Bound states in strong interaction physics (from a functional point of view)

$$
\mathcal{L}_{Q C D}=\bar{\psi}(-\not D+m) \psi+\mathcal{L}_{Y M}
$$

Markus Q. Huber

JUSTUS-LIEBIG-
(1) UNIVERSITAT

Physik-Combo (RTG 2522 Jena Leipzig)
Jena, Germany
March 27-28, 2023

Content and what to expect

- Bound states and quantum chromodynamics

Content and what to expect

- Bound states and quantum chromodynamics
- Functional formalism: bound state equations, correlation functions

Content and what to expect

- Bound states and quantum chromodynamics
- Functional formalism: bound state equations, correlation functions
- How to solve a bound state equation (BSE)

Content and what to expect

- Bound states and quantum chromodynamics
- Functional formalism: bound state equations, correlation functions
- How to solve a bound state equation (BSE)
- First application to QCD: dynamic mass creation and mesons

Content and what to expect

- Bound states and quantum chromodynamics
- Functional formalism: bound state equations, correlation functions
- How to solve a bound state equation (BSE)
- First application to QCD: dynamic mass creation and mesons
- Application to different systems: 2, 3, 4 (or more) constituents

Content and what to expect

- Bound states and quantum chromodynamics
- Functional formalism: bound state equations, correlation functions
- How to solve a bound state equation (BSE)
- First application to QCD: dynamic mass creation and mesons
- Application to different systems: 2, 3, 4 (or more) constituents
- Input and truncations: Models and first-principle

Content and what to expect

- Bound states and quantum chromodynamics
- Functional formalism: bound state equations, correlation functions
- How to solve a bound state equation (BSE)
- First application to QCD: dynamic mass creation and mesons
- Application to different systems: 2, 3, 4 (or more) constituents
- Input and truncations: Models and first-principle
- Application to glueball spectrum

What (not) to expect

- Personal, biased selection of examples

What (not) to expect

- Personal, biased selection of examples
- Dyson-Schwinger/Bethe-Salpeter (DS/BS) framework only

What (not) to expect

- Personal, biased selection of examples
- Dyson-Schwinger/Bethe-Salpeter (DS/BS) framework only
- No pentaquarks, hybrids (status: exploratory)

What (not) to expect

- Personal, biased selection of examples
- Dyson-Schwinger/Bethe-Salpeter (DS/BS) framework only
- No pentaquarks, hybrids (status: exploratory)
- Focus on spectrum \rightarrow no form factors etc.

What (not) to expect

- Personal, biased selection of examples
- Dyson-Schwinger/Bethe-Salpeter (DS/BS) framework only
- No pentaquarks, hybrids (status: exploratory)
- Focus on spectrum \rightarrow no form factors etc.
- Challenges of functional bound state calculations

Reading material

This presentation (with links): mqh.at/physics/presentations
A small selection to get started:

- R. Alkofer and L. von Smekal, "The Infrared behavior of QCD Green's functions: Confinement dynamical symmetry breaking, and hadrons as relativistic bound states", Phys. Rept. 353 (2001) 281, hep-ph/0007355
- P. Maris and C. D. Roberts, "Dyson-Schwinger equations: A Tool for hadron physics", Int. J. Mod. Phys. E 12 (2003) 297, nucl-th/0301049
- A. Bashir, L. Chang, I. C. Cloet, B. El-Bennich, Y. X. Liu, C. D. Roberts and P. C. Tandy, "Collective perspective on advances in Dyson-Schwinger Equation QCD", Commun. Theor. Phys. 58 (2012) 79, arXiv:1201. 3366
- Baryons: G. Eichmann, H. Sanchis-Alepuz, R. Williams, R. Alkofer, C.S. Fischer, "Baryons as relativistic three-quark bound states", Progress in Particle and Nuclear Physics 91 (2016) 1-100, arXiv:1606.09602
- Christian S. Fischer, Hadron physics with functional methods, Internationale Universtitätswochen für Theoretische Physik, Admont, 2017

Reading material, cont.

Special topics:

- Tetraquarks: G. Eichmann, C. S. Fischer, W. Heupel, N. Santowsky and P. C. Wallbott, "Four-Quark States from Functional Methods", Few Body Syst. 61 (2020) no.4, 38, arXiv:2008.10240
- Glueballs: M. Q. Huber, C. S. Fischer and H. Sanchis-Alepuz, "Higher spin glueballs from functional methods", Eur. Phys. J. C 81 (2021) no.12, 1083, arXiv:2110.09180
- Correlation functions: M. Q. Huber, "Nonperturbative properties of Yang-Mills theories", Phys. Rept. 879 (2020) 1, arXiv:1808.05227; M. Q. Huber, "Correlation functions of Landau gauge Yang-Mills theory", Phys. Rev. D 101 (2020), 114009, arXiv:2003.13703

If you want to know (technical) details:

- Derivation of correlation functions: M. Q. Huber, A. K. Cyrol and J. M. Pawlowski, "DoFun 3.0: Functional equations in Mathematica", Comput. Phys. Commun. 248 (2020), 107058, arXiv:1908.02760
- Technical basics: see webpage (material from Doctoral Training Program 2022, ECT*, Trento)
- Advanced techniques: H. Sanchis-Alepuz and R. Williams, "Recent developments in bound-state calculations using the Dyson-Schwinger and Bethe-Salpeter equations", Comput. Phys. Commun. 232 (2018), 1-21, arXiv:1710.04903

Bound states

Constituents bound by some force.

- Localized
- Attractive force
- Behaves as a single object (under certain conditions)
- Discrete spectrum (as opposed to free constituents)
- 2 or more constituents

Bound states

Constituents bound by some force.

- Localized
- Attractive force
- Behaves as a single object (under certain conditions)
- Discrete spectrum (as opposed to free constituents)
- 2 or more constituents

2 fermions in QED:

- Example: Hydrogen atom

- one-photon exchange
- Coulomb potential $\propto 1 / r$
- spin-orbit coupling: fine splitting
- spin-spin coupling: hyperfine splitting

Bound states

Constituents bound by some force.

- Localized
- Attractive force
- Behaves as a single object (under certain conditions)
- Discrete spectrum (as opposed to free constituents)

2 fermions in QED:

- Example: Hydrogen atom

- one-photon exchange
- Coulomb potential $\propto 1 / r$
- spin-orbit coupling: fine splitting
- spin-spin coupling: hyperfine splitting
- 2 or more constituents

We will look for poles in n-point functions/scattering matrices!

The strong interaction

Quantum chromodynamics:
gauge theory

The strong interaction

Quantum chromodynamics:

gauge theory

$$
\begin{aligned}
\mathcal{L}_{\mathrm{QED}}= & \bar{\psi}(-\not D+m) \psi \\
& +\frac{1}{2} \operatorname{Tr}\left\{F_{\mu \nu} F^{\mu \nu}\right\} \\
F_{\mu \nu}= & \partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}
\end{aligned}
$$

The strong interaction

Quantum chromodynamics: non-Abelian gauge theory

$\infty 00000000$

$$
\begin{aligned}
\mathcal{L}_{\text {QCD }}= & \sum_{\text {flavor } f} \bar{\psi}_{f}(-D+m) \psi_{f} \\
& +\frac{1}{2} \operatorname{Tr}\left\{F_{\mu \nu} F^{\mu \nu}\right\} \\
F_{\mu \nu}= & \partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}+i g\left[A_{\mu}, A_{\nu}\right] \\
A_{\mu}= & T^{a} A_{\mu}^{a}
\end{aligned}
$$

gauge group $S U(3) \rightarrow 3$ colors for quarks, 8 gluons

The strong interaction

Quantum chromodynamics: non-Abelian gauge theory

Properties of the strong interaction

- Confinement: "no free quarks or gluons"
dual superconductor picture, center vortices, Kugo-Ojima, ... many open questions
- Dynamical mass creation:
- light quarks $\sim \mathrm{MeV}$
- proton $\sim \mathrm{GeV}$
- \rightarrow chiral symmetry and its breaking
- Rich spectrum: mesons, baryons, exotics (XYZ states, multiquark states, states with gluonic content)

From protons to quarks

Status 1947: Electron, proton, neutron, photon \rightarrow Build the world around us.

