Introduction

Dyson-Schwinger equations of QCD

Aspects of correlation functions

Summary and conclusions

Functional methods in QCD

Markus Q. Huber

arXiv 1808 05227

Institute of Theoretical Physics, Giessen University

Humboldt Kolleg - Discoveries and open puzzles in particle physics and cosmology

Kitzbühel, Austria

June 25, 2019

Markus Q. Huber

Giessen University

June 25, 2019

1/27

Elementary particles

Standard model of particle physics:

Elementary particles that make up the universe (or at least 5% of it)

Elementary particles

Standard model of particle physics:

Elementary particles that make up the universe (or at least 5% of it)

Strong interaction: Quarks and gluons (u,d,c,s,t,b,g) described by quantum chromodynamics

$$\begin{split} & \mathcal{L} = -\frac{1}{2} \operatorname{Tr} \Big(\operatorname{F}_{\mu\nu} \operatorname{F}^{\mu\nu} \Big) + \sum_{j} \widetilde{\mathfrak{P}}_{j} [is^{\mu\nu} D_{\mu} - m_{j}] \mathfrak{P}_{j} \\ & \text{WODEI} \quad \operatorname{F}_{\mu\nu} = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu} + ig[A_{\mu}, A_{\nu}] \\ & \text{WOD} \quad D_{\mu} = \partial_{\mu} + igA_{\mu} \end{split}$$

Images: Alexander Gorfer (quant uni-graz at), (CC-BY-SA 4.0)

Bound states of QCD

Quarks and gluons:

Bound states of QCD

Calculate their properties?

Markus Q. Huber

Giessen University

Hadronic bound states from bound state equations

Dyson-Schwinger equations of QCD Aspects of correlation functions Hadronic bound states from bound state equations Bethe-Salpeter amplitude Example: Meson K(k, q, P)d Integral equation: $\Gamma(q, P) = \int dk \, \Gamma(k, P) \, S(k_+) \, S(k_-) \, K(k, q, P)$ Ingredients:

Quark propagator S

Interaction kernel K

 $S_0(p)$ Nonperturbative diagram: full momentum dependent dressings \rightarrow numerical solution

 $D_{\mu\nu}(p-q)$

 $\Gamma_{\nu}(p,q)$

Solving the quark gap equation

Generic solution

Momentum dependent mass:

 $M(p^2) = B(p^2)/A(p^2)$

 \rightarrow Breaking of chiral symmetry creates mass.

Solving the quark gap equation

For given interaction and gluon propagator:

- Euclidean momenta: Student 'warm-up'
- Analytic behavior: Depends on input, tricky, open questions

The elementary pieces: Bottom-up

The elementary pieces: Bottom-up

Use models crafted such that phenomenology comes out right. Use symmetries as guidelines, e.g., chiral symmetry \rightarrow axial-vector WTI.

Example

Effective interaction via $g^2 D_{\mu\nu}(p)\Gamma_{\mu}(p,q) \rightarrow Z_2 \widetilde{Z}_3 D^{(0)}_{\mu\nu}(p)\gamma_{\mu} \mathcal{G}((p+q)^2)$

Markus Q. Huber

Giessen University

Bottom-up example: Baryons from rainbow-ladder

- Still tricky, normally truncated equation solved
- Untruncated equation (incl. two-loops) recently [Meyers, Swanson '14; MQH '17]

- Still tricky, normally truncated equation solved
- Untruncated equation (incl. two-loops) recently [Meyers, Swanson '14; MQH '17]

Quark-gluon vertex $\Gamma_{\mu}(p,q)$:

 Technically demanding, handful of results, e.g., [Hopfer, Windisch, Alkofer 13; Aguilar, Binosi, Papavassiliou '14; Mitter, Pawlowski, Strodthoff '14; Williams, Fischer, Heupel '15; Cyrol et al. '17; Aguilar, Cardona, Ferreira, Papavassiliou '18]

Aguilar, Binosi, Papavassiliou '14; Mitter, Pawlowski, Strodthoff '14; Williams, Fischer, Heupel '15: Cyrol et al. '17: Aguilar, Cardona, Ferreira, Papavassiliou '18]

Yang-Mills theory

Consider quarks to be infinitely heavy.

