With functional methods from propagators and vertices to glueballs

10th International Conference on Exact Renormalization Group 2020

Kyoto, Japan

Markus Q. Huber

Institute of Theoretical Physics, Giessen University

November 4, 2020

M. Q. Huber, Phys. Rev. D 101 [arXiv:2003.13703] M. Q. Huber, C. S. Fischer, H. Sanchis-Alepuz, arXiv:2004.00415

FUF Der Wissenschaftsfonds.

Markus Q. Huber

Giessen University

DFG Deutsche Forschungsgemeinschaft

November 4, 2020

Yang-Mills correlation functions in Landau gauge

Bound states

Bound states of QCD

QCD Lagrangian: Quarks and gluons

Yang-Mills correlation functions in Landau gauge

Bound states of QCD

QCD Lagrangian: Quarks and gluons

Calculate their properties?

Markus Q. Huber

Giessen University

Hadrons from bound state equations

Hadrons from bound state equations

Bethe-Salpeter amplitude

Glueballs as bound states

Glueballs as bound states

Gluons couple to ghosts \rightarrow Include 'ghostball'-part.

Glueballs as bound states

Gluons couple to ghosts \rightarrow Include 'ghostball'-part.

- 3-loop expanded 3PI effective action for kernel construction [Fukuda '87; McKay, Munczek '89; Sanchis-Alepuz, Williams '15]
- Full QCD: Same for quarks
 → Mixing with mesons.

Functional methods

Functional RG equations (FRGEs)	<i>m</i> -loop expanded <i>n</i> Pl effective action
effective average action $\Gamma^k[\phi]$	<i>n</i> PI effective action $\Gamma[\phi, D, R^{(3)}, \dots, R^{(n)}]$
infinitely many equations	finite number of equations
$k\frac{\partial}{\partial t}\Gamma^{k}[\phi] =$	$\Gamma_2^0[\Phi, D, \Gamma^{(3)}] = \frac{1}{8} \bigcirc + \frac{1}{6} \bigcirc + \frac{1}{18} \bigcirc + \frac{1}{8} \bigcirc + \frac{1}$
	$\Gamma_2^{\text{int}}[D, \Gamma^{(3)}] = -\frac{1}{12} + \frac{1}{24}$
1-loop	1- & 2-loop (equations of motion)
	Similarities to Dyson-Schwinger
	equations (1PI) (resummations)

Equations of motion from 3-loop 3PI effective action

Four-gluon vertex: bare

Self-contained system of equations with the scale as the only input.

Equations of motion from 3-loop 3PI effective action

Four-gluon vertex: bare

Self-contained system of equations with the scale as the only input.

Some nontrivialities:

- Renormalization incl. quadratic divergences
- Slavnov-Taylor identities
- Momentum dependence of vertices

Nontrivialities of quark sector \rightarrow Talk by R. Alkofer

Yang-Mills correlation functions in Landau gauge

Bound states

Comparison with other results

'2-gluon'-component: Bound state equation analogous to mesons.

'2-gluon'-component: Bound state equation analogous to mesons.

• Solution procedure: Solve eigenvalue problem

$$\mathcal{K} \cdot \Gamma(P, p) = \lambda(P) \Gamma(P, p)$$
 $\lambda(P) = 1 \rightarrow P^2 = -M^2$

'2-gluon'-component: Bound state equation analogous to mesons.

• Solution procedure: Solve eigenvalue problem

 $\mathcal{K} \cdot \Gamma(P,p) = \lambda(P) \, \Gamma(P,p) \qquad \qquad \lambda(P) = 1 \rightarrow P^2 = -M^2$

- Requires correlation functions for complex arguments.
- Model based results: [Meyers, Swanson '12; Sanchis-Alepuz, Fischer, Kellermann, von Smekal '15; Souza et al. '19; Kaptari, Kämpfer '20]

'2-gluon'-component: Bound state equation analogous to mesons.

• Solution procedure: Solve eigenvalue problem

 $\mathcal{K} \cdot \Gamma(P, p) = \lambda(P) \Gamma(P, p)$ $\lambda(P) = 1 \rightarrow P^2 = -M^2$

- Requires correlation functions for complex arguments.
- Model based results: [Meyers, Swanson '12; Sanchis-Alepuz, Fischer, Kellermann, von Smekal '15; Souza et al. '19; Kaptari, Kämpfer '20]
- Currently available Yang-Mills solutions not suitable [Fischer, MQH '20].