Cosmic rays: positron, pions, muon (Rabi: "Who ordered that?")
hypothesized: neutrino
1947-1950: Kaons, Lambda
"Particle zoo": Many new particles (hadrons) found Pauli: "Had I foreseen that, I would have gone into botany."

Alexander Gorfer (quant.uni-graz.at), CC-BY-SA 4.0, mod.

Bound states of the strong interaction

Quark model 1964:

- Solve Schrödinger equation with a given potential, e.g., Cornell:

$$
V(r)=-\frac{4}{3} \frac{\alpha s}{r}+\sigma r+\text { const. }
$$

- Abundance of states

Baryon

- Yang-Mills (infinitely heavy quarks): potential rises linearly
- QCD: string between quarks can break \rightarrow creation of quark/antiquark pair

Bound states of the strong interaction

Quark model 1964:

- Solve Schrödinger equation with a given potential, e.g., Cornell:

$$
V(r)=-\frac{4}{3} \frac{\alpha s}{r}+\sigma r+\text { const. }
$$

- Abundance of states

Exotics:

Baryon

Multiplets

Quark model

Classification in terms of mesons or baryons \rightarrow multiplets

Outside this classification \rightarrow exotics

Multiplets

Quark model

Classification in terms of mesons or baryons \rightarrow multiplets

Outside this classification \rightarrow exotics

Classification not always easy, e.g., scalar sector $J^{P C}=0^{++} . \rightarrow$ tetraquarks, glueballs

Hadrons as bound states

Hadron masses from correlation functions of color singlet operators.

Hadrons as bound states

Hadron masses from correlation functions of color singlet operators.
Examples:
$J^{P C}=0^{-+}$meson $\rightarrow O(x)=\bar{\psi}(x) \gamma_{5} \psi(x)$
$J^{\mathrm{PC}}=0^{++}$glueball $\rightarrow O(x)=F_{\mu \nu}(x) F^{\mu \nu}(x)$

$$
D(x-y)=\langle O(x) O(y)\rangle
$$

Hadrons as bound states

Hadron masses from correlation functions of color singlet operators.
Examples:
$J^{\mathrm{PC}}=0^{-+}$meson $\rightarrow O(x)=\bar{\psi}(x) \gamma_{5} \psi(x)$
$J^{\mathrm{PC}}=0^{++}$glueball $\rightarrow O(x)=F_{\mu \nu}(x) F^{\mu \nu}(x)$

$$
D(x-y)=\langle O(x) O(y)\rangle
$$

Lattice: Mass from exponential Euclidean time decay

$$
\lim _{t \rightarrow \infty}\langle O(x) O(0)\rangle \sim e^{-t M}
$$

Hadrons as bound states

Hadron masses from correlation functions of color singlet operators.

Examples:

$J^{\mathrm{PC}}=0^{-+}$meson $\rightarrow O(x)=\bar{\psi}(x) \gamma_{5} \psi(x)$
$J^{\mathrm{PC}}=0^{++}$glueball $\rightarrow O(x)=F_{\mu \nu}(x) F^{\mu \nu}(x)$

$$
D(x-y)=\langle O(x) O(y)\rangle
$$

Functional approach:
Glueball:

+ 3-loop diagrams [MQH, Cyrol, Pawlowski, Comput.Phys.Commun. 248 (2020)]

Leading order: [Windisch, MQH, Alkofer, Phys.Rev.D87 (2013)]

Derivation of bound state equations I

For more details see [Eichmann, Sanchis-Alepuz, Williams, Alkofer, Fischer, Prog.Part.Nucl.Phys. 91 (2016)]

n-particle bound state

Pole in a $2 n$-point function.
For simplicity here $n=2$.

Derivation of bound state equations I

For more details see [Eichmann, Sanchis-Alepuz, Williams, Alkofer, Fischer, Prog.Part.Nucl.Phys. 91 (2016)]

n-particle bound state

Pole in a $2 n$-point function.
For simplicity here $n=2$.

Full 4-point function:

$$
G=G_{0}+G_{0} T G_{0}
$$

disconn. connected part
\rightarrow scattering matrix T (amputated, conn.
part of G)

Derivation of bound state equations I

For more details see [Eichmann, Sanchis-Alepuz, Williams, Alkofer, Fischer, Prog.Part.Nucl.Phys. 91 (2016)]

n-particle bound state

Pole in a $2 n$-point function.
For simplicity here $n=2$.
Full 4-point function:

$$
G=G_{0}+G_{0} T G_{0}
$$

\rightarrow scattering matrix T (amputated, conn. part of G)

Dyson equations: nonperturbative resummations! Compare:
$f(x)=\frac{1}{1-x}=1+x+x^{2}+\ldots=1+x f(x)=1+x+x^{2} f(x)$

$$
G=G_{0}+G_{0} K G
$$

$$
T=K+K G_{0} T
$$

Scattering kernel K: 2-particle irreducible with respect to horizontal quarks lines (created by iteration)

Derivation of bound state equations II

On-shell: at pole position $P^{2}=-M^{2}$

$$
G \rightarrow \frac{\psi \bar{\psi}}{P^{2}+M^{2}}
$$

$T \rightarrow \frac{\Gamma \bar{\Gamma}}{P^{2}+M^{2}}$

Bethe-Salpeter amplitude Γ is the amputated wave function, $\psi=G_{0} \Gamma$.

Derivation of bound state equations II

On-shell: at pole position $P^{2}=-M^{2}$

$$
G \rightarrow \frac{\psi \bar{\psi}}{P^{2}+M^{2}}
$$

$T \rightarrow \frac{\Gamma \bar{\Gamma}}{P^{2}+M^{2}}$

Bethe-Salpeter amplitude Γ is the amputated wave function, $\psi=G_{0} \Gamma$.

Elements of a BSE

$$
\Gamma=K G_{0} \Gamma
$$

Input:

- Propagators G_{0}
- Kernel K

Output:

- Mass M
- Bethe-Salpeter amplitudes 「

Elements of a BSE

$$
\Gamma=K G_{0} \Gamma
$$

Input:

- Propagators G_{0}
- Kernel K

Output:

- Mass M
- Bethe-Salpeter amplitudes 「

Symmetry constraints: Propagators and kernels are not independent!
Relevant for QCD: Chiral symmetry in quark sector \rightarrow axial-vector Ward-Takahashi identity

Functional elements

Central object

1 PI effective action $\lceil[\Phi]$
$\Gamma[\Phi]$ is the generating functional of 1 PI correlation functions. \rightarrow Vertex expansion:

$$
\Gamma[\Phi]=\sum_{i=0}^{\infty} \frac{1}{\mathcal{N}^{i_{1} \ldots i_{n}}} \sum_{i_{1}, \ldots, i_{n}} \Gamma_{\text {vertices }}^{i_{1} \ldots i_{n}} \Phi_{i_{1}} \ldots \Phi_{i_{n}}
$$

Generating functionals

Example: Scalar theory (Keep things simple...)

$$
S[\phi]=\int d x\left(\phi\left(-\partial^{2}+m^{2}\right) \phi+\frac{\lambda_{3}}{3!} \phi^{3}+\frac{\lambda_{4}}{4!} \phi^{4}\right)
$$

Generating functionals

Example: Scalar theory (Keep things simple...)

$$
S[\phi]=\int d x\left(\phi\left(-\partial^{2}+m^{2}\right) \phi+\frac{\lambda_{3}}{3!} \phi^{3}+\frac{\lambda_{4}}{4!} \phi^{4}\right)
$$

\qquad

Path integral:

$$
Z[J]=\int D[\phi] e^{-S[\phi]+\int d x \phi(x) J(x)}=e^{W[J]}
$$

$Z[J] \rightarrow$ Generating functional for full correlation functions
\qquad
\qquad

$W[J] \rightarrow$ Generating functional for connected correlation functions

1PI effective action

Legendre transform: New variable $\Phi(x)$ (averaged field Φ in presence of external source J)

$$
\begin{aligned}
\Phi(x) & :=\langle\phi(x)\rangle_{J}=\frac{\delta W[J]}{\delta J(x)}=Z[J]^{-1} \int D[\phi] \phi(x) e^{-S[\phi]+\int d y \phi(y) J(y)} \quad\left(J(x)=\frac{\delta \Gamma[\Phi]}{\delta \Phi(x)}\right) \\
\Gamma[\Phi] & =-W[J]+\int d x \Phi(x) J(x)
\end{aligned}
$$

1PI effective action

Legendre transform: New variable $\Phi(x)$ (averaged field Φ in presence of external source J)

$$
\begin{aligned}
\Phi(x): & =\langle\phi(x)\rangle_{J}=\frac{\delta W[J]}{\delta J(x)}=Z[J]^{-1} \int D[\phi] \phi(x) e^{-S[\phi]+\int d y \phi(y) J(y)} \quad\left(J(x)=\frac{\delta \Gamma[\Phi]}{\delta \Phi(x)}\right) \\
\Gamma[\Phi] & =-W[J]+\int d x \Phi(x) J(x)
\end{aligned}
$$

$\Gamma[\Phi] \rightarrow 1 \mathrm{PI}$ effective action, generating functional of one-particle irreducible correlation functions
(All correlation functions can be constructed from 1PI correlation functions.)