Yang-Mills theory

Consider quarks to be infinitely heavy.

Bound states of Yang-Mills theory: Glueballs

Similar bound state equation:

[Sanchis-Alepuz, Fischer, Kellermann, von Smekal '15]

Ingredients: Gluon and ghost propagators, gluonic vertices, interaction kernels

Markus Q. Huber

Giessen University

Bottom-up vs. top-down

Bottom-up:

- Modeling to describe certain quantities, symmetries as guiding principles
- Example: Rainbow-ladder truncation with Maris-Tandy interaction:

1 function, 2 parameters $\mathcal{G}(k^2)$

 \rightarrow Good description of, e.g., pseudoscalars

Top-down:

- 9 dressings for gluon propagator and quark-gluon vertex: $D(k^2), \Gamma_i^{A\bar{q}q}(p,q,r), i = 1, ..., 8$
 - \rightarrow Technically complex
- Maximal flexibility ↔ consistency not easy to achieve
- Parameters of QCD only

Bottom-up vs. top-down

Bottom-up:

- Modeling to describe certain quantities, symmetries as guiding principles
- Example: Rainbow-ladder truncation with Maris-Tandy interaction:

1 function, 2 parameters $\mathcal{G}(k^2)$

 \rightarrow Good description of, e.g., pseudoscalars

Upgrades:

More parameters?

Top-down:

- 9 dressings for gluon propagator and quark-gluon vertex: $D(k^2)$, $\Gamma_i^{A\bar{q}q}(p,q,r)$, i = 1, ..., 8
 - \rightarrow Technically complex
- Maximal flexibility ↔ consistency not easy to achieve
- Parameters of QCD only

Include more terms of known equations.

Markus Q. Huber

Giessen University

• Glueballs: Limited information for modeling (equivalent to Maris-Tandy interaction not known)

[Meyers, Swanson '12; Sanchis-Alepuz, Fischer, Kellermann, von Smekal '15]

• Glueballs: Limited information for modeling (equivalent to Maris-Tandy interaction not known)

[Meyers, Swanson '12; Sanchis-Alepuz, Fischer, Kellermann, von Smekal '15]

• Applicable to other theories, e.g., nearly conformal theories

• Glueballs: Limited information for modeling (equivalent to Maris-Tandy interaction not known)

[Meyers, Swanson '12; Sanchis-Alepuz, Fischer, Kellermann, von Smekal '15]

- Applicable to other theories, e.g., nearly conformal theories
- Analytic structure of correlation functions: Access to time-like quantities, resonances etc.

• Glueballs: Limited information for modeling (equivalent to Maris-Tandy interaction not known)

[Meyers, Swanson '12; Sanchis-Alepuz, Fischer, Kellermann, von Smekal '15]

- Applicable to other theories, e.g., nearly conformal theories
- Analytic structure of correlation functions: Access to time-like quantities, resonances etc.
- Phase diagram of strong interaction: phases, transitions, critical point(s)

• Glueballs: Limited information for modeling (equivalent to Maris-Tandy interaction not known)

[Meyers, Swanson '12; Sanchis-Alepuz, Fischer, Kellermann, von Smekal '15]

- Applicable to other theories, e.g., nearly conformal theories
- Analytic structure of correlation functions: Access to time-like quantities, resonances etc.
- Phase diagram of strong interaction: phases, transitions, critical point(s)

Error estimation difficult!

Dyson-Schwinger equations

Summary and conclusions

Truncations

• Emergence of structures?

hierarchies? negligible contributions?

Truncations

• Emergence of structures?

hierarchies? negligible contributions?

What is needed for specific problems?
 e.g., simple quark-gluon interaction sufficient to calculate a pion

Truncations

• Emergence of structures?

hierarchies? negligible contributions?

- What is needed for specific problems?
 e.g., simple quark-gluon interaction sufficient to calculate a pion
- Systematics and tests?

comparison to other methods? self-tests? necessary conditions?

Perturbative resummation for propagators from DSEs

Normally, employed models contain an RG improvement term to recover the one-loop resummed behavior, e.g., [von Smekal, Hauck, Alkofer '97; MQH, von Smekal '12].

