functional glueball calculations

Glueballs? Bainbow-ladder?

Results for hadronic bound states Glueballs

Functional glueball calculations

Markus Q. Huber (Giessen University)

Functional glueball calculations

There is no rainbow for gluons!

Glueballs? Bainbow-ladder?

Model based BSE calculations (J = 0):

- [Mevers, Swanson, Phys.Rev.D87 (2013)]
- [Sanchis-Alepuz, Fischer, Kellermann, von Smekal, Phys.Rev.D92, (2015)]
- [Souza et al., Eur.Phys.J.A56 (2020)]
- [Kaptari, Kämpfer, Few Body Syst.61 (2020)]

Markus Q. Huber (Giessen University)

Gluphalle

Functional glueball calculations

There is no rainbow for gluons!

Glueballs? Rainbow-ladder?

Model based BSE calculations (J = 0):

- [Mevers, Swanson, Phys.Rev.D87 (2013)]
- [Sanchis-Alepuz, Fischer, Kellermann, von Smekal, Phys.Rev.D92, (2015)]
- [Souza et al., Eur.Phys.J.A56 (2020)]
- [Kaptari, Kämpfer, Few Body Syst.61 (2020)]

Alternative: Calculated input [MQH, Phys.Rev.D 101 (2020)]

- J = 0: [MQH, Fischer, Sanchis-Alepuz, Eur.Phys.J.C80 (2020)]
- J = 0, 2, 3, 4: [MQH. Fischer, Sanchis-Alepuz, Eur.Phys.J.C81 (2021)]

Extreme sensitivity on input!

Correlation functions of quarks and gluons

Equations of motion: 3-loop 3PI effective action

 \rightarrow [Review: MQH, Phys.Rept. 879 (2020)]

-1

- Conceptual and technical challenges: nonperturbative renormalization, two-loop diagrams, convergence, size of kernels, ...
- Self-contained: Only parameters are the strong coupling and the quark masses!
- Long way, e.g., ghost-gluon vertex, three-gluon vertex, four-gluon vertex, ...,
- → MQH, Phys.Rev.D 101 (2020)

Markus Q. Huber (Giessen University)

Correlation functions of quarks and gluons

Equations of motion: 3-loop 3PI effective action

 \rightarrow [Review: MQH, Phys.Rept. 879 (2020)]

-1

- Conceptual and technical challenges: nonperturbative renormalization, two-loop diagrams, convergence, size of kernels, ...
- Self-contained: Only parameters are the strong coupling and the quark masses!
- Long way, e.g., ghost-gluon vertex, three-gluon vertex, four-gluon vertex, ...,
- \rightarrow MQH, Phys.Rev.D 101 (2020)

Start with pure gauge theory.

Markus Q. Huber (Giessen University)

Landau gauge propagators

Self-contained: Only external input is the coupling!

Gluon dressing function:

Family of solutions [von Smekal, Alkofer, Hauck, PRL79 (1997); Aguilar, Binosi, Papavassiliou, Phys.Rev.D 78 (2008): Boucaud et al., JHEP06 (2008): Fischer, Maas, Pawlowski, Ann.Phys. 324 (2008); Alkofer, MQH, Schwenzer, Phys. Rev. D 81 (2010)]

Nonperturbative completions of Landau gauge [Maas, Phys. Lett. B 689 (2010)]?

Markus Q. Huber (Giessen University)

Three-gluon vertex:

Ghost dressing function:

[MQH, Phys.Rev.D 101 (2020)]

57/68

Stability of the solution

• Agreement with lattice results.

Stability of the solution

Agreement with lattice results.

• Concurrence between functional methods: 3PI vs. 2-loop DSE:

Stability of the solution

DSE vs. FRG:

- Agreement with lattice results. \checkmark
- Oncurrence between functional methods: ✓
 3PI vs. 2-loop DSE:

[Cucchieri, Maas, Mendes, Phys.Rev.D77 (2008); Sternbeck et al., Proc.Sci. LATTICE2016 (2017); Cyrol et al., Phys.Rev.D 94 (2016); MQH, Phys.Ref.D101 (2020)]

Markus Q. Huber (Giessen University)

Bound states in strong interaction physics

Stability of the solution: Extensions

• Three-gluon vertex: Tree-level dressing dominant, others subleading [Eichmann, Williams, Alkofer,

