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Introduction

Content and what to expect

Bound states and quantum chromodynamics

Functional formalism: bound state equations, correlation functions

How to solve a bound state equation (BSE)

First application to QCD: dynamic mass creation and mesons

Application to different systems: 2, 3, 4 (or more) constituents

Input and truncations: Models and first-principle

Application to glueball spectrum
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Introduction

What (not) to expect

Personal, biased selection of examples

Dyson-Schwinger/Bethe-Salpeter (DS/BS) framework only

No pentaquarks, hybrids (status: exploratory)

Focus on spectrum → no form factors etc.

Challenges of functional bound state calculations
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Introduction

Reading material

This presentation (with links): mqh.at/physics/presentations

A small selection to get started:

R. Alkofer and L. von Smekal, “The Infrared behavior of QCD Green’s functions: Confinement dynamical symmetry
breaking, and hadrons as relativistic bound states”, Phys. Rept. 353 (2001) 281, hep-ph/0007355

P. Maris and C. D. Roberts, “Dyson-Schwinger equations: A Tool for hadron physics”, Int. J. Mod. Phys. E 12
(2003) 297, nucl-th/0301049

A. Bashir, L. Chang, I. C. Cloet, B. El-Bennich,Y. X. Liu, C. D. Roberts and P. C. Tandy, “Collective perspective on
advances in Dyson-Schwinger Equation QCD”, Commun. Theor. Phys. 58 (2012) 79, arXiv:1201.3366

Baryons: G. Eichmann, H. Sanchis-Alepuz, R. Williams, R. Alkofer, C.S. Fischer, “Baryons as relativistic
three-quark bound states”, Progress in Particle and Nuclear Physics 91 (2016) 1-100, arXiv:1606.09602

Christian S. Fischer, Hadron physics with functional methods, Internationale Universtitätswochen für Theoretische
Physik, Admont, 2017
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Introduction

Reading material, cont.

Special topics:

Tetraquarks: G. Eichmann, C. S. Fischer, W. Heupel, N. Santowsky and P. C. Wallbott, “Four-Quark States from
Functional Methods”, Few Body Syst. 61 (2020) no.4, 38, arXiv:2008.10240

Glueballs: M. Q. Huber, C. S. Fischer and H. Sanchis-Alepuz, “Higher spin glueballs from functional methods”, Eur.
Phys. J. C 81 (2021) no.12, 1083, arXiv:2110.09180

Correlation functions: M. Q. Huber, “Nonperturbative properties of Yang-Mills theories”, Phys. Rept. 879 (2020) 1,
arXiv:1808.05227; M. Q. Huber, “Correlation functions of Landau gauge Yang-Mills theory”, Phys. Rev. D 101
(2020), 114009, arXiv:2003.13703

If you want to know (technical) details:

Derivation of correlation functions: M. Q. Huber, A. K. Cyrol and J. M. Pawlowski, “DoFun 3.0: Functional
equations in Mathematica”, Comput. Phys. Commun. 248 (2020), 107058, arXiv:1908.02760

Technical basics: see webpage (material from Doctoral Training Program 2022, ECT*, Trento)

Advanced techniques: H. Sanchis-Alepuz and R. Williams, “Recent developments in bound-state calculations using
the Dyson–Schwinger and Bethe–Salpeter equations”, Comput. Phys. Commun. 232 (2018), 1-21,
arXiv:1710.04903
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Introduction

Bound states

Constituents bound by some force.

Localized
Attractive force
Behaves as a single object (under
certain conditions)
Discrete spectrum (as opposed to free
constituents)
2 or more constituents

2 fermions in QED:
Example: Hydrogen atom
one-photon exchange
Coulomb potential ∝ 1/r
spin-orbit coupling: fine splitting
spin-spin coupling: hyperfine splitting

We will look for poles in n-point functions/scattering matrices!
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The strong interaction

Quantum chromodynamics: gauge theory
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The strong interaction

Quantum chromodynamics: gauge theory

L QED = ψ (− /D + m)ψ

+
1
2

Tr{FµνFµν}
Fµν = ∂µAν − ∂νAµ
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Introduction

The strong interaction

Quantum chromodynamics: non-Abelian gauge theory

L QCD =
∑

flavor f

ψf (− /D + m)ψf

+
1
2

Tr{FµνFµν}
Fµν = ∂µAν − ∂νAµ + i g [Aµ,Aν ]

Aµ = T aAa
µ

gauge group SU(3) → 3 colors for quarks, 8
gluons
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Introduction

Properties of the strong interaction

Confinement: “no free quarks or gluons”
dual superconductor picture, center vortices, Kugo-Ojima, . . . many open questions

Dynamical mass creation:
light quarks ∼ MeV
proton ∼ GeV
→ chiral symmetry and its breaking

Rich spectrum: mesons, baryons, exotics (XYZ states, multiquark states, states with gluonic
content)
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Introduction

From protons to quarks

Status 1947: Electron, proton, neutron, photon
→ Build the world around us.

Cosmic rays: positron, pions, muon (Rabi: “Who
ordered that?”)
hypothesized: neutrino

1947-1950: Kaons, Lambda

“Particle zoo”: Many new particles (hadrons) found
Pauli: “Had I foreseen that, I would have gone into botany.”

Quark model: 1964, Gell-Mann, Zweig, hadrons
are composite of quarks

Deep inelastic scattering experiments 1968:
point-like particles inside protons

Alexander Gorfer (quant.uni-graz.at), CC-BY-SA
4.0, mod.
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Introduction

Bound states of the strong interaction

Quark model 1964:
Solve Schrödinger
equation with a given
potential, e.g., Cornell:

V (r) = −4
3
αS

r
+σ r+const.

Abundance of states

Meson Baryon

Yang-Mills (infinitely heavy quarks): potential
rises linearly

QCD: string between quarks can break →
creation of quark/antiquark pair

[Bali et al., Phys. Rev. D 71 (2005)]
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Bound states of the strong interaction

Quark model 1964:
Solve Schrödinger
equation with a given
potential, e.g., Cornell:

V (r) = −4
3
αS

r
+σ r+const.

Abundance of states

Meson Baryon

Exotics:

Tetraquark Pentaquark Hybrid Glueball
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Introduction

Multiplets

Quark model

Classification in terms of mesons
or baryons → multiplets

Outside this classification
→ exotics

JPC = 0−+

Classification not always easy, e.g., scalar sector JPC = 0++. → tetraquarks, glueballs
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Bound state equations Hadrons as bound states

Hadrons as bound states

Hadron masses from correlation functions of color singlet operators.