Propagators and vertices

Propagator:

$$
\begin{gathered}
D(x, y)=D(x-y)=\left.\frac{\delta^{2} W[J]}{\delta J(x) \delta J(y)}\right|_{J=0}=\langle\phi(x) \phi(y)\rangle-\langle\phi(x)\rangle\langle\phi(y)\rangle \\
D(x, y)^{J}:=\frac{\delta^{2} W[J]}{\delta J(x) \delta J(y)}=\left(\frac{\delta^{2} \Gamma[\Phi]}{\delta \Phi(x) \delta \Phi(y)}\right)^{-1}
\end{gathered}
$$

Propagators and vertices

Propagator:

$$
\begin{gathered}
D(x, y)=D(x-y)=\left.\frac{\delta^{2} W[J]}{\delta J(x) \delta J(y)}\right|_{J=0}=\langle\phi(x) \phi(y)\rangle-\langle\phi(x)\rangle\langle\phi(y)\rangle \\
D(x, y)^{J}:=\frac{\delta^{2} W[J]}{\delta J(x) \delta J(y)}=\left(\frac{\delta^{2} \Gamma[\Phi]}{\delta \Phi(x) \delta \Phi(y)}\right)^{-1}
\end{gathered}
$$

Derivatives of 1 PI effective action:
(Note $J \neq 0$ and "-" by convention.)

$$
\Gamma\left(x_{1}, \ldots, x_{n}\right)^{J}:=-\frac{\delta \Gamma[\Phi]}{\delta \Phi\left(x_{1}\right) \cdots \delta \Phi\left(x_{n}\right)}
$$

Physical vertices

$$
\Gamma\left(x_{1}, \ldots, x_{n}\right):=\Gamma\left(x_{1}, \ldots, x_{n}\right)^{J=0}, \quad n>2
$$

Derivation of DSEs

Integral of a total derivative vanishes:

$$
0=\int D[\phi] \frac{\delta}{\delta \phi} e^{-S+\int d y \phi(y) J(y)}=\int D[\phi]\left(-\frac{\delta S}{\delta \phi(x)}+J(x)\right) e^{-S+\int d y \phi(y) J(y)}
$$

Derivation of DSEs

Integral of a total derivative vanishes:

$$
0=\int D[\phi] \frac{\delta}{\delta \phi} e^{-S+\int d y \phi(y) J(y)}=\int D[\phi]\left(-\frac{\delta S}{\delta \phi(x)}+J(x)\right) e^{-S+\int d y \phi(y) J(y)}
$$

Master DSE for 1PI correlation functions

$$
\frac{\delta \Gamma[\Phi]}{\delta \Phi(x)}=\left.\frac{\delta S}{\delta \phi(x)}\right|_{\phi\left(x^{\prime}\right)=\Phi\left(x^{\prime}\right)+\int d z D\left(x^{\prime}, z\right)^{J} \delta / \delta \Phi(z)}
$$

Get DSE for n-point function by applying $n-1$ derivatives.

Automatized derivation with DoFun

Derivation of functional equations

[Alkofer, MQH, Schwenzer, '08; MQH, Braun, '11; MQH, Cyrol, Pawlowski, '19]
\rightarrow https://github.com/markusqh/DoFun/

Works in two steps:

- Symbolic derivation (no Feynman rules, just types of fields)
- Algebraic: Plug in Feynman rules

See also QMeS-Derivation

[Pawlowski, Schneider, Wink, CPC 287
(2023)]
\rightarrow https://github.com/
QMeS-toolbox/

DSEs \leftrightarrow flow equations

Dyson-Schwinger equations (DSEs)	Functional RG equations (FRGEs)
'integrated flow equations'	'differential DSEs'
effective action $\Gamma[\phi]$	effective average action $\Gamma^{k}[\phi]$
-	regulator
$\frac{n-l o o p ~ s t r u c t u r e ~(~}{\text { n const. }}$.	1-loop structure
exactly only bare vertex per diagram	no bare vertices
$\frac{s}{\delta \phi}[\lceil\phi]=$	

- Both systems of equations are exact.
- Both contain infinitely many equations.

Quark propagator

Described by 2 dressing functions:

$$
\begin{aligned}
\left(S^{i j}\right)^{-1} & =\delta^{i j}\left(i \not p A\left(p^{2}\right)+B\left(p^{2}\right)\right) \\
S^{i j} & =\delta^{i j} \frac{-i \not p A\left(p^{2}\right)+B\left(p^{2}\right)}{p^{2} A\left(p^{2}\right)^{2}+B\left(p^{2}\right)^{2}} \\
& =\delta^{i j} \frac{Z_{f}\left(p^{2}\right)}{p^{2}+M\left(p^{2}\right)^{2}}\left(-i \not p+M\left(p^{2}\right)\right)
\end{aligned}
$$

Quark renormalization function
$Z_{f}\left(p^{2}\right)=1 / A\left(p^{2}\right)$
Quark mass function
$M\left(p^{2}\right)=B\left(p^{2}\right) / A\left(p^{2}\right)$

Quark propagator

Described by 2 dressing functions:

$$
\begin{aligned}
\left(S^{i j}\right)^{-1} & =\delta^{i j}\left(i \not p A\left(p^{2}\right)+B\left(p^{2}\right)\right) \\
S^{i j} & =\delta^{i j} \frac{-i \not p A\left(p^{2}\right)+B\left(p^{2}\right)}{p^{2} A\left(p^{2}\right)^{2}+B\left(p^{2}\right)^{2}} \\
& =\delta^{i j} \frac{Z_{f}\left(p^{2}\right)}{p^{2}+M\left(p^{2}\right)^{2}}\left(-i \not p+M\left(p^{2}\right)\right)
\end{aligned}
$$

Quark renormalization function
$Z_{f}\left(p^{2}\right)=1 / A\left(p^{2}\right)$

Quark mass function
$M\left(p^{2}\right)=B\left(p^{2}\right) / A\left(p^{2}\right)$

$$
p^{2}\left[G e V^{2}\right]
$$

Quark propagator Dyson-Schwinger equation

- (Use a model.)

Quark propagator Dyson-Schwinger equation

- (Use a model.)
- Calculate the propagator.

Dyson-Schwinger equation (exact!):

$$
\begin{aligned}
S(p)^{-1} & =S_{0}^{-1}-\Sigma(p) \\
\Sigma(p) & =-C_{F} g^{2} \int \frac{d^{4} q}{(2 \pi)^{4}} \operatorname{tr}\left\{\gamma^{\mu} S(q) D_{\mu \nu}(k) \Gamma^{\nu}(-k ;-p, q)\right\}
\end{aligned}
$$

- Gluon propagator $D_{\mu \nu}(k)=\left(g_{\mu \nu}-\frac{k_{\mu} k_{\nu}}{k^{2}}\right) Z\left(k^{2}\right)$
- Quark-gluon vertex $\Gamma^{a, \nu}(k ; p, q)=i g T^{a} \sum_{i=1}^{12} \tau_{i}^{\mu}(k ; p, q) h_{i}(k ; p, q)$

Approximations: Simple model input

Bare vertex: γ_{μ}
Gluon propagator:

- Munczek-Nemirovsky model (local in momentum space):
$D_{\mu \nu}(k) \propto \delta_{\mu \nu} \delta(k) \rightarrow$ algebraic equations
Mass creation
- Nambu-Jona-Lasinio/contact model (local in position space):
$D_{\mu \nu}(k) \propto \delta_{\mu \nu} c / \Lambda^{2} \rightarrow$ four-fermi interaction (cutoff as add. parameter)

Critical behavior in coupling \rightarrow dynamical symmetry breaking

Approximations: Rainbow

Need the gluon propagator $\left(Z\left(k^{2}\right)\right)$ and the quark-gluon vertex $\left(h_{i}(k ; p, q)\right)$.