Vujinovic, Phys.Rev.D89 (2014); Pinto-Gómez et al., 2208.01020]

Stability of the solution: Extensions

- Three-gluon vertex: Tree-level dressing dominant, others subleading [Eichmann, Williams, Alkofer, Vujinovic, Phys.Rev.D89 (2014); Pinto-Gómez et al., 2208.01020]
- Four-gluon vertex: Influence on propagators tiny for d = 3 [MQH, Phys.Rev.D93 (2016)]

Stability of the solution: Extensions

- Three-gluon vertex: Tree-level dressing dominant, others subleading [Eichmann, Williams, Alkofer, Vujinovic, Phys.Rev.D89 (2014); Pinto-Gómez et al., 2208.01020]
- Four-gluon vertex: Influence on propagators tiny for d = 3 [MQH, Phys.Rev.D93 (2016)]
- Two-ghost-two-gluon vertex [MQH, Eur. Phys.J.C77 (2017)]: (FRG: [Corell, SciPost Phys. 5 (2018)])

59/68

Gauge invariance

Couplings can be extracted from each vertex.

- Slavnov-Taylor identities (gauge invariance): Agreement perturbatively (UV) necessary.
 [Cyrol et al., Phys.Rev.D 94 (2016)]
- Difficult to realize: Small deviations → Couplings cross and do not agree.
- Here: Vertex couplings agree down to GeV regime (IR can be different).

10 10⁰ 10^{-1} $\chi(p^2)$ 10^{-2} α_{aha} 10^{-3} α_{3a} 10^{-4} α_{4a} 10^{-5} 10^{-2} 10^{-1} 10⁰ 10¹ 10^{2} p[GeV]

[MQH, Phys. Rev. D 101 (2020)]

60/68

Correlation functions for complex momenta

(pseudoscalar glueball)

 $\boldsymbol{\lambda(P)}\boldsymbol{\Gamma(P)} = \mathcal{K} \cdot \boldsymbol{\Gamma(P)}$

 \rightarrow Eigenvalue problem for $\Gamma(P)$:

(1) Solve for $\lambda(P)$.

(a) Find *P* with
$$\lambda(P) = 1$$
.
 $\Rightarrow M^2 = -P^2$

Correlation functions for complex momenta

(pseudoscalar glueball)

However:

Propagators are probed at
$$\left(q \pm \frac{P}{2}\right)^2 = \frac{P^2}{4} + q^2 \pm \sqrt{P^2 q^2} \cos \theta = -\frac{M^2}{4} + q^2 \pm i M \sqrt{q^2} \cos \theta$$

 \rightarrow Complex for $P^2 < 0$

Time-like quantities ($P^2 < 0$) \rightarrow Correlation functions for complex arguments.

Markus Q. Huber (Giessen University)

Bound states in strong interaction physics

 $\lambda(P)\Gamma(P) = \mathcal{K} \cdot \Gamma(P)$

 \rightarrow Eigenvalue problem for $\Gamma(P)$:

Solve for $\lambda(P)$.

(a) Find *P* with $\lambda(P) = 1$. $\Rightarrow M^2 = -P^2$

Correlation functions in the complex plane

Standard integration techniques fail.

Consider example integral:

$$K(p^2) = \int dq^2 J(q^2, p^2), \quad J(p^2, q^2) = \int dq^2 \int d\theta \sin^2 \theta_1 \frac{1}{q^2 + p^2 + \sqrt{p^2}\sqrt{q^2}\cos\theta_1 + m^2} \frac{1}{q^2 + m^2}$$

 $\int d^4 q
ightarrow \int_{\Lambda^2_{
m LV}}^{\Lambda^2_{
m LV}} dq^2 \int d heta_1$

Correlation functions in the complex plane

Standard integration techniques fail.

Consider example integral:

$$\mathcal{K}(p^2) = \int dq^2 J(q^2, p^2), \quad J(p^2, q^2) = \int dq^2 \int d\theta \sin^2 \theta_1 \frac{1}{q^2 + p^2 + \sqrt{p^2}\sqrt{q^2}\cos\theta_1 + m^2} \frac{1}{q^2 + m^2}$$

After θ_1 integration:

Integration path $\Lambda^2_{IR} \to \Lambda^2_{UV}$ on real line forbidden.