Examples:
JPC = 0−+ meson → O(x) = ψ(x)γ5ψ(x)
JPC = 0++ glueball → O(x) = Fµν(x)Fµν(x)

D(x − y) = ⟨O(x)O(y)⟩
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Hadrons as bound states

Hadron masses from correlation functions of color singlet operators.

Examples:
JPC = 0−+ meson → O(x) = ψ(x)γ5ψ(x)
JPC = 0++ glueball → O(x) = Fµν(x)Fµν(x)

D(x − y) = ⟨O(x)O(y)⟩
Lattice: Mass from exponential Euclidean time decay

lim
t→∞

⟨O(x)O(0)⟩ ∼ e−t M
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Bound state equations Hadrons as bound states

Hadrons as bound states

Hadron masses from correlation functions of color singlet operators.

Examples:
JPC = 0−+ meson → O(x) = ψ(x)γ5ψ(x)
JPC = 0++ glueball → O(x) = Fµν(x)Fµν(x)

D(x − y) = ⟨O(x)O(y)⟩
Functional approach:
Glueball:

ij -1

=

+
1

2

ij
+

1

4

ij

+
1

6

ij
+

1

4

ij

+
1

4

i j
+

1

2

ij

+
1

2

ij

+
1

2

i j

+ 3-loop diagrams [MQH, Cyrol, Pawlowski, Comput.Phys.Commun. 248 (2020)]

Leading order: [Windisch,

MQH, Alkofer, Phys.Rev.D87 (2013)]
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Bound state equations Derivation

Derivation of bound state equations I
For more details see [Eichmann, Sanchis-Alepuz, Williams, Alkofer, Fischer, Prog.Part.Nucl.Phys. 91 (2016)]

n-particle bound state

Pole in a 2n-point function.

For simplicity here n = 2.

Full 4-point function:
G = G0 + G0 T G0

= +G TG0

disconn. connected part

→ scattering matrix T (amputated, conn.
part of G)

Dyson equations: nonperturbative
resummations! Compare:

f (x) =
1

1 − x
= 1+x +x2 + . . . = 1+x f (x) = 1+x +x2 f (x)

G = G0 + G0 K G

= +G K G

T = K + K G0 T

+ K T=T K

Scattering kernel K : 2-particle irreducible
with respect to horizontal quarks lines
(created by iteration)
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Bound state equations Derivation

Derivation of bound state equations II

On-shell: at pole position P2 = −M2

G → ΨΨ

P2 + M2

→G Ψ Ψ

T → Γ Γ

P2 + M2

→T Γ Γ

Bethe-Salpeter amplitude Γ is the amputated
wave function, Ψ = G0Γ.

Pole position: mass M

Residues: Γ Γ, ΨΨ

Plug into Dyson equations: homogeneous
Bethe-Salpeter equations

Ψ = G0 K Ψ

=Ψ K Ψ

Γ = K G0 Γ

=Γ ΓK
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Bound state equations How to solve a BSE

Elements of a BSE

Γ = K G0 Γ

Input:
Propagators G0

Kernel K

Output:
Mass M
Bethe-Salpeter
amplitudes Γ

=Γ

P

p

q − P
2

q + P
2

K
(P

,p
,q
)

Γq

(quark-antiquark state)

Symmetry constraints: Propagators and kernels are not independent!

Relevant for QCD: Chiral symmetry in quark sector → axial-vector Ward-Takahashi identity
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QFT basics

Functional elements

Central object

1PI effective action Γ[Φ]

Γ[Φ] is the generating functional of 1PI correlation functions. → Vertex expansion:

Γ[Φ] =
∞∑
i=0

1
N i1...in

∑
i1,...,in

Γi1...in Φi1 . . .Φin

vertices
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QFT basics

Generating functionals

Example: Scalar theory (Keep things simple. . . )

S[ϕ] =

∫
dx

(
ϕ(−∂2 + m2)ϕ+

λ3

3!
ϕ3 +

λ4

4!
ϕ4

)

Path integral:

Z [J] =
∫

D[ϕ]e−S[ϕ]+
∫

dxϕ(x)J(x) = eW [J]

Z [J] → Generating functional for full
correlation functions

W [J] → Generating functional for connected
correlation functions
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QFT basics

1PI effective action

Legendre transform: New variable Φ(x) (averaged field Φ in presence of external source J)

Φ(x) : = ⟨ϕ(x)⟩J =
δW [J]
δJ(x)

= Z [J]−1
∫

D[ϕ]ϕ(x)e−S[ϕ]+
∫

dyϕ(y)J(y)

Γ[Φ] = −W [J] +
∫

dxΦ(x)J(x)

(
J(x) =

δΓ[Φ]

δΦ(x)

)

Γ[Φ] → 1PI effective action, generating functional of one-particle irreducible correlation functions

(All correlation functions can be constructed from 1PI correlation functions.)
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QFT basics

Propagators and vertices

Propagator:

D(x , y) = D(x − y) =
δ2W [J]

δJ(x)δJ(y)

∣∣∣∣∣
J=0

= ⟨ϕ(x)ϕ(y)⟩ − ⟨ϕ(x)⟩⟨ϕ(y)⟩

D(x , y)J :=
δ2W [J]

δJ(x)δJ(y)
=

(
δ2Γ[Φ]

δΦ(x)δΦ(y)

)−1

Derivatives of 1PI effective action: (Note J ̸= 0 and “−” by convention.)

Γ(x1, . . . , xn)
J := − δΓ[Φ]

δΦ(x1) · · · δΦ(xn)

Physical vertices

Γ(x1, . . . , xn) := Γ(x1, . . . , xn)
J=0, n > 2
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QFT basics

Propagators and vertices

Propagator:

D(x , y) = D(x − y) =
δ2W [J]

δJ(x)δJ(y)

∣∣∣∣∣
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QFT basics Derivation of DSEs

Derivation of DSEs
Details in appendix

Integral of a total derivative vanishes:

0 =

∫
D[ϕ]

δ

δϕ
e−S+

∫
dyϕ(y)J(y) =

∫
D[ϕ]

(
− δS
δϕ(x)

+ J(x)
)

e−S+
∫

dyϕ(y)J(y)

Master DSE for 1PI correlation functions

δΓ[Φ]

δΦ(x)
=

δS
δϕ(x)

∣∣∣∣∣
ϕ(x ′)=Φ(x ′)+

∫
dz D(x′,z)J δ/δΦ(z)

Get DSE for n-point function by applying n − 1 derivatives.