- $\Gamma^{a, \nu}(k ; p, q) \propto \gamma^{\nu} h_{1}(k ; p, q)$
- $\frac{g^{2}}{4 \pi} Z\left(k^{2}\right) h_{1}(k ; p, q) \propto \alpha\left(k^{2}\right)$

Iteration \rightarrow only 'rainbow-like' diagrams

Approximations: Rainbow

Need the gluon propagator $\left(Z\left(k^{2}\right)\right)$ and the quark-gluon vertex $\left(h_{i}(k ; p, q)\right)$.

- $\Gamma^{a, \nu}(k ; p, q) \propto \gamma^{\nu} h_{1}(k ; p, q)$
- $\frac{g^{2}}{4 \pi} Z\left(k^{2}\right) h_{1}(k ; p, q) \propto \alpha\left(k^{2}\right)$

Iteration \rightarrow only 'rainbow-like' diagrams

Example for a model: Maris-Tandy interaction

\alpha\left(k^{2}\right)=\underbrace{\pi \eta^{7}\left(\frac{k^{2}}{\Lambda^{2}}\right)^{2} e^{-\eta^{2} \frac{k^{2}}{\Lambda^{2}}}}_{\alpha_{\mathrm{R}}\left(k^{2}\right)}+\alpha_{\cup V}\left(k^{2}\right)
\]

- Scale \wedge from f_{π}
- Quark masses $m_{u}=m_{d}, m_{s}$ from m_{π}, m_{K}
- Parameter η : window of small sensitivity (for meson masses and decay constants)
- $\alpha_{u v}$: Phenomenologically irrelevant, provides correct perturbative running to quark propagator

Kernel approximations

Kernel: "all interactions which are two-particle irreducbible with respect to two horizontal quark lines"

Examples:

- Pertubation theory: one-particle exchange
- Models
- Systematic derivation from effective actions (see glueballs)

Analog to rainbow truncation:
ladder truncation

Chiral symmetry

Massless QCD with 3 flavors: $U_{V}(1) \times S U_{V}(3) \times U_{A}(1) \times S U_{A}(3)$ flavor symmetry
Consequence of chiral symmetry for bound state equations:
Relation between quark selfenergy and kernel

Chiral symmetry

Massless QCD with 3 flavors: $U_{V}(1) \times S U_{V}(3) \times U_{A}(1) \times S U_{A}(3)$ flavor symmetry
Consequence of chiral symmetry for bound state equations:
Relation between quark selfenergy and kernel

Chiral symmetry spontaneously broken \rightarrow Goldstone theorem: massless bosons (π, K, η)

Chiral symmetry

Massless QCD with 3 flavors: $U_{V}(1) \times S U_{V}(3) \times U_{A}(1) \times S U_{A}(3)$ flavor symmetry
Consequence of chiral symmetry for bound state equations:
Relation between quark selfenergy and kernel

Chiral symmetry spontaneously broken \rightarrow Goldstone theorem: massless bosons (π, K, η)
Explicitly broken by quark masses, but quark masses small. \rightarrow Goldstone bosons are light.
\rightarrow Nontrivial to fulfill!

- Rainbow-ladder:
- Explicit construction for beyond rainbow-ladder, e.g., [Bender, Roberts, von Smekal, Phys.Lett.B 380 (1996); Williams, Fischer, Heupel, Phys. Rev. D 93 (2016); Qin, Roberts, Chin.Phys.Lett. 38 (2021)] \rightarrow Cumbersome.

Dynamic mass creation

Amplitudes

$$
\Gamma=K G_{0} \Gamma
$$

$J^{\mathrm{PC}} \rightarrow$ Encoded in amplitude $\Gamma:$
Quark-antiquark-state \rightarrow Dirac indices
Spin \rightarrow Lorentz indices

$$
\Gamma(P, p)=\sum_{i=1}^{n} \tau^{i}(P, p) h_{i}(P, p)
$$

Amplitudes

$$
\Gamma=K G_{0} \Gamma
$$

$J^{\mathrm{PC}} \rightarrow$ Encoded in amplitude Γ :

Quark-antiquark-state \rightarrow Dirac indices
Spin \rightarrow Lorentz indices

$$
\Gamma(P, p)=\sum_{i=1}^{n} \tau^{i}(P, p) h_{i}(P, p)
$$

Finite number of tensors τ_{i} compatible with given J^{PC} !
Example: (pseudo)scalar mesons ($J^{P C}=0^{ \pm+}$)
scalar $(P=+1)$:

$$
\text { pseudoscalar }(P=-1) \text { : }
$$

$$
\tau^{i}(P, p)=\{\mathbb{1}, i \not \subset, i \not p,[p, \not \subset]\}
$$

$$
\tau^{i}(P, p) \gamma_{5}
$$

Mass

$$
\lambda(P) \Gamma(P)=\mathcal{K} \cdot \Gamma(P)
$$

\rightarrow Eigenvalue problem for $\Gamma(P)$

Mass

$$
\lambda(P) \Gamma(P)=\mathcal{K} \cdot \Gamma(P)
$$

\rightarrow Eigenvalue problem for $\Gamma(P)$

Find P with $\lambda(P)=1 . \Rightarrow M^{2}=-P^{2}$

Calculation for $P^{2}=-M^{2}$

$$
\lambda(P) \Gamma(P)=\mathcal{K} \cdot \Gamma(P)
$$

\rightarrow Eigenvalue problem for $\Gamma(P)$: Find P with $\lambda(P)=1$.
$\Rightarrow M^{2}=-P^{2}$

Calculation for $P^{2}=-M^{2}$

$$
\lambda(P) \Gamma(P)=\mathcal{K} \cdot \Gamma(P)
$$

\rightarrow Eigenvalue problem for $\Gamma(P)$:
Find P with $\lambda(P)=1$.
$\Rightarrow M^{2}=-P^{2}$

Propagators are probed at $\left(q \pm \frac{P}{2}\right)^{2}=\frac{P^{2}}{4}+q^{2} \pm \sqrt{P^{2} q^{2}} \cos \theta=-\frac{M^{2}}{4}+q^{2} \pm i M \sqrt{q^{2}} \cos \theta$ \rightarrow Complex for $P^{2}<0$!

Time-like quantities $\left(P^{2}<0\right) \rightarrow$ Correlation functions for complex arguments.

Quark propagator for complex arguments

Integration region ($M=1 \mathrm{GeV}$):
$\left(q \pm \frac{P}{2}\right)^{2}=-\frac{M^{2}}{4}+q^{2} \pm i M \sqrt{q^{2}} \cos \theta$

Quark propagator for complex arguments

Integration region ($M=1 \mathrm{GeV}$): $\left(q \pm \frac{P}{2}\right)^{2}=-\frac{M^{2}}{4}+q^{2} \pm i M \sqrt{q^{2}} \cos \theta$

Analytic structure with Maris-Tandy model:

[Windisch, Phys. Rev. C 95 (2017)]

Quark propagator for complex arguments

Integration region ($M=1 \mathrm{GeV}$):
$\left(q \pm \frac{P}{2}\right)^{2}=-\frac{M^{2}}{4}+q^{2} \pm i M \sqrt{q^{2}} \cos \theta$
\Rightarrow Accessible M determined by poles in propagator.