Perturbative resummation for propagators from DSEs

Normally, employed models contain an RG improvement term to recover the one-loop resummed behavior, e.g., [von Smekal, Hauck, Alkofer '97; MQH, von Smekal '12].

Emergence from DSEs [MQH '17, '18]:

- Squint diagram (sunset has no $g^4 \ln^2 p^2$)
- Correct anomalous dimensions of three-point functions
- Correct renormalization (constants)

Perturbative resummation for propagators from DSEs

Normally, employed models contain an RG improvement term to recover the one-loop resummed behavior, e.g., [von Smekal, Hauck, Alkofer '97; MQH, von Smekal '12].

Emergence from DSEs [MQH '17, '18]:

- Squint diagram (sunset has no $g^4 \ln^2 p^2$)
- Correct anomalous dimensions of three-point functions
- Correct renormalization (constants)

Markus Q. Huber

Giessen University

Diagram hierarchies

• UV is perturbative $\rightarrow \alpha^n$ • IR has totally different hierarchy

[MQH '16]

Diagram hierarchies

• We cannot expect to have a clear hierarchy of diagrams, since we consider all scales.

Truncated DSEs *cannot* be assigned a concrete order of the coupling. They contain all contributions up to a certain order and some beyond.

Markus Q. Huber

Giessen University

Diagrams of the three-gluon vertex

- d = 3 [MQH '16]: no renormalization effects, UV g^2/p
- Good agreement with lattice data.
- Similar results from FRG [Corell et al. '18]

Diagrams of the three-gluon vertex

- d = 3 [MQH '16]: no renormalization effects, UV g^2/p
- Good agreement with lattice data.
- Similar results from FRG [Corell et al. '18]

- Individual contributions large.
- Sum is small!
- \bullet Classes of diagrams identified. \rightarrow Each class has to be treated as a whole.

Markus Q. Huber

Giessen University
Diagrams of the three-gluon vertex

- d = 3 [MQH '16]: no renormalization effects, UV g^2/p
- Good agreement with lattice data.
- Similar results from FRG [Corell et al. '18]

- Individual contributions large.
- Sum is small!
- \bullet Classes of diagrams identified. \rightarrow Each class has to be treated as a whole.

 \rightarrow In four dimensions similar qualitative effects, but renormalization complicates things.

[Cucchieri, Maas, Mendes '08; Alkofer, MQH, Schwenzer '09; Pelaez, Tissier, Wschebor '13; Aguilar et al. '13; Blum, et al. '14; Eichmann, Alkofer, Vujinovic '14; Cyrol et al. '16; Williams, Fischer, Heupel '16; Sternbeck '16; Athenodorou et al. 16; Duarte et al. '16; Boucaud et al. '17; Aguilar, Ferreira, Figueiredo, Papavassiliou '19]

[Cucchieri, Maas, Mendes '08; Alkofer, MQH, Schwenzer '09; Pelaez, Tissier, Wschebor '13; Aguilar et al. '13; Blum, et al. '14; Eichmann, Alkofer, Vujinovic '14; Cyrol et al. '16; Williams, Fischer, Heupel '16; Sternbeck '16; Athenodorou et al. 16; Duarte et al. '16; Boucaud et al. '17; Aguilar, Ferreira, Figueiredo, Papavassiliou '19]

[Cucchieri, Maas, Mendes '08; Alkofer, MQH, Schwenzer '09; Pelaez, Tissier, Wschebor '13; Aguilar et al. '13; Blum, et al. '14; Eichmann, Alkofer, Vujinovic '14; Cyrol et al. '16; Williams, Fischer, Heupel '16; Sternbeck '16; Athenodorou et al. 16; Duarte et al. '16; Boucaud et al. '17; Aguilar, Ferreira, Figueiredo, Papavassiliou '19]

Perturbative one-loop truncation [Blum, MQH, Mitter von Smekal '14; Eichmann, Alkofer, Vujinovic '14; Williams, Fischer, Heupel '16]:

Markus Q. Huber

Giessen University

June 25, 2019

[Cucchieri, Maas, Mendes '08; Alkofer, MQH, Schwenzer '09; Pelaez, Tissier, Wschebor '13; Aguilar et al. '13; Blum, et al. '14; Eichmann, Alkofer, Vujinovic '14; Cyrol et al. '16; Williams, Fischer, Heupel '16; Sternbeck '16; Athenodorou et al. 16; Duarte et al. '16; Boucaud et al. '17; Aguilar, Ferreira, Figueiredo, Papavassiliou '19]