= +
δ
δφΓ[φ] + + +
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QFT basics Derivation of DSEs

Automatized derivation with DoFun

Derivation of functional equations [Alkofer, MQH, Schwenzer, ’08; MQH, Braun, ’11; MQH, Cyrol, Pawlowski, ’19]

→ https://github.com/markusqh/DoFun/

Works in two steps:
Symbolic derivation (no
Feynman rules, just types
of fields)
Algebraic: Plug in Feynman
rules

See also QMeS-Derivation
[Pawlowski, Schneider, Wink, CPC 287

(2023)]

→ https://github.com/
QMeS-toolbox/
QMeS-DerivationMarkus Q. Huber (Giessen University) Bound states in strong interaction physics March 27-28, 2023 21 / 68
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QFT basics Derivation of DSEs

DSEs ↔ flow equations

Dyson-Schwinger equations (DSEs) Functional RG equations (FRGEs)
’integrated flow equations’ ’differential DSEs’
effective action Γ[ϕ] effective average action Γk [ϕ]
– regulator
n-loop structure (n const .) 1-loop structure
exactly only bare vertex per diagram no bare vertices

= +
δ
δφΓ[φ] + + +

k ∂
∂kΓ

k[φ] =

Both systems of equations are exact.
Both contain infinitely many equations.
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Bound state equations Quark propagator

Quark propagator

Described by 2 dressing functions:

(
Sij)−1

= δij (i /p A(p2) + B(p2)
)

Sij = δij −i /p A(p2) + B(p2)

p2 A(p2)2 + B(p2)2

= δij Zf (p2)

p2 + M(p2)2

(
−i /p + M(p2)

)
Quark renormalization function
Zf (p2) = 1/A(p2)

Quark mass function
M(p2) = B(p2)/A(p2)

0.001 0.010 0.100 1 10 100 1000
0.0

0.2

0.4

0.6

0.8

1.0

1.2
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Bound state equations Quark propagator

Quark propagator Dyson-Schwinger equation

(Use a model.)

Calculate the propagator.

Dyson-Schwinger equation (exact!):

−1 =
−1−

S(p)−1 = S−1
0 − Σ(p),

Σ(p) = −CF g2
∫

d4q
(2π)4 tr{γµS(q)Dµν(k)Γν(−k ;−p,q)}

Gluon propagator Dµν(k) =
(

gµν − kµkν
k2

)
Z(k2)

Quark-gluon vertex Γa,ν(k ; p, q) = i g T a
12∑

i=1

τµi (k ;p,q)hi(k ; p, q)
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Bound state equations Quark propagator

Approximations: Simple model input

Bare vertex: γµ

Gluon propagator:

Munczek-Nemirovsky model (local in momentum space):

Dµν(k) ∝ δµνδ(k) → algebraic equations

Mass creation

Nambu–Jona-Lasinio/contact model (local in position space):

Dµν(k) ∝ δµνc/Λ2 → four-fermi interaction (cutoff as add. parameter)

−1 =
−1− Critical behavior in coupling → dynamical symmetry breaking
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Bound state equations Quark propagator

Approximations: Rainbow

Need the gluon propagator (Z(k2)) and the quark-gluon vertex (hi(k ; p, q)).

Γa,ν(k ; p, q) ∝ γνh1(k ;p,q)
g2

4π
Z (k2)h1(k ;p,q) ∝ α(k2)

Iteration → only ’rainbow-like’ diagrams

0.001 0.100 10 1000 10
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0

2

4

6
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Bound state equations Quark propagator

Example for a model: Maris-Tandy interaction

[Maris, Roberts, Tandy, Phys. Rev. C 56 (1997); Maris, Tandy, Phys. Rev. C 60 (1999)]:

α(k2) = π η7
(

k2

Λ2

)2

e−η2 k2

Λ2︸ ︷︷ ︸
αIR(k2)

+αUV(k2)

0.0 0.5 1.0 1.5 2.0

0

2

4

6

8

10

12

14

Scale Λ from fπ
Quark masses mu = md , ms from mπ, mK

Parameter η: window of small sensitivity (for meson masses and decay constants)
αUV: Phenomenologically irrelevant, provides correct perturbative running to quark
propagator
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Bound state equations Kernel

Kernel approximations

Kernel: “all interactions which are two-particle irreducbible with respect to two horizontal quark
lines”

Examples:
Pertubation theory: one-particle
exchange
Models
Systematic derivation from effective
actions (see glueballs)

K

Analog to rainbow truncation:
ladder truncation

K Model for
’interaction’
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Bound state equations Kernel

Chiral symmetry

Massless QCD with 3 flavors: UV (1)× SUV (3)× UA(1)× SUA(3) flavor symmetry

Consequence of chiral
symmetry for bound state
equations:
Relation between quark
selfenergy and kernel

+ =
γ5 γ5

− −
K

γ5

K

γ5

Chiral symmetry spontaneously broken → Goldstone theorem: massless bosons (π, K , η)

Explicitly broken by quark masses, but quark masses small. → Goldstone bosons are light.

→ Nontrivial to fulfill!
Rainbow-ladder:
Explicit construction for beyond rainbow-ladder, e.g., [Bender, Roberts, von Smekal, Phys.Lett.B 380 (1996);

Williams, Fischer, Heupel, Phys. Rev. D 93 (2016); Qin, Roberts, Chin.Phys.Lett. 38 (2021)] → Cumbersome.
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Bound state equations Kernel

Dynamic mass creation

0.001 0.100 10 1000 10
5

0

2

4

6

8

dynamic mass creation in QCD

quark mass from Englert-Brout-Higgs effect

Consequence of dynamical breaking of
chiral symmetry.
Order parameters: M(0), chiral

condensate ⟨ψψ⟩ ∼
∫

dq Tr S(q)

UV: quark mass as external parameter
from QCD, “current quark mass“
IR: created mass, ”constituent quark
mass”
Most (visible) mass is created by QCD
and not the EBH effect!
Proton: ∼ 940 MeV, 3 light quarks
∼ 15 MeV
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Bound state equations Output

Amplitudes

Γ = K G0 Γ

JPC → Encoded in amplitude Γ:

Γ(P,p) =
n∑

i=1

τ i(P,p)hi(P,p)

Quark-antiquark-state → Dirac indices
Spin → Lorentz indices

Finite number of tensors τi compatible with given JPC!