Analytic structure with Maris-Tandy model:

Mesons from rainbow-ladder with Maris-Tandy interaction

$q \bar{q}:$

- Well investigated for more than 20 years
- Describes pseudoscalar and vector ground states well
- Not so good for other quantum numbers
- Also 'exotic' quantum numbers
[Fischer, Kubrak, Williams, Eur.Phys.J.A50 (2014)]

Mesons from rainbow-ladder with Maris-Tandy interaction

- Well investigated for more than 20 years
- Describes pseudoscalar and vector ground states well
- Not so good for other quantum numbers
- Also 'exotic' quantum numbers
[Fischer, Kubrak, Williams, Eur.Phys.J.A50 (2014)]

Baryons: 3-body bound state equation

[Eichmann, Sanchis-Alepuz, Williams, Alkofer, Fischer, Prog.Part.Nucl.Phys. 91 (2016)]
proton: uud quarks \rightarrow three constituents ($u=d$: nucleon)

Baryons: 3-body bound state equation

[Eichmann, Sanchis-Alepuz, Williams, Alkofer, Fischer, Prog.Part.Nucl.Phys. 91 (2016)]
proton: uud quarks \rightarrow three constituents ($u=d$: nucleon)

Three-body bound states in six-point functions. \rightarrow Faddeev equation

Baryons: 3-body bound state equation

[Eichmann, Sanchis-Alepuz, Williams, Alkofer, Fischer, Prog.Part.Nucl.Phys. 91 (2016)]
proton: uud quarks \rightarrow three constituents ($u=d$: nucleon)

Three-body bound states in six-point functions. \rightarrow Faddeev equation

- 2- and 3-body interactions

Baryons: 3-body bound state equation

proton: uud quarks \rightarrow three constituents ($u=d$: nucleon)

Three-body bound states in six-point functions. \rightarrow Faddeev equation

- 2- and 3-body interactions
- 3 momenta (1 total, 2 relative)

Baryons: 3-body bound state equation

[Eichmann, Sanchis-Alepuz, Williams, Alkofer, Fischer, Prog.Part.Nucl.Phys. 91 (2016)]
proton: uud quarks \rightarrow three constituents ($u=d$: nucleon)

Three-body bound states in six-point functions. \rightarrow Faddeev equation

- 2- and 3-body interactions
- 3 momenta (1 total, 2 relative)
- Leading contribution (via three-gluon vertex) of 3-body interaction vanishes due to color

Baryon masses

[Eichmann, Sanchis-Alepuz, Williams, Alkofer, Fischer,
Prog.Part.Nucl.Phys. 91 (2016)]

Baryon masses

[Eichmann, Sanchis-Alepuz, Williams, Alkofer, Fischer, Prog.Part.Nucl.Phys. 91 (2016)]

Quark-diquark approximation

3-body equation: transparent but numerically intricate (many Lorentz invariants and tensors)
Diquarks:
[Barabanov et al., Prog.Part.Nucl.Phys. 116 (2021)]

- Physics: Diquark clustering in baryons? \rightarrow Quark-diquark models in spirit of quark model
- Diquarks: From simple models to rich dynamical structure
- Quark-quark correlations in T matrix

Quark-diquark approximation

3-body equation: transparent but numerically intricate (many Lorentz invariants and tensors)
Diquarks:
[Barabanov et al., Prog.Part.Nucl.Phys. 116 (2021)]

- Physics: Diquark clustering in baryons? \rightarrow Quark-diquark models in spirit of quark model
- Diquarks: From simple models to rich dynamical structure
- Quark-quark correlations in T matrix

Derivation of 2-body equation

(1) Neglect three-body interactions (approximation)
(2) Replace scattering kernels K by two-body matrices T (exact)
(3) Expansion in term of diquark correlations (approximation)
\Rightarrow Fewer kinematic variables, smaller tensor basis (e.g., 8 instead of 64 for nucleon)

Quark-diquark approximation

Faddeev equation:

- $\Gamma=\sum_{i} \Gamma_{i}=\sum_{i} K_{i} G_{0} \Gamma$
- Replace scattering kernels K_{i} by two-body matrices $T_{i}: T_{i}=\left(1+T_{i} G_{0}\right) K_{i}$
- $T_{i} G_{0} \Gamma=\left(1+T_{i} G_{0}\right) \underbrace{K_{i} G_{0} \Gamma}_{\Gamma_{i}}$
- $\Gamma_{i}=T_{i} G_{0}\left(\Gamma-\Gamma_{i}\right)=T_{i} G_{0}\left(\Gamma_{j}+\Gamma_{k}\right)$

Quark-diquark approximation

Faddeev equation:

- $\Gamma=\sum_{i} \Gamma_{i}=\sum_{i} K_{i} G_{0} \Gamma$
- Replace scattering kernels K_{i} by two-body matrices $T_{i}: T_{i}=\left(1+T_{i} G_{0}\right) K_{i}$
- $T_{i} G_{0} \Gamma=\left(1+T_{i} G_{0}\right) \underbrace{K_{i} G_{0} \Gamma}_{\Gamma_{i}}$
- $\Gamma_{i}=T_{i} G_{0}\left(\Gamma-\Gamma_{i}\right)=T_{i} G_{0}\left(\Gamma_{j}+\Gamma_{k}\right)$

Diquark approximation:
Quark-quark scattering matrix \rightarrow sum over diquark correlations
Scalar and axialvector diquarks lightest \rightarrow important in nucleon and Δ

Nucleon and Δ

- Rainbow-ladder with Maris-Tandy interaction
- Parameters fixed in meson sector
- In good agreement with experiment
- 3-body agrees with quark-diquark calculation

Nucleon and Δ

- Rainbow-ladder with Maris-Tandy interaction
- Parameters fixed in meson sector
- In good agreement with experiment
- 3-body agrees with quark-diquark calculation

Overview

DSE/BSE/Faddeev landscape (2015)					
	level of complexity				
	I) NJL/conta interactio				
	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	\checkmark	\checkmark	\checkmark	\checkmark	
	\checkmark	\checkmark			
	\checkmark	,			
		\checkmark			
		\checkmark			
		\%omment		5n	cmanem
		Hatoon ph	hicto		

[Fischer, Lecture at Internationale Universtitätswochen für Theoretische Physik, Admont, 2017]

Overview

DSE/BSE/Faddeev landscape (2021)					
	level of complexity				
	M, NULeoract				
	,	\checkmark	\checkmark	\checkmark	\checkmark
	\checkmark	\checkmark	\checkmark	\checkmark	
	\checkmark	\checkmark	\checkmark	\checkmark	
	\checkmark	\checkmark			
$\begin{aligned} & N^{*} \Delta^{*} \text { mases } \\ & N_{N} \rightarrow N^{*} / \Delta^{*} \end{aligned}$	\checkmark	\checkmark	\checkmark	\checkmark	
	\checkmark	\checkmark	$\stackrel{\checkmark}{\checkmark}$	v $\stackrel{y}{4}$ \checkmark	
	\checkmark	\checkmark		\checkmark	
			5	and	Smatam
		Hadoropy	dinmedo		

[Fischer, Lecture at Internationale Universtitätswochen für Theoretische Physik, Admont, 2017]

Tetraquarks

- Experimental discovery of exotic XZY states \rightarrow four-quark states?

Tetraquarks

- Experimental discovery of exotic XZY states \rightarrow four-quark states?
- Light scalar mesons: (inverted) mass hierarchy [Jaffe, PRD15 (1977)]?

History of σ meson, lightest scalar nonet is incompatible with $q \bar{q}$ picture:
$q \bar{q}:$

Tetraquarks

- Experimental discovery of exotic XZY states \rightarrow four-quark states?
- Light scalar mesons: (inverted) mass hierarchy [Jaffe, PRD15 (1977)]?