Nonperturbative one-loop truncation [MQH '17]:

The two-ghost-two-gluon vertex DSE

2 DSEs, choose the one with the ghost leg attached to the bare vertex \rightarrow Truncation discards only one diagram.

18/27

The two-ghost-two-gluon vertex DSE

2 DSEs, choose the one with the ghost leg attached to the bare vertex \rightarrow Truncation discards only one diagram.

Influence of two-ghost-two-gluon vertex

Introduction

Influence of two-ghost-two-gluon vertex

Coupled system of ghost-gluon, three-gluon and four-gluon vertices with and without two-ghost-two-gluon vertex [MQH '17]:

Influence of two-ghost-two-gluon vertex

Coupled system of ghost-gluon, three-gluon and four-gluon vertices with and without two-ghost-two-gluon vertex [MQH '17]:

• Color structure: only small dressings in the three-gluon DSE \rightarrow no change. • Small influence on ghost-gluon vertex (< 1.7%)

Markus Q. Huber

Giessen University

June 25, 2019

- Two-loop truncation: All diagrams except the one with a five-point function.
- One-momentum configuration approximation.

- Difference between two-loop DSE and 3PI smaller than lattice error.
- Zero crossing in agreement with other approaches, e.g., [Pelaez et al. '13; Aguilar et al. '13; Cyrol et al. '16; Athenodorou et al. '16; Duarte et al. '16; Sternbeck et al. '17]

Giessen University

June 25, 2019

3PI system of primitively divergent correlation functions

Three-loop expansion of 3PI effective action [Berges '04]: Expansion in dressed three-point functions

Results for fully coupled 3PI system

Results for fully coupled 3PI system

Results for fully coupled 3PI system

- Details of renormalization crucial!
- Very small angle dependence of three-gluon vertex.
- Slight bending down of gluon propagator in IR.

Open checks

- Effects of larger tensor bases, in particular of the three-gluon vertex
- Renormalization

What tests can be done?

Couplings

Couplings can be defined from every vertex, e.g., [Allés et al. '96; Alkofer et al., '05; Eichmann et al. '14]:

$$\begin{split} &\alpha_{\rm ghg}(p^2) = \alpha(\mu^2) \left(D^{A\bar{c}c}(p^2) \right)^2 G^2(p^2) Z(p^2), \\ &\alpha_{\rm 3g}(p^2) = \alpha(\mu^2) \left(C^{AAA}(p^2) \right)^2 Z^3(p^2), \\ &\alpha_{\rm 4g}(p^2) = \alpha(\mu^2) F^{AAAA}(p^2) Z^2(p^2). \end{split}$$

- Must agree perturbatively (STIs). Important in coupled systems of functional equations. → Highly non-trivial check of a truncation [Mitter, Pawlowski, Strodthoff '14].
- Scales must match: $\Lambda^2_{QCD} = s e^{-\frac{1}{4\pi\alpha(s)\beta_0}}$, s pert. scale: Must match for each diagram

Couplings

Couplings can be defined from every vertex, e.g., [Allés et al. '96; Alkofer et al., '05; Eichmann et al. '14]:

$$\begin{split} &\alpha_{\rm ghg}(p^2) = \alpha(\mu^2) \left(D^{A\bar{c}c}(p^2) \right)^2 G^2(p^2) Z(p^2), \\ &\alpha_{\rm 3g}(p^2) = \alpha(\mu^2) \left(C^{AAA}(p^2) \right)^2 Z^3(p^2), \\ &\alpha_{\rm 4g}(p^2) = \alpha(\mu^2) F^{AAAA}(p^2) Z^2(p^2). \end{split}$$

- Must agree perturbatively (STIs). Important in coupled systems of functional equations. → Highly non-trivial check of a truncation [Mitter, Pawlowski, Strodthoff '14].
- Scales must match: $\Lambda^2_{QCD} = s e^{-\frac{1}{4\pi\alpha(s)\beta_0}}$, s pert. scale: Must match for each diagram

Ghost-gluon vs. other couplings: Further checks required.