Example: (pseudo)scalar mesons (JPC = 0±+)

scalar (P = +1):

τ i(P,p) = {1, i /P, i /p, [/p, /P]}

pseudoscalar (P = −1):

τ i(P,p)γ5
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Bound state equations Output

Mass

=Γ

P

p

q − P
2

q + P
2

K
(P

,p
,q
)

Γq

λ(P)Γ(P) = K · Γ(P)

→ Eigenvalue problem for Γ(P)

Find P with λ(P) = 1. ⇒ M2 = −P2

-7 -6 -5 -4 -3 -2 -1 0
0.0
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0.8
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Bound state equations Output

Calculation for P2 = −M2

=Γ

P

p

q − P
2

q + P
2

K
(P

,p
,q
)

Γq

λ(P)Γ(P) = K · Γ(P)

→ Eigenvalue problem for Γ(P):
Find P with λ(P) = 1.
⇒ M2 = −P2

Propagators are probed at
(

q ± P
2

)2

=
P2

4
+ q2 ±

√
P2 q2 cos θ = −M2

4
+ q2 ± i M

√
q2 cos θ

→ Complex for P2 < 0!

Time-like quantities (P2 < 0) → Correlation functions for complex arguments.
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Bound state equations Output

Quark propagator for complex arguments

Integration region (M = 1 GeV):(
q ± P

2

)2

= −M2

4
+ q2 ± i M

√
q2 cos θ

0 1 2 3

-2

-1

0

1

2

Analytic structure with Maris-Tandy model:

[Windisch, Phys. Rev. C 95 (2017)]
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Bound state equations Output
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Bound state equations Output

Quark propagator for complex arguments

Integration region (M = 1 GeV):(
q ± P

2

)2

= −M2

4
+ q2 ± i M

√
q2 cos θ

⇒ Accessible M determined by poles in
propagator.

Analytic structure with Maris-Tandy model:

[Windisch, Phys. Rev. C 95 (2017)]
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Results for hadronic bound states Mesons

Mesons from rainbow-ladder with Maris-Tandy interaction

qq:

π0

π0(1300)

π0(1800)

a0(1450)

ρ(770)

ρ(1450)

ρ(1700)

π1(1400)

a1(1260)b1(1235)
a2(1320)

π2(1670) ρ3(1690)

M
[G

eV
]

0

0.5

1

1.5

2

JPC
0−+ 1−− 0++ 1+− 1++ 2++ 2−− 2−+ 3−− 3+− 3++ 0−− 0+− 1−+ 2+−

PDG
η = 1.8
η = 2.0

[Fischer, Kubrak, Williams, Eur.Phys.J.A50 (2014)]

Well investigated for more
than 20 years
Describes pseudoscalar
and vector ground states
well
Not so good for other
quantum numbers
Also ’exotic’ quantum
numbers
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Results for hadronic bound states Mesons

Mesons from rainbow-ladder with Maris-Tandy interaction
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Results for hadronic bound states Baryons

Baryons: 3-body bound state equation

[Eichmann, Sanchis-Alepuz, Williams, Alkofer, Fischer, Prog.Part.Nucl.Phys. 91 (2016)]

proton: uud quarks → three constituents (u = d : nucleon)

Three-body bound states in six-point functions. →
Faddeev equation

→G Ψ Ψ

Γ = + +Γ
K

Γ
K

Γ
K

+ ΓK

2- and 3-body interactions
3 momenta (1 total, 2 relative)
Leading contribution (via three-gluon vertex) of 3-body interaction vanishes due to color
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Results for hadronic bound states Baryons

Baryon masses

[ ]
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[Eichmann, Sanchis-Alepuz, Williams, Alkofer, Fischer,

Prog.Part.Nucl.Phys. 91 (2016)]

Approximation

Rainbow-ladder
Maris-Tandy interaction

First covariant 3-body calculation of nucleon N:
[Eichmann, Alkofer, Krassnigg, Nicmorus, Phys. Rev. Lett. 104

(2010); Eichmann, Phys. Rev. D 84 (2011)]

∆: [Sanchis-Alepuz, Eichmann, Villalba-Chavez, Alkofer, Phys.

Rev. D 84 (2011)]

ρ meson: [Maris, Tandy, Phys. Rev. C 60 (1999)]

⇝ Consistent description of baryons and
mesons with one approximation.
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[Eichmann, Sanchis-Alepuz, Williams, Alkofer, Fischer,

Prog.Part.Nucl.Phys. 91 (2016)]

Approximation

Rainbow-ladder
Maris-Tandy interaction

First covariant 3-body calculation of nucleon N:
[Eichmann, Alkofer, Krassnigg, Nicmorus, Phys. Rev. Lett. 104

(2010); Eichmann, Phys. Rev. D 84 (2011)]

∆: [Sanchis-Alepuz, Eichmann, Villalba-Chavez, Alkofer, Phys.

Rev. D 84 (2011)]

ρ meson: [Maris, Tandy, Phys. Rev. C 60 (1999)]

⇝ Consistent description of baryons and
mesons with one approximation.
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Results for hadronic bound states Baryons

Quark-diquark approximation

3-body equation: transparent but numerically intricate (many Lorentz invariants and tensors)

Diquarks: [Barabanov et al., Prog.Part.Nucl.Phys. 116 (2021)]

Physics: Diquark clustering in baryons? → Quark-diquark models in spirit of quark model
Diquarks: From simple models to rich dynamical structure
Quark-quark correlations in T matrix

Derivation of 2-body equation
1 Neglect three-body interactions (approximation)
2 Replace scattering kernels K by two-body matrices T (exact)
3 Expansion in term of diquark correlations (approximation)

⇒ Fewer kinematic variables, smaller tensor basis (e.g., 8 instead of 64 for nucleon)
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Results for hadronic bound states Baryons

Quark-diquark approximation

Faddeev equation:

Γ =
∑

i

Γi =
∑

i

Ki G0 Γ

Replace scattering kernels Ki by two-body matrices Ti : Ti = (1 + Ti G0)Ki

Ti G0 Γ = (1 + Ti G0)Ki G0 Γ︸ ︷︷ ︸
Γi

Γi = Ti G0(Γ− Γi) = Ti G0(Γj + Γk )

Diquark approximation:

Quark-quark scattering matrix → sum over diquark correlations

Scalar and axialvector diquarks lightest → important in nucleon and ∆
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Results for hadronic bound states Baryons

Nucleon and ∆

Rainbow-ladder with Maris-Tandy interaction
Parameters fixed in meson sector
In good agreement with experiment
3-body agrees with quark-diquark calculation

[Eichmann, Sanchis-Alepuz, Williams, Alkofer, Fischer, Prog.Part.Nucl.Phys. 91 (2016); Eichmann, Few Body Syst. 63 (2022)]
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Results for hadronic bound states Baryons

Overview

Christian Fischer (University of Gießen) Hadron physics with functional methods  

DSE/BSE/Faddeev landscape (2015) 
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[Fischer, Lecture at Internationale Universtitätswochen für Theoretische Physik, Admont, 2017]

(2021)
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Results for hadronic bound states Tetraquarks

Tetraquarks

Experimental discovery of exotic XZY states → four-quark states?