History of σ meson, lightest scalar nonet is incompatible with $q \bar{q}$ picture:

$q \bar{q} q \bar{q}:$

Light tetraquarks

Tetraquark picture confirmed by functional calculations [Heupel, Eichmann, Fischer, Phys. Lett. B 718 (2012); Eichmann, Fischer, Heupel, Phys. Lett. B 753, 282 (2016)]: $\sigma(500)$ is (dominantly) a four-quark state Mixing of $q \bar{q}$ and $q \bar{q} q \bar{q}$ states:

Light tetraquarks

Tetraquark picture confirmed by functional calculations [Heupel, Eichmann, Fischer, Phys. Lett. B 718 (2012); Eichmann, Fischer, Heupel, Phys. Lett. B 753, 282 (2016)]: $\sigma(500)$ is (dominantly) a four-quark state

Mixing of $q \bar{q}$ and $q \bar{q} q \bar{q}$ states:

Structure of four-quark states

Consider heavy-light system, e.g., $X(3872)$.
Possible clustering of states:

Tetraquarks

[Eichmann, Fischer, Santowsky, Wallbott, Few-Body Syst. 61 (2020)]
 (2016)]

- Negelect 3- and 4-body interactions
- Complicated kinematics (4 momenta):
- dressings $f(9$ Lorentz scalar)
- scalar tetraquark: 256 tensors
\rightarrow Approximations necessary, e.g., only 2-body interactions

Clustering

Dynamic distribution over different sectors:

$\chi_{c 1}(3872)[X(3872)]$

- Rainbow-ladder with Maris-Tandy
- Quark mass dependence
- $D D^{*}: c \bar{q}, q \bar{c}$ (molecule)
- $\omega J / \psi: c \bar{c}, q \bar{q}$ (hadrocharmonium)
- $A S: c q, \overline{c q}$ (diquark-antidiquark)

Heavy-light meson poles more important than diquark poles.

Summary so far

- Up to now only rainbow-ladder with effective interaction (Maris-Tandy)
- Good quantitative description of pseudoscalar and vector mesons, nucleon and Δ
- Insight into tetraquark composition
- Important: chiral symmetry \rightarrow Goldstone bosons, mass creation. Encoded in axialvector WTI \rightarrow nontrivial relations between quark selfenergy and kernels.

Beyond rainbow-ladder?

Glueballs

What makes glueballs special?

Mass dynamically created from massless (due to gauge invariance) gluons.

- No constituent matter particles \rightarrow bound states of pure radiation
- Experimentally largely unexplored. Though a history of candidates. Recent results from J / ψ decay: $f_{0}(1710), f_{0}(1770)$ [Sarantsev, Denisenko, Thoma, Klempt, Phys. Lett. B 816 (2021); JPAC Coll., Rodas et al., Eur.Phys.J.C 82 (2022)]
- Theoretically not fully understood (existence, mixing, decays)

Experiment:

Production in glue-rich environments, e.g., p \bar{p} annihilation (PANDA), pomeron exchange in $p p$ (central exclusive production), radiative J / ψ decays

Bound state equations for QCD

- Require scattering kernel K and propagator.

Bound state equations for QCD

- Require scattering kernels K and propagators.
- Quantum numbers determine which amplitudes 「 couple.

Bound state equations for QCD

- Require scattering kernels K and propagators.
- Quantum numbers determine which amplitudes Γ couple.
- Ghosts from gauge fixing

One framework

- Natural description of mixing.
- Similar equations for hadrons with more than two constituents

Bound state equations for QCD

Focus on pure glueballs.

- Require scattering kernels K and propagators.
- Quantum numbers determine which amplitudes Γ couple.
- Ghosts from gauge fixing

One framework

- Natural description of mixing.
- Similar equations for hadrons with more than two constituents

3PI effective action

[Review: MQH, Phys.Rept. 879 (2020)]
Introduce sources for propagators and three-point functions into path integral and perform additional Legendre transformations:

$$
\begin{aligned}
Z\left[J, R^{(2)}, R^{(3)}, \ldots\right] & =\int D[\phi] e^{-S+\phi_{i} J_{i}+\frac{1}{2} R_{i j}^{(2)} \phi_{i} \phi_{j}+\frac{1}{3!} R_{i j k}^{(3)} \phi_{i} \phi_{j} \phi_{k}} \\
\Gamma[\Phi] & \rightarrow\left[\Phi, D, \Gamma^{(3)}\right]
\end{aligned}
$$

3PI effective action truncated at three-loops:
[Berges, PRD70 (2004); Carrington, Guo, PRD83 (2011)]

Kernel construction

$$
K=-2 \frac{\delta^{2} \Gamma^{31}}{\delta D^{2}}
$$

\rightarrow Kernels constructed by cutting two legs: gluon/gluon,ghost/gluon, gluon/ghost, ghost/ghost [Fukuda, Prog. Theor. Phys 78 (1987); McKay, Munczek, Phys. Rev. D 40 (1989); Sanchis-Alepuz, Williams, J. Phys: Conf. Ser. 631 (2015); MQH, Fischer, Sanchis-Alepuz, Eur.Phys.J.C80 (2020)]

Kernels

Systematic derivation from 3PI effective action: [Berges, PRD70 (2004); Carrington, Guo, PRD83 (2011)] Self-consistent treatment of 3-point functions requires 3-loop expansion.

[Fukuda, Prog. Theor. Phys 78 (1987); McKay, Munczek, Phys. Rev. D 40 (1989); Sanchis-Alepuz, Williams, J. Phys: Conf. Ser. 631 (2015); MQH, Fischer, Sanchis-Alepuz, Eur.Phys.J.C80 (2020)]

Reminder: Functional spectrum calculations in rainbow-ladder truncation

Success in describing many aspects of the hadron spectrum qualitatively and quantitatively (mostly) based on rainbow-ladder truncation!

Workhorse for more than 20 years: Rainbow-ladder truncation with an effective interaction, e.g., Maris-Tandy (or similar).

Functional glueball calculations

Glueballs? Rainbow-ladder?

Functional glueball calculations

Glueballs? Rainbow-ladder?

There is no rainbow for gluons!

Functional glueball calculations

Glueballs? Rainbow-ladder?

There is no rainbow for gluons!

Model based BSE calculations
$(J=0)$:

- [Meyers, Swanson, Phys.Rev.D87 (2013)]
- [Sanchis-Alepuz, Fischer, Kellermann, von Smekal, Phys.Rev.D92, (2015)]
- [Souza et al., Eur.Phys.J.A56 (2020)]
- [Kaptari, Kämpfer, Few Body Syst. 61 (2020)]

Functional glueball calculations

Glueballs? Rainbow-ladder?

There is no rainbow for gluons!

Model based BSE calculations $(J=0)$:

- [Meyers, Swanson, Phys.Rev.D87 (2013)]
- [Sanchis-Alepuz, Fischer, Kellermann, von Smekal, Phys.Rev.D92, (2015)]
- [Souza et al., Eur.Phys.J.A56 (2020)]
- [Kaptari, Kämpfer, Few Body Syst. 61 (2020)]

Correlation functions of quarks and gluons

Equations of motion: 3-loop 3PI effective action

\qquad -1 \qquad -1

- Conceptual and technical challenges: nonperturbative renormalization, two-loop diagrams, convergence, size of kernels, ..
- Self-contained: Only parameters are the strong coupling and the quark masses!
- Long way, e.g., ghost-gluon vertex, three-gluon vertex, four-gluon vertex, ...,
- \rightarrow MQH, Phys.Rev.D 101 (2020)

Correlation functions of quarks and gluons

Equations of motion: 3-loop 3PI effective action

- Conceptual and technical challenges: nonperturbative renormalization, two-loop diagrams, convergence, size of kernels, ...
- Self-contained: Only parameters are the strong coupling and the quark masses!
- Long way, e.g., ghost-gluon vertex, three-gluon vertex, four-gluon vertex, ...,
- \rightarrow MQH, Phys.Rev.D 101 (2020)

Start with pure gauge theory.

Landau gauge propagators

Self-contained: Only external input is the coupling!

Gluon dressing function:

Family of solutions [von Smekal, Alkofer, Hauck,
PRL79 (1997); Aguilar, Binosi, Papavassiliou,
Phys.Rev.D 78 (2008); Boucaud et al., JHEP06 (2008);
Fischer, Maas, Pawlowski, Ann.Phys. 324 (2008);
Alkofer, MQH, Schwenzer, Phys. Rev. D 81 (2010)]
Nonperturbative completions of Landau gauge [Maas, Phys. Lett. B 689 (2010)]?

Three-gluon vertex:

Ghost dressing function:

Stability of the solution

- Agreement with lattice results.