 $\int d^4 q
ightarrow \int_{\Lambda^2_{
m UV}}^{\Lambda^2_{
m UV}} dq^2 \int d heta_1$

Markus Q. Huber (Giessen University)

Bound states in strong interaction physics

Extrapolation of $\lambda(P^2)$

Extrapolation method

- Extrapolation to time-like P² using Schlessinger's continued fraction method (proven superior to default Padé approximants) [Schlessinger, Phys.Rev.167 (1968)]
- Average over extrapolations using subsets of points for error estimate

$$f(x) = \frac{f(x_1)}{1 + \frac{a_1(x - x_1)}{1 + \frac{a_2(x - x_2)}{1 + \frac{a_3(x - x_3)}{\cdots}}}}$$

Coefficients a_i can determined such that f(x) exact at x_i .

Markus Q. Huber (Giessen University)

Extrapolation of $\lambda(P^2)$

Extrapolation method

- Extrapolation to time-like P² using Schlessinger's continued fraction method (proven superior to default Padé approximants) [Schlessinger, Phys.Rev.167 (1968)]
- Average over extrapolations using subsets of points for error estimate

Test extrapolation for solvable system:

Heavy meson [MQH, Sanchis-Alepuz, Fischer, Eur.Phys.J.C 80 (2020)]

$$f(x) = \frac{f(x_1)}{1 + \frac{a_1(x-x_1)}{1 + \frac{a_2(x-x_2)}{1 + \frac{a_2(x-x_2)}{1 + \frac{a_3(x-x_3)}{1 + \frac{a_3(x$$

Coefficients a_i can determined such that f(x) exact at x_i .

Markus Q. Huber (Giessen University)

Bound states in strong interaction physics

Extrapolation for glueball eigenvalue curves

Several curves: ground state and excited states.

Results for hadronic bound states

Glueballs

Glueball results J=0

Gauge-variant correlation functions:

Glueball results J=0

Glueball results J=0

Spectrum independent! \rightarrow Family of solutions yields the same physics.

All results for $r_0 = 1/418(5)$ MeV.

[MQH, Fischer, Sanchis-Alepuz, Eur, Phys.J.C80 (2020)]

Markus Q. Huber (Giessen University)

Bound states in strong interaction physics

March 27-28, 2023

65/68

Glueball results

[MQH, Fischer, Sanchis-Alepuz, Eur.Phys.J.C81 (2021)]

*: identification with some uncertainty [†]: conjecture based on irred. rep of octahedral group

Markus Q. Huber (Giessen University)

Bound states in strong interaction physics

March 27-28, 2023

Agreement with lattice results

• (New states: 0^{**++}, 0^{**-+}, 3⁻⁺, 4⁻⁺)

Summary

Model vs. first-principle calculations

Bottom-up	Top-down
Models	Direct calculations
Parameters: dependent (-), tuning (+)	No parameters: independent (+), no tuning (-)
Often simpler	Typically more involved
Well-tried and successful for certain applications	Requires good control and tests of input
Good to test qualitative understanding	Results form first principles possible

(Mixtures)

Markus Q. Huber (Giessen University)

 $+\frac{1}{2}$

 $+\frac{1}{2}$

Summary

- Model-based calculations:
 - Meson and baryon spectrum
 - Tetraguarks: Scalar • multiplet, clustering

1-+ 2+

Summary

Thank you for your attention.

Markus Q. Huber (Giessen University)

0

Bound states in strong interaction physics

Derivation of DSEs (details) I

Integral of a total derivative vanishes:

$$0 = \int D[\phi] \frac{\delta}{\delta \phi} e^{-S + \int dy \phi(y) J(y)} = \int D[\phi] \left(-\frac{\delta S}{\delta \phi(x)} + J(x) \right) e^{-S + \int dy \phi(y) J(y)}$$

Derivation of DSEs (details) I

Integral of a total derivative vanishes:

$$0 = \int D[\phi] \frac{\delta}{\delta \phi} e^{-S + \int dy \phi(y) J(y)} = \int D[\phi] \left(-\frac{\delta S}{\delta \phi(x)} + J(x) \right) e^{-S + \int dy \phi(y) J(y)}$$