Light scalar mesons: (inverted) mass hierarchy [Jaffe, PRD15 (1977)]?
History of σ meson, lightest scalar nonet is incompatible with q q picture:

q q:

a00(980)
[uū/dd̄]

f0(980)
[ss̄]

f0(500)
[uū/dd̄]

a−0 (980)
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[sū]

κ̄+(800)
[sd̄]

q q q q:
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Results for hadronic bound states Tetraquarks

Light tetraquarks

Tetraquark picture confirmed by functional calculations [Heupel, Eichmann, Fischer, Phys. Lett. B 718 (2012);

Eichmann, Fischer, Heupel, Phys. Lett. B 753, 282 (2016)]: σ(500) is (dominantly) a four-quark state

Mixing of qq and qqqq states:

x

x

x

bound state

resonance

threshold

300 400 500 600

100

600 700 800 800 900 1000 1100 900 1100 1300

4-quark
2-quark
mixed

[Santowsky, Fischer, Phys. Rev. D 105 (2022)]
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Results for hadronic bound states Tetraquarks

Structure of four-quark states

Consider heavy-light system, e.g., X (3872).

Possible clustering of states:

compact diquark/antidiquark meson molecule hadro-charmonium

Not mutually exclusive: Superpositions!
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Results for hadronic bound states Tetraquarks

Tetraquarks

[Eichmann, Fischer, Santowsky, Wallbott, Few-Body Syst.61 (2020)]

Γ = Γ
K

+ Γ
K

K
+ Γ + ΓK

K+ Γ
K

+perm.

2-body interactions 3-body interaction 4-body interaction
[Kvinikhidze, Khvedelidze, Theor. Math. Phys. 90 (1992); Heupel, Eichman, Fischer, PLB 718 (2012); Eichman, Fischer, Heupel, PLB 753

(2016)]

Negelect 3- and 4-body interactions
Complicated kinematics (4 momenta):

dressings f (9 Lorentz scalar)
scalar tetraquark: 256 tensors

→ Approximations necessary, e.g., only 2-body interactions
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Results for hadronic bound states Tetraquarks

Clustering

Dynamic distribution over different sectors:

Γ
K

K
c
q
q
c

ΓKK

c
q
q
c

ΓKK

c
q
q
c

diquark-antidiquark meson molecule hadro-charmonium
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Results for hadronic bound states Tetraquarks

χc1(3872) [X (3872)]

0 200 400 600 800
mq [MeV]

3
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7

M
c
q
q̄
c̄

[G
eV

]

DD
∗

DD
∗ + ωJ/Ψ

DD
∗ + ωJ/Ψ + AS

mu, ms, mc

Rainbow-ladder with Maris-Tandy
Quark mass dependence
D D∗: cq, qc (molecule)
ω J/ψ: cc, qq (hadrocharmonium)
AS: cq, cq (diquark-antidiquark)

[Wallbott, Eichmann, Fischer, Phys. Rev. D 100 (2019)]

Heavy-light meson poles more important than diquark poles.
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Results for hadronic bound states Tetraquarks

Summary so far

Up to now only rainbow-ladder with effective interaction (Maris-Tandy)

Good quantitative description of pseudoscalar and vector mesons, nucleon and ∆

Insight into tetraquark composition

Important: chiral symmetry → Goldstone bosons, mass creation. Encoded in axialvector
WTI → nontrivial relations between quark selfenergy and kernels.

Beyond rainbow-ladder?
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Results for hadronic bound states Glueballs

Glueballs

What makes glueballs special?

Mass dynamically created from massless (due to gauge
invariance) gluons.

No constituent matter particles → bound states of pure radiation
Experimentally largely unexplored. Though a history of candidates. Recent results from J/ψ decay:
f0(1710), f0(1770) [Sarantsev, Denisenko, Thoma, Klempt, Phys. Lett. B 816 (2021); JPAC Coll., Rodas et al., Eur.Phys.J.C 82

(2022)]

Theoretically not fully understood (existence, mixing, decays)

Experiment:
Production in glue-rich environments, e.g., pp̄ annihilation (PANDA), pomeron exchange in pp
(central exclusive production), radiative J/ψ decays

Reviews on glueballs: [Klempt, Zaitsev, Phys.Rept.454 (2007); Mathieu, Kochelev, Vento, Int.J.Mod.Phys.18 (2009); Crede, Meyer,
Prog.Part.Nucl.Phys.63 (2009); Ochs, J.Phys.G40 (2013); Llanes-Estrada, EPJST 230 (2021)]
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Results for hadronic bound states Glueballs

Bound state equations for QCD

=Γ

=Γ +

=Γ K Γ

K Γ

+ ΓK + ΓK

+K Γ K Γ K Γ

K Γ+ + K Γ

Require scattering kernel
K and propagator.

Quantum numbers
determine which
amplitudes Γ couple.
Ghosts from gauge fixing
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Results for hadronic bound states Glueballs

Bound state equations for QCD

=Γ

=Γ +

=Γ K Γ

K Γ

+ ΓK + ΓK

+K Γ K Γ K Γ

K Γ+ + K Γ

Require scattering kernels
K and propagators.
Quantum numbers
determine which
amplitudes Γ couple.
Ghosts from gauge fixing

One framework
Natural description of mixing.
Similar equations for hadrons with more than two constituents

Focus on pure glueballs.
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Results for hadronic bound states Glueballs

3PI effective action

[Review: MQH, Phys.Rept. 879 (2020)]

Introduce sources for propagators and three-point functions into path integral and perform
additional Legendre transformations:

Z [J,R(2),R(3), . . .] =

∫
D[ϕ]e−S+ϕi Ji+

1
2 R(2)

ij ϕiϕj+
1
3! R

(3)
ijk ϕiϕjϕk

Γ[Φ] → Γ[Φ,D, Γ(3)]