Markus Q. Huber

Giessen University

June 25, 2019

Renormalization with a hard UV cutoff

Introduces quadratic divergences. Note: Appears already perturbatively!

Renormalization with a hard UV cutoff

Introduces quadratic divergences. Note: Appears already perturbatively!

The breaking of gauge covariance by the UV regularization leads to spurious (quadratic) divergences.

Extreme example: One-loop truncation with bare vertices in three dimensions [MQH '16].

Better example: Full system with one-momentum configuration approximation.

Markus Q. Huber

Giessen University

June 25, 2019

Results for fully coupled 3PI system revisited

Results for fully coupled 3PI system revisited

 \rightarrow Two solutions on top of each other. No model dependence anymore! \rightarrow Provides a self-test of a truncation.

Towards a systematic understanding of truncations of functional equations to access their full potential.

Towards a systematic understanding of truncations of functional equations to access their full potential.

Infinite set of equations with no evident hierarchy... Is there hope?

Towards a systematic understanding of truncations of functional equations to access their full potential.

Infinite set of equations with no evident hierarchy... Is there hope?

• After some work (\gtrsim 35 years) \rightarrow Hierarchy of correlation functions exists and structures emerge.

Towards a systematic understanding of truncations of functional equations to access their full potential.

Infinite set of equations with no evident hierarchy... Is there hope?

• After some work (\gtrsim 35 years) \rightarrow Hierarchy of correlation functions exists and structures emerge.

Is it feasible?

Towards a systematic understanding of truncations of functional equations to access their full potential.

Infinite set of equations with no evident hierarchy... Is there hope?

• After some work (\gtrsim 35 years) \rightarrow Hierarchy of correlation functions exists and structures emerge.

Is it feasible?

- Negligible diagrams/corr. functions identified.
- Useful kinematic approximations in some cases.

Towards a systematic understanding of truncations of functional equations to access their full potential.

Infinite set of equations with no evident hierarchy....Is there hope?

• After some work (\gtrsim 35 years) \rightarrow Hierarchy of correlation functions exists and structures emerge.

Is it feasible?

- Negligible diagrams/corr. functions identified.
- Useful kinematic approximations in some cases.

ls it reliable?

Towards a systematic understanding of truncations of functional equations to access their full potential.

Infinite set of equations with no evident hierarchy... Is there hope?

• After some work (\gtrsim 35 years) \rightarrow Hierarchy of correlation functions exists and structures emerge.

Is it feasible?

- Negligible diagrams/corr. functions identified.
- Useful kinematic approximations in some cases.

Is it reliable?

• Necessary and nontrivial conditions.

Towards a systematic understanding of truncations of functional equations to access their full potential.

Infinite set of equations with no evident hierarchy... Is there hope?

• After some work (\gtrsim 35 years) \rightarrow Hierarchy of correlation functions exists and structures emerge.

ls it feasible?

- Negligible diagrams/corr. functions identified.
- Useful kinematic approximations in some cases.

ls it reliable?

• Necessary and nontrivial conditions.

Outlook and possibilities:

- Non-classical tensors in gluonic vertices
- Add quarks
- Finite temperature

Markus Q. Huber

Giessen University

۲

Bound states

• Finite density

Fill in

Towards a systematic understanding of truncations of functional equations to access their full potential.

Infinite set of equations with no evident hierarchy....Is there hope?

• After some work (\gtrsim 35 years) \rightarrow Hierarchy of correlation functions exists and structures emerge.

ls it feasible?

- Negligible diagrams/corr. functions identified.
- Useful kinematic approximations in some cases.

ls it reliable?

• Necessary and nontrivial conditions.

Outlook and possibilities:

- Non-classical tensors in gluonic vertices
- Add quarks
- Finite temperature

Markus Q. Huber

Giessen University

- Bound states
- Finite density
- Fill in

Thank you for your attention!

Results for the two-ghost-two-gluon vertex

Kinematic approximation: one-momentum configuration

→ Two classes of dressings: 13 very small, 12 not small → No nonzero solution for $\{\sigma_6, \sigma_7, \sigma_8\}$ found.

Markus Q. Huber

Giessen University

June 25, 2019

28/27

[MQH '17]