Pull in front of integral \rightarrow Master DSE for full correlation functions

$$\mathbf{0} = \left(-\frac{\delta S}{\delta \phi(x)} \bigg|_{\phi(x') = \delta/\delta J(x')} + J(x) \right) \underbrace{Z[J]}_{e^{W[J]}} = \mathbf{0}$$

Derivation of DSEs (details) I

Integral of a total derivative vanishes:

$$0 = \int D[\phi] \frac{\delta}{\delta \phi} e^{-S + \int dy \phi(y) J(y)} = \int D[\phi] \left(-\frac{\delta S}{\delta \phi(x)} + J(x) \right) e^{-S + \int dy \phi(y) J(y)}$$

Pull in front of integral \rightarrow Master DSE for full correlation functions

_

$$\mathbf{0} = \left(-\frac{\delta S}{\delta \phi(x)} \bigg|_{\phi(x') = \delta/\delta J(x')} + J(x) \right) \underbrace{Z[J]}_{e^{W[J]}} = \mathbf{0}$$
$$e^{-W[J]} \left(\frac{\delta}{\delta J(x)} \right) e^{W[J]} = \frac{\delta W[J]}{\delta J(x)} + \frac{\delta}{\delta J(x)}$$

 \rightarrow Master DSE for connected correlation functions

$$\left.-\frac{\delta S}{\delta \phi(x)}\right|_{\phi(x')=\frac{\delta W[J]}{\delta J(x')}+\frac{\delta}{\delta J(x')}}+J(x)=0.$$

Markus Q. Huber (Giessen University)

Bound states in strong interaction physics

1/11

Back

Derivation of DSEs (details) II

Legendre transformation:

$$\begin{split} \frac{\delta W[J]}{\delta J(x)} &\to \Phi(x) \\ \frac{\delta}{\delta J(x)} &\to \int dz \, D(x,z)^J \frac{\delta}{\delta \Phi(z)} \\ \left(\frac{\delta}{\delta J(x)} = \int dz \frac{\delta \Phi(z)}{\delta J(x)} \frac{\delta}{\delta \Phi(z)} = \int dz \frac{\delta}{\delta J(x)} \frac{\delta W[J]}{\delta J(z)} \frac{\delta}{\delta \Phi(z)} = \int dz \frac{\delta^2 W[J]}{\delta J(x) \delta J(z)} \frac{\delta}{\delta \Phi(z)} \end{split}$$

Derivation of DSEs (details) II

Legendre transformation:

$$\frac{\delta W[J]}{\delta J(x)} \to \Phi(x)$$
$$\frac{\delta}{\delta J(x)} \to \int dz \, D(x,z)^J \frac{\delta}{\delta \Phi(z)}$$
$$\left(\frac{\delta}{\delta J(x)} = \int dz \frac{\delta \Phi(z)}{\delta J(x)} \frac{\delta}{\delta \Phi(z)} = \int dz \frac{\delta}{\delta J(x)} \frac{\delta W[J]}{\delta J(z)} \frac{\delta}{\delta \Phi(z)} = \int dz \frac{\delta^2 W[J]}{\delta J(x) \delta J(z)} \frac{\delta}{\delta \Phi(z)} \right)$$

Master DSE for 1PI correlation functions

$$-\frac{\delta S}{\delta \phi(x)}\bigg|_{\phi(x')=\Phi(x')+\int dz \, D(x',z)^J \, \delta/\delta \Phi(z)} + \frac{\delta \Gamma[\Phi]}{\delta \Phi(x)} = 0$$

Get DSE for *n*-point function by applying n - 1 derivatives.

Markus Q. Huber (Giessen University)

Bound states in strong interaction physics

Three-gluon vertex

[Cucchieri, Maas, Mendes, Phys. Rev. D 77 (2008); Sternbeck et al., 1702.00612; MQH, Phys. Rev. D 101 (2020)]

Simple kinematic dependence of three-gluon vertex (only singlet variable of S₃)

Large cancellations between diagrams

Markus Q. Huber (Giessen University)

Bound states in strong interaction physics

Back

Ghost-gluon vertex

Ghost-gluon vertex:

- Nontrivial kinematic dependence of ghost-gluon vertex
- Qualitative agreement with lattice results, though some quantitative differences (position of peak!).