Besides non-analyticity in current truncations, also the self-consistency of the input turned out to be crucial.

'2-gluon'-component: Bound state equation analogous to mesons.

• Solution procedure: Solve eigenvalue problem

 $\mathcal{K} \cdot \Gamma(P, p) = \lambda(P) \Gamma(P, p)$ $\lambda(P) = 1 \rightarrow P^2 = -M^2$

- Requires correlation functions for complex arguments.
- Model based results: [Meyers, Swanson '12; Sanchis-Alepuz, Fischer, Kellermann, von Smekal '15; Souza et al. '19; Kaptari, Kämpfer '20]
- Currently available Yang-Mills solutions not suitable [Fischer, MQH '20].

Besides non-analyticity in current truncations, also the self-consistency of the input turned out to be crucial.

• Alternative: Analytically continue $\lambda(P)$.

Markus Q. Huber

Giessen University

November 4, 2020

Extrapolation of eigenvalues

Extrapolation of eigenvalues

- (1) Calculation of eigenvalues for $P^2 \in [10^{-4}, 0.25] \text{ GeV}^2$.
- ② → Extrapolation to time-like P² using Schlessinger's continued fraction method:

$$f(x) = \frac{f(x_1)}{1 + \frac{a_1(x-x_1)}{1 + \frac{a_2(x-x_2)}{1 + \frac{a_2(x-x_2)}{1 + \frac{a_3(x-x_3)}{\dots}}}}$$

Extrapolation of eigenvalues

- (1) Calculation of eigenvalues for $P^2 \in [10^{-4}, 0.25] \text{ GeV}^2$.
- ② → Extrapolation to time-like P² using Schlessinger's continued fraction method:

$$f(x) = \frac{f(x_1)}{1 + \frac{a_1(x-x_1)}{1 + \frac{a_2(x-x_2)}{1 + \frac{a_2(x-x_2)}{1 + \frac{a_3(x-x_3)}{1 + \frac{a_3(x$$

Averaging over subsets of input points.

Extrapolation of eigenvalues

- (1) Calculation of eigenvalues for $P^2 \in [10^{-4}, 0.25] \text{ GeV}^2$.
- ② → Extrapolation to time-like P² using Schlessinger's continued fraction method:

$$f(x) = \frac{f(x_1)}{1 + \frac{a_1(x-x_1)}{1 + \frac{a_2(x-x_2)}{1 + \frac{a_2(x-x_2)}{1 + \frac{a_3(x-x_2)}{\dots}}}}$$

Averaging over subsets of input points.

Markus Q. Huber

Giessen University

Extrapolation of eigenvalues

- (1) Calculation of eigenvalues for $P^2 \in [10^{-4}, 0.25] \text{ GeV}^2$.
- ④ → Extrapolation to time-like P² using Schlessinger's continued fraction method:

$$f(x) = \frac{f(x_1)}{1 + \frac{a_1(x-x_1)}{1 + \frac{a_2(x-x_2)}{1 + \frac{a_2(x-x_2)}{1 + \frac{a_3(x-x_3)}{\dots}}}}$$

Averaging over subsets of input points.

Markus Q. Huber

Giessen University

November 4, 2020

Masses of 0^{PC} glueballs in MeV:

State	[Morningstar,	[Chen et al.,	[At hen o dor o u,	[Huber, Sanchis-Ale-	
	Peardon, 1999]	2005]	Teper, 2020]	puz, Fischer, 2020]	
0++	1760(50)	1740(50)	1651(23)	1850(130)	
0*++	2720(180)	_	2840(40)	2570(210)	

Masses of 0^{PC} glueballs in MeV:

State	[Morningstar,	[Chen et al.,	[Athenodorou,	[Huber, Sanchis-Ale-
	Peardon, 1999]	2005]	Teper, 2020]	puz, Fischer, 2020]
0++	1760(50)	1740(50)	1651(23)	1850(130)
0*++	2720(180)	-	2840(40)	2570(210)
0**++	-	_	$3650(60)^\dagger \ 3580(150)^\dagger$	3720(160)
[†] Candidates of A_1 irred. representation of octahedral group.				