3PI effective action truncated at three-loops: [Berges, PRD70 (2004); Carrington, Guo, PRD83 (2011)]

Γ3l[Φ,D, Γ(3)] = Γ0,3l[Φ,D, Γ(3)]+Γint,3l[Φ,D, Γ(3)]

Γ0,3l[Φ, D,Γ(3)] = 1
8 +1

6 + 1
48 +1

8
−

− 1
12Γint,3l[D,Γ(3)] = +1

2 + 1
24 −1

3 −1
4
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Results for hadronic bound states Glueballs

Kernel construction

K = −2
δ2Γ3l

δD2

→ Kernels constructed by cutting two legs: gluon/gluon,ghost/gluon, gluon/ghost, ghost/ghost
[Fukuda, Prog. Theor. Phys 78 (1987); McKay, Munczek, Phys. Rev. D 40 (1989); Sanchis-Alepuz, Williams, J. Phys: Conf. Ser. 631

(2015); MQH, Fischer, Sanchis-Alepuz, Eur.Phys.J.C80 (2020)]

= +
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Results for hadronic bound states Glueballs

Kernels

Systematic derivation from 3PI effective action: [Berges, PRD70 (2004); Carrington, Guo, PRD83 (2011)]

Self-consistent treatment of 3-point functions requires 3-loop expansion.

= +1
2 +1

2 − + + +1
2K

= +1
2 +1

2K

= +1
2K

= +1
2 +1

2K

[Fukuda, Prog. Theor. Phys 78 (1987); McKay, Munczek, Phys. Rev. D 40 (1989); Sanchis-Alepuz, Williams, J. Phys: Conf. Ser. 631

(2015); MQH, Fischer, Sanchis-Alepuz, Eur.Phys.J.C80 (2020)]
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Results for hadronic bound states Glueballs

Reminder: Functional spectrum calculations in rainbow-ladder
truncation

Success in describing many aspects of the hadron spectrum qualitatively and quantitatively
(mostly) based on rainbow-ladder truncation!

Workhorse for more than 20 years: Rainbow-ladder
truncation with an effective interaction, e.g.,
Maris-Tandy (or similar).

K

restricted structure of equations (Γµ → γµ)

IR strength + perturbative UVMarkus Q. Huber (Giessen University) Bound states in strong interaction physics March 27-28, 2023 54 / 68



Results for hadronic bound states Glueballs

Functional glueball calculations

Glueballs? Rainbow-ladder?
−1

=
−1−1

2 −1
2

+ −1
6

−1
2

+

Model based BSE calculations
(J = 0):

[Meyers, Swanson, Phys.Rev.D87 (2013)]

[Sanchis-Alepuz, Fischer, Kellermann, von

Smekal, Phys.Rev.D92, (2015)]

[Souza et al., Eur.Phys.J.A56 (2020)]

[Kaptari, Kämpfer, Few Body Syst.61 (2020)]

Alternative: Calculated input [MQH, Phys.Rev.D 101 (2020)]

J = 0: [MQH, Fischer, Sanchis-Alepuz, Eur.Phys.J.C80 (2020)]

J = 0,2,3,4: [MQH, Fischer, Sanchis-Alepuz,

Eur.Phys.J.C81 (2021)]

Extreme sensitivity on input!
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Correlation functions

Correlation functions of quarks and gluons
Equations of motion: 3-loop 3PI effective action → [Review: MQH, Phys.Rept. 879 (2020)]

−1
=

−1−1
2 −1

2

+ −1
6

−1
2

+

−1 =
−1−

−1 =
−1−

=

+1
2+1

2+1
2

−2−2 +

= + +

= + +

Conceptual and technical challenges:
nonperturbative renormalization, two-loop
diagrams, convergence, size of kernels, . . .

Self-contained: Only parameters are the
strong coupling and the quark masses!

Long way, e.g., ghost-gluon vertex,
three-gluon vertex, four-gluon vertex, . . . ,

→ MQH, Phys.Rev.D 101 (2020)

Start with pure gauge theory.
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Correlation functions

Landau gauge propagators
Self-contained: Only external input is the coupling! [MQH, Phys.Rev.D 101 (2020)]

Gluon dressing function:

2 4 6 8 10

0
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4

Three-gluon vertex:

10
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-1

10
0
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1

-1
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1

Family of solutions [von Smekal, Alkofer, Hauck,

PRL79 (1997); Aguilar, Binosi, Papavassiliou,

Phys.Rev.D 78 (2008); Boucaud et al., JHEP06 (2008);

Fischer, Maas, Pawlowski, Ann.Phys. 324 (2008);

Alkofer, MQH, Schwenzer, Phys. Rev. D 81 (2010)]

Nonperturbative completions of Landau
gauge [Maas, Phys. Lett. B 689 (2010)]?

Ghost dressing function:
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Correlation functions

Stability of the solution

Agreement with lattice results.

Concurrence between functional methods:
3PI vs. 2-loop DSE:

3-loop 3PI EOM

3-loop 3PI EOM (SP)

2-loop DSE (SP)

0 1 2 3 4 5
-1

0

1

2

DSE vs. FRG:

0 1 2 3 4 5

-2

-1

0

1

2

DSE scaling

DSE decoupling

FRG scaling

FRG decoupling

Lattice

[Cucchieri, Maas, Mendes, Phys.Rev.D77 (2008); Sternbeck et al., Proc.Sci. LATTICE2016 (2017); Cyrol et al., Phys.Rev.D 94

(2016); MQH, Phys.Ref.D101 (2020)]
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Correlation functions
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Correlation functions

Stability of the solution: Extensions

Three-gluon vertex: Tree-level dressing dominant, others subleading [Eichmann, Williams, Alkofer,

Vujinovic, Phys.Rev.D89 (2014); Pinto-Gómez et al., 2208.01020]

Four-gluon vertex: Influence on propagators tiny for d = 3 [MQH, Phys.Rev.D93 (2016)]

Two-ghost-two-gluon vertex [MQH, Eur. Phys.J.C77 (2017)]:
(FRG: [Corell, SciPost Phys. 5 (2018)])

Dk
AA c

_
c
=0

Dk
AA c

_
c
dyn.

0.001 1 1000
p[GeV]

1.05

1.10

1.15

D
Ac

_
c(p2)

Dk
AA c

_
c
=0

Dk
AA c

_
c
dyn.