Stability of the solution

- Agreement with lattice results.
- Concurrence between functional methods:

3PI vs. 2-loop DSE:

Stability of the solution

- Agreement with lattice results.
- Concurrence between functional methods:

3PI vs. 2-loop DSE:

DSE vs. FRG:

[Cucchieri, Maas, Mendes, Phys.Rev.D77 (2008); Sternbeck et al., Proc.Sci. LATTICE2016 (2017); Cyrol et al., Phys.Rev.D 94 (2016); MQH, Phys.Ref.D101 (2020)]

Stability of the solution: Extensions

- Three-gluon vertex: Tree-level dressing dominant, others subleading [Eichmann, Williams, Alkofer, Vujinovic, Phys.Rev.D89 (2014); Pinto-Gómez et al., 2208.01020]

Stability of the solution: Extensions

- Three-gluon vertex: Tree-level dressing dominant, others subleading [Eichmann, Williams, Alkofer, Vujinovic, Phys.Rev.D89 (2014); Pinto-Gómez et al., 2208.01020]
- Four-gluon vertex: Influence on propagators tiny for $d=3$ [MQH, Phys.Rev.D93 (2016)]

Stability of the solution: Extensions

- Three-gluon vertex: Tree-level dressing dominant, others subleading [Eichmann, Williams, Alkofer, Vujinovic, Phys.Rev.D89 (2014); Pinto-Gómez et al., 2208.01020]
- Four-gluon vertex: Influence on propagators tiny for $d=3$ [MQH, Phys.Rev.D93 (2016)]
- Two-ghost-two-gluon vertex [МQН, Eur. Phys.J.C77 (2017)]: (FRG: [Corell, SciPost Phys. 5 (2018)])

Gauge invariance

Couplings can be extracted from each vertex.

- Slavnov-Taylor identities (gauge invariance): Agreement perturbatively (UV) necessary. [Cyrol et al., Phys.Rev.D 94 (2016)]
- Difficult to realize: Small deviations \rightarrow Couplings cross and do not agree.
- Here: Vertex couplings agree down to GeV regime (IR can be different).

Correlation functions for complex momenta

$$
\lambda(P) \Gamma(P)=\mathcal{K} \cdot \Gamma(P)
$$

\rightarrow Eigenvalue problem for $\Gamma(P)$:
(1) Solve for $\lambda(P)$.
(2) Find P with $\lambda(P)=1$.
$\Rightarrow M^{2}=-P^{2}$

Correlation functions for complex momenta

$$
\lambda(P) \Gamma(P)=\mathcal{K} \cdot \Gamma(P)
$$

\rightarrow Eigenvalue problem for $\Gamma(P)$:
(1) Solve for $\lambda(P)$.
(2) Find P with $\lambda(P)=1$.
$\Rightarrow M^{2}=-P^{2}$
(pseudoscalar glueball)
However:
Propagators are probed at $\left(q \pm \frac{P}{2}\right)^{2}=\frac{P^{2}}{4}+q^{2} \pm \sqrt{P^{2} q^{2}} \cos \theta=-\frac{M^{2}}{4}+q^{2} \pm i M \sqrt{q^{2}} \cos \theta$ \rightarrow Complex for $P^{2}<0$!

Time-like quantities $\left(P^{2}<0\right) \rightarrow$ Correlation functions for complex arguments.

Correlation functions in the complex plane

$$
\text { Standard integration techniques fail. } \quad \int d^{4} q \rightarrow \int_{\Lambda_{\mathrm{RR}}^{2}}^{\Lambda_{\mathrm{UV}}^{2}} d q^{2} \int d \theta_{1}
$$

Consider example integral:

$$
K\left(p^{2}\right)=\int d q^{2} J\left(q^{2}, p^{2}\right), \quad J\left(p^{2}, q^{2}\right)=\int d q^{2} \int d \theta \sin ^{2} \theta_{1} \frac{1}{q^{2}+p^{2}+\sqrt{p^{2}} \sqrt{q^{2}} \cos \theta_{1}+m^{2}} \frac{1}{q^{2}+m^{2}}
$$

Correlation functions in the complex plane

$$
\text { Standard integration techniques fail. } \quad \int d^{4} q \rightarrow \int_{\Lambda_{\mathrm{R}}^{2}}^{\Lambda_{\mathrm{UV}}^{2}} d q^{2} \int d \theta_{1}
$$

Consider example integral:

$$
K\left(p^{2}\right)=\int d q^{2} J\left(q^{2}, p^{2}\right), \quad J\left(p^{2}, q^{2}\right)=\int d q^{2} \int d \theta \sin ^{2} \theta_{1} \frac{1}{q^{2}+p^{2}+\sqrt{p^{2} \sqrt{q^{2}} \cos \theta_{1}+m^{2}} \frac{1}{q^{2}+m^{2}}}
$$

After θ_{1} integration:

Extrapolation of $\lambda\left(P^{2}\right)$

Extrapolation method

- Extrapolation to time-like P^{2} using Schlessinger's continued fraction method (proven superior to default Padé approximants) [Schlessinger, Phys.Rev. 167 (1968)]
- Average over extrapolations using subsets of points for error estimate

$$
f(x)=\frac{f\left(x_{1}\right)}{1+\frac{a_{1}\left(x-x_{1}\right)}{1+\frac{a_{2}\left(x-x_{2}\right)}{1+\frac{a_{3}\left(x-x_{3}\right)}{\cdots}}}}
$$

Coefficients a_{i} can determined such that $f(x)$ exact at x_{i}.

Extrapolation of $\lambda\left(P^{2}\right)$

Extrapolation method

- Extrapolation to time-like P^{2} using Schlessinger's continued fraction method (proven superior to default Padé approximants) [Schlessinger, Phys.Rev. 167 (1968)]
- Average over extrapolations using subsets of points for error estimate

Test extrapolation for solvable system:
Heavy meson [MQH, Sanchis-Alepuz, Fischer, Eur.Phys.J.C 80 (2020)]

$$
f(x)=\frac{f\left(x_{1}\right)}{1+\frac{a_{1}\left(x-x_{1}\right)}{1+\frac{a_{2}\left(x-x_{2}\right)}{1+\frac{\partial_{3}\left(x-x_{3}\right)}{\cdots}}}}
$$

Coefficients a_{i} can determined such that $f(x)$ exact at x_{i}.

Extrapolation for glueball eigenvalue curves

Several curves: ground state and excited states.

Glueball results $\mathrm{J}=0$

Gauge-variant correlation functions:

Glueball results $\mathrm{J}=0$

Gauge-variant correlation functions:

Unique physical spectrum:

Glueball results $\mathrm{J}=0$

Gauge-variant correlation functions:
Unique physical spectrum:

Spectrum independent! \rightarrow Family of solutions yields the same physics.

Glueball results

[MQH, Fischer, Sanchis-Alepuz, Eur.Phys.J.C81 (2021)]
*: identification with some uncertainty
${ }^{\dagger}$: conjecture based on irred. rep of octahedral group

- Agreement with lattice results
- (New states: $0^{* *++}, 0^{* *-+}, 3^{-+}, 4^{-+}$)

Model vs. first-principle calculations

Bottom-up	Top-down
Models	Direct calculations
Parameters: dependent (-), tuning (+)	No parameters: independent (+), no tuning (-)
Often simpler	Typically more involved
Well-tried and successful for certain applications	Requires good control and tests of input
Good to test qualitative understanding	Results form first principles possible

Summary

- Model-based calculations:
- Meson and baryon spectrum
- Tetraquarks: Scalar multiplet, clustering

Summary

- Model-based calculations:
- Meson and baryon spectrum
- Tetraquarks: Scalar multiplet, clustering

- From first principles:
- Input: agreement with other methods (lattice + continuum) and extensions tested
- Quantitative results for glueball spectrum

Thank you for your attention.