Masses of 0^{PC} glueballs in MeV:

State	[Morningstar,	[Chen et al.,	[Athenodorou,	[Huber, Sanchis-Ale-
	Peardon, 1999]	2005]	Teper, 2020]	puz, Fischer, 2020]
0++	1760(50)	1740(50)	1651(23)	1850(130)
0*++	2720(180)	-	2840(40)	2570(210)
0**++			$3650(60)^{\dagger}$	3720(160)
			$3580(150)^{\dagger}$	
0^+	2640(40)	2610(40)	2600(40)	2580(180)
0*-+	3710(60)	-	3540(80)	3870(120)
o**-+			$4450(140)^{\dagger}$	4340(200)
0	_	_	$4540(120)^{\dagger}$	4340(200)
All results for $r_0 = 1/418(5)$ MeV.				

[†] Candidates of A_1 irred. representation of octahedral group.

All results for $r_0 = 1/418(5)$ MeV.

Markus Q. Huber

• Different functional approaches converge towards a common picture in Landau gauge Yang-Mills theory:

- Different functional approaches converge towards a common picture in Landau gauge Yang-Mills theory:
 - Agreement with lattice results

- Different functional approaches converge towards a common picture in Landau gauge Yang-Mills theory:
 - Agreement with lattice results
 - Self-contained: No phenomenological parameters

- Different functional approaches converge towards a common picture in Landau gauge Yang-Mills theory:
 - Agreement with lattice results
 - Self-contained: No phenomenological parameters
- Application to glueball spectrum:

- Different functional approaches converge towards a common picture in Landau gauge Yang-Mills theory:
 - Agreement with lattice results
 - Self-contained: No phenomenological parameters
- Application to glueball spectrum:
 - Results competitive with lattice results

- Different functional approaches converge towards a common picture in Landau gauge Yang-Mills theory:
 - Agreement with lattice results
 - Self-contained: No phenomenological parameters
- Application to glueball spectrum:
 - Results competitive with lattice results
 - Masses of second excited states confirmed later by lattice method

- Different functional approaches converge towards a common picture in Landau gauge Yang-Mills theory:
 - Agreement with lattice results
 - Self-contained: No phenomenological parameters
- Application to glueball spectrum:
 - Results competitive with lattice results
 - Masses of second excited states confirmed later by lattice method
 - Identical masses for scaling and decoupling solutions.

- Different functional approaches converge towards a common picture in Landau gauge Yang-Mills theory:
 - Agreement with lattice results
 - Self-contained: No phenomenological parameters
- Application to glueball spectrum:
 - Results competitive with lattice results
 - Masses of second excited states confirmed later by lattice method
 - Identical masses for scaling and decoupling solutions.
 - Extrapolation from Euclidean results: stable and verified for mesons.

- Different functional approaches converge towards a common picture in Landau gauge Yang-Mills theory:
 - Agreement with lattice results
 - Self-contained: No phenomenological parameters
- Application to glueball spectrum:
 - Results competitive with lattice results
 - Masses of second excited states confirmed later by lattice method
 - Identical masses for scaling and decoupling solutions.
 - Extrapolation from Euclidean results: stable and verified for mesons.
 - Techniques for direct calculations on time-like side known, but further exploration required.

- Different functional approaches converge towards a common picture in Landau gauge Yang-Mills theory:
 - Agreement with lattice results
 - Self-contained: No phenomenological parameters
- Application to glueball spectrum:
 - Results competitive with lattice results
 - Masses of second excited states confirmed later by lattice method
 - Identical masses for scaling and decoupling solutions.
 - Extrapolation from Euclidean results: stable and verified for mesons.
 - Techniques for direct calculations on time-like side known, but further exploration required.
- Possible extensions: Dynamic quarks, higher spin glueballs

- Different functional approaches converge towards a common picture in Landau gauge Yang-Mills theory:
 - Agreement with lattice results
 - Self-contained: No phenomenological parameters
- Application to glueball spectrum:
 - Results competitive with lattice results
 - Masses of second excited states confirmed later by lattice method
 - Identical masses for scaling and decoupling solutions.
 - Extrapolation from Euclidean results: stable and verified for mesons.
 - Techniques for direct calculations on time-like side known, but further exploration required.
- Possible extensions: Dynamic quarks, higher spin glueballs

- Different functional approaches converge towards a common picture in Landau gauge Yang-Mills theory:
 - Agreement with lattice results
 - Self-contained: No phenomenological parameters
- Application to glueball spectrum:
 - Results competitive with lattice results
 - Masses of second excited states confirmed later by lattice method
 - Identical masses for scaling and decoupling solutions.
 - Extrapolation from Euclidean results: stable and verified for mesons.
 - Techniques for direct calculations on time-like side known, but further exploration required.
- Possible extensions: Dynamic quarks, higher spin glueballs

Thank you for your attention!