0.001 1 1000
p[GeV]

-3

-2

-1

1

D
AAA(p2)

Markus Q. Huber (Giessen University) Bound states in strong interaction physics March 27-28, 2023 59 / 68



Correlation functions

Stability of the solution: Extensions

Three-gluon vertex: Tree-level dressing dominant, others subleading [Eichmann, Williams, Alkofer,

Vujinovic, Phys.Rev.D89 (2014); Pinto-Gómez et al., 2208.01020]

Four-gluon vertex: Influence on propagators tiny for d = 3 [MQH, Phys.Rev.D93 (2016)]

dyn. 4-gluon vertex

bare 4-gluon vertex

1 2 3 4 5
p[GeV]

0.5

1.0

1.5

Z(p2)

Two-ghost-two-gluon vertex [MQH, Eur. Phys.J.C77 (2017)]:
(FRG: [Corell, SciPost Phys. 5 (2018)])

Dk
AA c

_
c
=0

Dk
AA c

_
c
dyn.

0.001 1 1000
p[GeV]

1.05

1.10

1.15

D
Ac

_
c(p2)

Dk
AA c

_
c
=0

Dk
AA c

_
c
dyn.

0.001 1 1000
p[GeV]

-3

-2

-1

1

D
AAA(p2)

Markus Q. Huber (Giessen University) Bound states in strong interaction physics March 27-28, 2023 59 / 68



Correlation functions

Stability of the solution: Extensions

Three-gluon vertex: Tree-level dressing dominant, others subleading [Eichmann, Williams, Alkofer,

Vujinovic, Phys.Rev.D89 (2014); Pinto-Gómez et al., 2208.01020]

Four-gluon vertex: Influence on propagators tiny for d = 3 [MQH, Phys.Rev.D93 (2016)]

Two-ghost-two-gluon vertex [MQH, Eur. Phys.J.C77 (2017)]:
(FRG: [Corell, SciPost Phys. 5 (2018)])

Dk
AA c

_
c
=0

Dk
AA c

_
c
dyn.

0.001 1 1000
p[GeV]

1.05

1.10

1.15

D
Ac

_
c(p2)

Dk
AA c

_
c
=0

Dk
AA c

_
c
dyn.

0.001 1 1000
p[GeV]

-3

-2

-1

1

D
AAA(p2)

Markus Q. Huber (Giessen University) Bound states in strong interaction physics March 27-28, 2023 59 / 68



Correlation functions

Gauge invariance

[MQH, Phys. Rev. D 101 (2020)]

Couplings can be extracted from each vertex.

Slavnov-Taylor identities (gauge
invariance): Agreement
perturbatively (UV) necessary.
[Cyrol et al., Phys.Rev.D 94 (2016)]

Difficult to realize: Small
deviations → Couplings cross and
do not agree.
Here: Vertex couplings agree
down to GeV regime (IR can be
different).

αghg
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Correlation functions

Correlation functions for complex momenta

=Γ

P

p

q − P
2

q + P
2

K
(P

,p
,q
)

Γq

(pseudoscalar glueball)

λ(P)Γ(P) = K · Γ(P)

→ Eigenvalue problem for Γ(P):
1 Solve for λ(P).
2 Find P with λ(P) = 1.

⇒ M2 = −P2

However:

Propagators are probed at
(

q ± P
2

)2

=
P2

4
+ q2 ±

√
P2 q2 cos θ = −M2

4
+ q2 ± i M

√
q2 cos θ

→ Complex for P2 < 0!

Time-like quantities (P2 < 0) → Correlation functions for complex arguments.
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Correlation functions

Correlation functions in the complex plane
Propagator results

Standard integration techniques fail.
∫

d4q →
∫ Λ2

UV

Λ2
IR

dq2
∫

dθ1

Consider example integral:

K (p2) =

∫
dq2J(q2, p2), J(p2, q2) =

∫
dq2

∫
dθ sin2 θ1

1

q2 + p2 +
√

p2
√

q2 cos θ1 + m2

1
q2 + m2

After θ1 integration:
Integration path Λ2

IR → Λ2
UV on real line

forbidden.

-8 -6 -4 -2 0 2 4
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Correlation functions

Extrapolation of λ(P2)

Extrapolation method

Extrapolation to time-like P2 using Schlessinger’s continued fraction method (proven
superior to default Padé approximants) [Schlessinger, Phys.Rev.167 (1968)]

Average over extrapolations using subsets of points for error estimate

f (x) =
f (x1)

1 + a1(x−x1)

1+ a2(x−x2)

1+
a3(x−x3)

...

Coefficients ai can
determined such that
f (x) exact at xi .

Test extrapolation for solvable system:
Heavy meson [MQH, Sanchis-Alepuz, Fischer, Eur.Phys.J.C 80 (2020)]
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Correlation functions

Extrapolation for glueball eigenvalue curves

0++:
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Several curves: ground state and excited states.
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Results for hadronic bound states Glueballs

Glueball results J=0

Gauge-variant correlation functions:
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Unique physical spectrum:

*

BSE

lattice [Morningstar, Peardon, 1999]

lattice [Athenodorou, Teper, 2020]

Spectrum independent! → Family of solutions yields the same physics.

All results for r0 = 1/418(5)MeV. [MQH, Fischer, Sanchis-Alepuz, Eur.Phys.J.C80 (2020)]
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Results for hadronic bound states Glueballs

Glueball results

**
*

*

*

*
**

*

*

*

BSE

lattice [Morningstar, Peardon, 1999]

lattice [Athenodorou, Teper, 2020]

**

*

*

*

*
*

*

*

*

BSE

lattice [Morningstar, Peardon, 1999]

lattice [Athenodorou, Teper, 2020]

[MQH, Fischer, Sanchis-Alepuz, Eur.Phys.J.C81 (2021)]

*: identification with some uncertainty
†: conjecture based on irred. rep of octahedral
group

Agreement with lattice results
(New states: 0

∗∗++, 0
∗∗−+, 3−+, 4−+)
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Summary

Model vs. first-principle calculations

Bottom-up Top-down
Models Direct calculations
Parameters: dependent (-), tuning (+) No parameters: independent (+), no tuning (-)
Often simpler Typically more involved
Well-tried and successful for certain applications Requires good control and tests of input
Good to test qualitative understanding Results form first principles possible

K

−1
=

−1−1
2 −1

2

+ −1
6

−1
2

+

=

+1
2+1

2+1
2

−2−2 +

(Mixtures)
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Summary

Summary
Model-based calculations:

Meson and baryon
spectrum
Tetraquarks: Scalar
multiplet, clustering
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From first principles:
Input: agreement with
other methods
(lattice + continuum) and
extensions tested
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glueball spectrum
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Thank you for your attention.
Markus Q. Huber (Giessen University) Bound states in strong interaction physics March 27-28, 2023 68 / 68



Derivation of DSEs (details) I

Back

Integral of a total derivative vanishes:

0 =

∫
D[ϕ]

δ

δϕ
e−S+

∫
dyϕ(y)J(y) =

∫
D[ϕ]

(
− δS
δϕ(x)

+ J(x)
)

e−S+
∫

dyϕ(y)J(y)

Pull in front of integral → Master DSE for full correlation functions

0 =

− δS
δϕ(x)

∣∣∣∣∣
ϕ(x′)=δ/δJ(x′)

+ J(x)

Z [J]︸︷︷︸
eW [J]

= 0

e−W [J]
(

δ

δJ(x)

)
eW [J] =

δW [J]
δJ(x)

+
δ

δJ(x)
→ Master DSE for connected correlation functions

− δS
δϕ(x)

∣∣∣∣∣
ϕ(x′)= δW [J]

δJ(x′)+
δ

δJ(x′)

+ J(x) = 0.
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Derivation of DSEs (details) II

Legendre transformation:

δW [J]
δJ(x)

→ Φ(x)

δ

δJ(x)
→

∫
dz D(x , z)J δ

δΦ(z)(
δ

δJ(x)
=

∫
dz
δΦ(z)
δJ(x)

δ

δΦ(z)
=

∫
dz

δ

δJ(x)
δW [J]
δJ(z)

δ

δΦ(z)
=

∫
dz

δ2W [J]
δJ(x)δJ(z)

δ

δΦ(z)

)

Master DSE for 1PI correlation functions

− δS
δϕ(x)

∣∣∣∣∣
ϕ(x ′)=Φ(x ′)+

∫
dz D(x ′,z)J δ/δΦ(z)

+
δΓ[Φ]

δΦ(x)
= 0

Get DSE for n-point function by applying n − 1 derivatives.
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Derivation of DSEs (details) II

Legendre transformation:

δW [J]
δJ(x)

→ Φ(x)

δ
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=

∫
dz
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=

∫
dz
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δ
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=
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dz
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∫
dz D(x ′,z)J δ/δΦ(z)

+
δΓ[Φ]

δΦ(x)
= 0

Get DSE for n-point function by applying n − 1 derivatives.
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Three-gluon vertex

Back

[Cucchieri, Maas, Mendes, Phys. Rev. D 77 (2008); Sternbeck et al., 1702.00612; MQH, Phys. Rev. D 101 (2020)]
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DSE

Sternbeck et al., 2017

Cucchieri et al., 2008

Simple kinematic dependence of three-gluon vertex (only singlet variable of S3)
Large cancellations between diagrams
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Ghost-gluon vertex

Back

Ghost-gluon vertex:
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Nontrivial kinematic dependence of
ghost-gluon vertex
Qualitative agreement with lattice
results, though some quantitative
differences (position of peak!).

[Maas, SciPost Phys. 8 (2019);

MQH, Phys. Rev. D 101 (2020)]
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Landau gauge propagators in the complex plane

Back

Simpler truncation:
−1

=
−1 −1

2 +

→ Opening at q2 = p2.

Appearance of branch cuts for complex momenta forbids integration directly to cutoff.
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Landau gauge propagators in the complex plane

Simpler truncation:
−1

=
−1 −1

2 +

[Fischer, MQH, Phys.Rev.D 102 (2020)]

Ray technique for self-consistent solution of a DSE:

Polar coordinates: p2 = p̃2ei θ

Current truncation leads to a pole-like structure in the gluon propagator.

Analyticity up to ’pole’ confirmed by various tests (Cauchy-Riemann, Schlessinger, reconstruction)
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Higher order diagrams

=Γ K Γ

One-loop diagrams only:
[MQH, Fischer, Sanchis-Alepuz, Eur.Phys.J.C80

(2020); MQH, Fischer, Sanchis-Alepuz,

Eur.Phys.J.C81 (2021)]

Two-loop diagrams: subleading effects
0−+: none
[MQH, Fischer, Sanchis-Alepuz, EPJ Web Conf. 258 (2022)]

0++: < 2%
[MQH, Fischer, Sanchis-Alepuz, HADRON2021, arXiv:2201.05163]
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Amplitudes

Eigenvectors of eigenvalue problem: Amplitudes, information about significance of single parts.

Ground state scalar glueball:
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Excited scalar glueball:
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→ Amplitudes have different behavior for ground state and excited state. Useful guide for future
developments.

→ Meson/glueball amplitudes: Information about mixing.
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Glueball amplitudes for spin J
[MQH, Fischer, Sanchis-Alepuz, Eur.Phys.J.C81 (2021)]

Γµνρσ...(p1,p2) =
∑

τ i
µνρσ...(p1,p2)hi(p1,p2)

p1, µ

p2, ν

P, ρ, σ, . . .
p

Numbers of tensors:

J P = + P = −
0 2 1
1 4 3
>2 5 4

Increase in complexity:
2 gluon indices (transverse)
J spin indices (symmetric, traceless,
transverse to P)

Low number of tensors, but high-dimensional
tensors!

→ Computational cost increases with J.
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J = 1 glueballs

Landau-Yang theorem

Two-photon states cannot couple to JP = 1± or (2n + 1)−

[Landau, Dokl.Akad.Nauk SSSR 60 (1948); Yang, Phys. Rev. 77 (1950)].
(→ Exclusion of J = 1 for Higgs because of h → γγ.)

Applicable to glueballs?

→ Not in this framework, since gluons are not on-shell.

→ Presence of J = 1 states is a dynamical question.

J = 1 not found here.
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Charge parity

Transformation of gluon field under charge conjugation:

Aa
µ → −η(a)Aa

µ

where

η(a) =
{

+1 a = 1,3,4,6,8
−1 a = 2,5,7

Color neutral operator with two gluon fields:

Aa
µAa

ν → η(a)2Aa
µAa

ν = Aa
µAa

ν .

⇒ C = +1

Negative charge parity, e.g.:

dabcAa
µAb

νAc
ρ →− dabcη(a)η(b)η(c)Aa

µAb
νAc

ρ =

− dabcAa
µAb

νAc
ρ.

Only nonvanishing elements of the symmetric structure constant dabc : zero or two indices equal to 2, 5 or 7.
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