Derivation of DSEs (details) I

Integral of a total derivative vanishes:

$$
0=\int D[\phi] \frac{\delta}{\delta \phi} e^{-S+\int d y \phi(y) J(y)}=\int D[\phi]\left(-\frac{\delta S}{\delta \phi(x)}+J(x)\right) e^{-S+\int d y \phi(y) J(y)}
$$

Derivation of DSEs (details) I

Integral of a total derivative vanishes:

$$
0=\int D[\phi] \frac{\delta}{\delta \phi} e^{-S+\int d y \phi(y) J(y)}=\int D[\phi]\left(-\frac{\delta S}{\delta \phi(x)}+J(x)\right) e^{-S+\int d y \phi(y) J(y)}
$$

Pull in front of integral \rightarrow Master DSE for full correlation functions

$$
0=\left(-\left.\frac{\delta S}{\delta \phi(x)}\right|_{\phi\left(x^{\prime}\right)=\delta / \delta J\left(x^{\prime}\right)}+J(x)\right) \underbrace{Z[J]}_{e^{W[J]}}=0
$$

Derivation of DSEs (details) I

Integral of a total derivative vanishes:

$$
0=\int D[\phi] \frac{\delta}{\delta \phi} e^{-S+\int d y \phi(y) J(y)}=\int D[\phi]\left(-\frac{\delta S}{\delta \phi(x)}+J(x)\right) e^{-S+\int d y \phi(y) J(y)}
$$

Pull in front of integral \rightarrow Master DSE for full correlation functions

$$
\begin{aligned}
0=\left(-\left.\frac{\delta S}{\delta \phi(x)}\right|_{\phi\left(x^{\prime}\right)=\delta / \delta J\left(x^{\prime}\right)}+J(x)\right) & \underbrace{Z[J]}_{e^{W[J]}}=0 \\
& e^{-W[J]}\left(\frac{\delta}{\delta J(x)}\right) e^{W[J]}=\frac{\delta W[J]}{\delta J(x)}+\frac{\delta}{\delta J(x)}
\end{aligned}
$$

\rightarrow Master DSE for connected correlation functions

$$
-\left.\frac{\delta S}{\delta \phi(x)}\right|_{\phi\left(x^{\prime}\right)=\frac{\delta W(J)}{\delta J\left(x^{\prime}\right)}+\frac{\delta}{\delta J\left(x^{\prime}\right)}}+J(x)=0 .
$$

Derivation of DSEs (details) II

Legendre transformation:

$$
\begin{gathered}
\frac{\delta W[J]}{\delta J(x)} \rightarrow \Phi(x) \\
\frac{\delta}{\delta J(x)} \rightarrow \int d z D(x, z)^{J} \frac{\delta}{\delta \Phi(z)} \\
\left(\frac{\delta}{\delta J(x)}=\int d z \frac{\delta \Phi(z)}{\delta J(x)} \frac{\delta}{\delta \Phi(z)}=\int d z \frac{\delta}{\delta J(x)} \frac{\delta W[J]}{\delta J(z)} \frac{\delta}{\delta \Phi(z)}=\int d z \frac{\delta^{2} W[J]}{\delta J(x) \delta J(z)} \frac{\delta}{\delta \Phi(z)}\right)
\end{gathered}
$$

Derivation of DSEs (details) II

Legendre transformation:

$$
\begin{gathered}
\frac{\delta W[J]}{\delta J(x)} \rightarrow \Phi(x) \\
\frac{\delta}{\delta J(x)} \rightarrow \int d z D(x, z)^{J} \frac{\delta}{\delta \Phi(z)} \\
\left(\frac{\delta}{\delta J(x)}=\int d z \frac{\delta \Phi(z)}{\delta J(x)} \frac{\delta}{\delta \Phi(z)}=\int d z \frac{\delta}{\delta J(x)} \frac{\delta W[J]}{\delta J(z)} \frac{\delta}{\delta \Phi(z)}=\int d z \frac{\delta^{2} W[J]}{\delta J(x) \delta J(z)} \frac{\delta}{\delta \Phi(z)}\right)
\end{gathered}
$$

Master DSE for 1PI correlation functions

$$
-\left.\frac{\delta S}{\delta \phi(x)}\right|_{\phi\left(x^{\prime}\right)=\Phi\left(x^{\prime}\right)+\int d z D\left(x^{\prime}, z\right)^{J} \delta / \delta \Phi(z)}+\frac{\delta \Gamma[\Phi]}{\delta \Phi(x)}=0
$$

Get DSE for n-point function by applying $n-1$ derivatives.

Three-gluon vertex

- Simple kinematic dependence of three-gluon vertex (only singlet variable of S_{3})
- Large cancellations between diagrams

Ghost-gluon vertex

Ghost-gluon vertex:

[Maas, SciPost Phys. 8 (2019);
MQH, Phys. Rev. D 101 (2020)]

- Nontrivial kinematic dependence of ghost-gluon vertex
- Qualitative agreement with lattice results, though some quantitative differences (position of peak!).

Landau gauge propagators in the complex plane

Simpler truncation:

Landau gauge propagators in the complex plane

Simpler truncation:

\rightarrow Opening at $q^{2}=p^{2}$.

Landau gauge propagators in the complex plane

Simpler truncation:

\rightarrow Opening at $q^{2}=p^{2}$.
Appearance of branch cuts for complex momenta forbids integration directly to cutoff.

Landau gauge propagators in the complex plane

Simpler truncation:

Landau gauge propagators in the complex plane

Simpler truncation:

[Fischer, MQH, Phys.Rev.D 102 (2020)]
Ray technique for self-consistent solution of a DSE:

- Current truncation leads to a pole-like structure in the gluon propagator.
- Analyticity up to 'pole' confirmed by various tests (Cauchy-Riemann, Schlessinger, reconstruction)

Higher order diagrams

One-loop diagrams only:
[MQH, Fischer, Sanchis-Alepuz, Eur.Phys.J.C80
(2020); MQH, Fischer, Sanchis-Alepuz,

Eur.Phys.J.C81 (2021)]

Two-loop diagrams: subleading effects

- 0^{-+}: none
[MQH, Fischer, Sanchis-Alepuz, EPJ Web Conf. 258 (2022)]
- $0^{++}:<2 \%$
[MQH, Fischer, Sanchis-Alepuz, HADRON2021, arXiv:2201.05163]

Amplitudes

Eigenvectors of eigenvalue problem: Amplitudes, information about significance of single parts.

Ground state scalar glueball:
Amplitudes 0^{++}

Excited scalar glueball:
Amplitudes 0^{*++}

\rightarrow Amplitudes have different behavior for ground state and excited state. Useful guide for future developments.
\rightarrow Meson/glueball amplitudes: Information about mixing.

Glueball amplitudes for spin J

$$
\Gamma_{\mu \nu \rho \sigma \ldots}\left(p_{1}, p_{2}\right)=\sum \tau_{\mu \nu \rho \sigma \ldots}^{i}\left(p_{1}, p_{2}\right) h_{i}\left(p_{1}, p_{2}\right)
$$

Numbers of tensors:

J	$\mathrm{P}=+$	$\mathrm{P}=-$
0	2	1
1	4	3
>2	5	4

$J=1$ glueballs

Landau-Yang theorem

Two-photon states cannot couple to $J^{P}=1^{ \pm}$or $(2 n+1)^{-}$
[Landau, Dokl.Akad.Nauk SSSR 60 (1948); Yang, Phys. Rev. 77 (1950)].
(\rightarrow Exclusion of $J=1$ for Higgs because of $h \rightarrow \gamma \gamma$.)

Applicable to glueballs?
\rightarrow Not in this framework, since gluons are not on-shell.
\rightarrow Presence of $J=1$ states is a dynamical question.
$J=1$ not found here.

Charge parity

Transformation of gluon field under charge conjugation:

$$
A_{\mu}^{a} \rightarrow-\eta(a) A_{\mu}^{a}
$$

where

$$
\eta(a)= \begin{cases}+1 & a=1,3,4,6,8 \\ -1 & a=2,5,7\end{cases}
$$

Color neutral operator with two gluon fields:

$$
A_{\mu}^{a} A_{\nu}^{a} \rightarrow \eta(a)^{2} A_{\mu}^{a} A_{\nu}^{a}=A_{\mu}^{a} A_{\nu}^{a} .
$$

$\Rightarrow C=+1$
Negative charge parity, e.g.:

$$
\begin{aligned}
d^{a b c} A_{\mu}^{a} A_{\nu}^{b} A_{\rho}^{c} \rightarrow & -d^{a b c} \eta(a) \eta(b) \eta(c) A_{\mu}^{a} A_{\nu}^{b} A_{\rho}^{c}= \\
& -d^{a b c} A_{\mu}^{a} A_{\nu}^{b} A_{\rho}^{c}
\end{aligned}
$$

Only nonvanishing elements of the symmetric structure constant $d^{\text {abc }}$: zero or two indices equal to 2,5 or 7 .