Markus Q. Huber

Giessen University

November 4, 2020

Complex plane

Simpler truncation:

Complex plane

Simpler truncation:

Integration in complex plane:

$$\int_{\Lambda} \frac{d^d q}{(2\pi)^d} \frac{1}{q^2 (p+q)^2} \to \int_0^{\Lambda^2} dq^2 \, q^{d-4} \int_0^{\pi} d\theta \frac{(\sin \theta)^{d-2}}{p^2 + q^2 + 2\sqrt{p^2 q^2} \cos \theta}$$

Integration in θ creates cuts at $q^2 = p^2 e^{\pm 2i\theta}$.

- \rightarrow Avoid by contour deformation [Maris '95].
- \rightarrow General case: [Windisch, MQH, Alkofer '13]
- ightarrow Ray technique: Self-consistent solutions on rays

[Strauss, Fischer, Kellermann '12]

Complex plane

Simpler truncation:

Integration in complex plane:

$$\int_{\Lambda} \frac{d^d q}{(2\pi)^d} \frac{1}{q^2 (p+q)^2} \to \int_0^{\Lambda^2} dq^2 \, q^{d-4} \int_0^{\pi} d\theta \frac{(\sin \theta)^{d-2}}{p^2 + q^2 + 2\sqrt{p^2 q^2} \cos \theta}$$

Integration in θ creates cuts at $q^2 = p^2 e^{\pm 2i\theta}$.

- \rightarrow Avoid by contour deformation [Maris '95].
- \rightarrow General case: [Windisch, MQH, Alkofer '13]
- ightarrow Ray technique: Self-consistent solutions on rays

```
[Strauss, Fischer, Kellermann '12]
```

Applications of contour deformation: QED3 [Maris '95], quark propagator [Alkofer et al. '04], Yang-Mills propagators [Strauss, Fischer, Kellermann '12; Fischer, MQH '20], glueball correlators [Windisch, MQH, Alkofer '12], meson decays [Weil et al. '17; Williams '18], quark-photon vertex [Miramontes, Sanchis-Alepuz '19], finite-T spectral functions of O(N) model: [Pawlowski,Strodthoff, Wink '18], scattering amplitudes scalar theory [Eichmann et al. '19]

Markus Q. Huber

Giessen University

November 4, 2020

Landau gauge Yang-Mill propagators in the complex plane

Simpler truncation:

Propagators in the complex plane: $p^2 = \widetilde{
ho}^2 e^{i\, heta}$

[Fischer, MQH '20]

Landau gauge Yang-Mill propagators in the complex plane

Simpler truncation:

Propagators in the complex plane: $p^2 = \widetilde{p}^2 e^{i\, heta}$

[Fischer, MQH '20]

- Method works,
- but current truncation leads to a pole-like structure in the gluon propagator.
- Analyticity up to 'pole' confirmed by various tests.
- Warning: No proof of existence of complex conjugate poles.

Markus Q. Huber

Giessen University

November 4, 2020

DSE vs. 3PI

Three-gluon vertex:

- DSE: 1- & 2-loop
- 3-loop 3PI: 1-loop

[Cucchieri et al. '08; Sternbeck et al. '17; MQH '20]

 \rightarrow Use 3PI because it is simpler.

Markus Q. Huber

November 4, 2020

Glueballs: Quantum numbers

Hadron masses from correlation functions of color singlet operators.

Glueballs: Quantum numbers

Hadron masses from correlation functions of color singlet operators.

Example: For $J = 0^{++}$ glueball take $O(x) = F_{\mu\nu}(x)F^{\mu\nu}(x)$:

$$D(x-y) = \langle O(x)O(y) \rangle$$

 \rightarrow Lattice: Mass from this correlator by exponential Euclidean time decay.

Glueballs: Quantum numbers

Hadron masses from correlation functions of color singlet operators.

Example: For $J = 0^{++}$ glueball take $O(x) = F_{\mu\nu}(x)F^{\mu\nu}(x)$:

$$D(x-y) = \langle O(x)O(y) \rangle$$

 \rightarrow Lattice: Mass from this correlator by exponential Euclidean time decay.

 A^4 -part of D(x - y), total momentum on-shell:

For bound state equations, consider general four-point function: \rightarrow Bethe-Salpeter wave functions

Note: '2-gluon'-component sufficient to calculate mass for $J^{PC} = 0^{\pm +}$.