Markus Q. Huber (Giessen University)

Landau gauge propagators in the complex plane

Simpler truncation:

Simpler truncation:

 \rightarrow Opening at $q^2 = p^2$.

D,

Back

Appearance of branch cuts for complex momenta forbids integration directly to cutoff.

Markus Q. Huber (Giessen University)

Bound states in strong interaction physics

Back

Simpler truncation:

[Fischer, MQH, Phys.Rev.D 102 (2020)]

Simpler truncation:

[[]Fischer, MQH, Phys.Rev.D 102 (2020)]

- Ourrent truncation leads to a pole-like structure in the gluon propagator.
- Analyticity up to 'pole' confirmed by various tests (Cauchy-Riemann, Schlessinger, reconstruction)

Markus Q. Huber (Giessen University)

Bound states in strong interaction physics

Higher order diagrams

One-loop diagrams only:

[MQH, Fischer, Sanchis-Alepuz, Eur.Phys.J.C80 (2020); MQH, Fischer, Sanchis-Alepuz, Eur.Phys.J.C81 (2021)]

Two-loop diagrams: subleading effects

• 0⁻⁺: none

[MQH, Fischer, Sanchis-Alepuz, EPJ Web Conf. 258 (2022)]

[MQH, Fischer, Sanchis-Alepuz, HADRON2021, arXiv:2201.05163]

Markus Q. Huber (Giessen University)

Bound states in strong interaction physics

March 27-28, 2023

Amplitudes

Eigenvectors of eigenvalue problem: Amplitudes, information about significance of single parts.

 \rightarrow Amplitudes have different behavior for ground state and excited state. Useful guide for future developments.

 \rightarrow Meson/glueball amplitudes: Information about mixing.

Markus Q. Huber (Giessen University)

Bound states in strong interaction physics

8/11

Glueball amplitudes for spin J

[MQH, Fischer, Sanchis-Alepuz, Eur.Phys.J.C81 (2021)]

$$\Gamma_{\mu\nu
ho\sigma...}(p_1,p_2) = \sum \tau^i_{\mu
u
ho\sigma...}(p_1,p_2)h_i(p_1,p_2)$$

Numbers of tensors:

J	P = +	P = -
0	2	1
1	4	3
>2	5	4

Increase in complexity:

- 2 gluon indices (transverse)
- *J* spin indices (symmetric, traceless, transverse to *P*)

Low number of tensors, but high-dimensional tensors!

 \rightarrow Computational cost increases with *J*.

J = 1 glueballs

Landau-Yang theorem

Two-photon states cannot couple to $J^{P} = 1^{\pm}$ or $(2n + 1)^{-}$

[Landau, Dokl.Akad.Nauk SSSR 60 (1948); Yang, Phys. Rev. 77 (1950)].

(\rightarrow Exclusion of J = 1 for Higgs because of $h \rightarrow \gamma \gamma$.)

Applicable to glueballs?

- \rightarrow Not in this framework, since gluons are not on-shell.
- \rightarrow Presence of J = 1 states is a dynamical question.

$$J = 1$$
 not found here.

Markus Q. Huber (Giessen University)

Bound states in strong interaction physics

Charge parity

Transformation of gluon field under charge conjugation:

$${\cal A}^{a}_{\mu}
ightarrow -\eta(a) {\cal A}^{a}_{\mu}$$

where

$$\eta(a) = \left\{ egin{array}{cc} +1 & a = 1, 3, 4, 6, 8 \ -1 & a = 2, 5, 7 \end{array}
ight.$$

Color neutral operator with two gluon fields:

$$A^a_\mu A^a_
u o \eta(a)^2 A^a_\mu A^a_
u = A^a_\mu A^a_
u.$$

 $\Rightarrow C = +1$

Negative charge parity, e.g.:

$$egin{aligned} d^{abc} A^a_\mu A^b_
u A^c_
ho &
ightarrow - d^{abc} \eta(a) \eta(b) \eta(c) A^a_\mu A^b_
u A^c_
ho &= \ - d^{abc} A^a_\mu A^b_
u A^c_
ho. \end{aligned}$$

Only nonvanishing elements of the symmetric structure constant d^{abc}: zero or two indices equal to 2, 5 or 7.

Markus Q. Huber (Giessen University)

Bound states in strong interaction physics