Three-dimensional Yang-Mills theory as a testbed for truncations of Dyson-Schwinger equations

Markus Q. Huber

Institute of Physics, University of Graz

ACHT2015, Leibnitz

October 8, 2015

Der Wissenschaftsfonds.

Markus Q. Huber

University of Graz

October 8, 2015

From Green functions to 'observables'

Basic building blocks of functional equations: n-point functions $\Gamma_{i_1...i_n}$

Effective action: generating functional of 1PI Green functions

$$\Gamma[\Phi] = \sum_{n=0}^{\infty} \frac{1}{n!} \Phi_1 \dots \Phi_n \Gamma_{i_1 \dots i_n}$$

The set of **all** Green functions describes the theory completely.

$$\begin{array}{l} \rightarrow \qquad \qquad \Gamma_{ij} = \frac{\delta^2 \Gamma[\Phi]}{\delta \Phi_i \delta \Phi_j}, \\ \Gamma_{ijk} = \frac{\delta^3 \Gamma[\Phi]}{\delta \Phi_i \delta \Phi_j \delta \Phi_k}, \quad \dots \end{array}$$

From Green functions to 'observables'

 \leftarrow

Basic building blocks of functional equations: n-point functions $\Gamma_{i_1...i_n}$

Effective action: generating functional of 1PI Green functions

$$\Gamma[\Phi] = \sum_{n=0}^{\infty} \frac{1}{n!} \Phi_1 \dots \Phi_n \Gamma_{i_1 \dots i_n}$$

The set of **all** Green functions describes the theory completely.

Green functions \rightarrow 'observables'?

Examples:

- Bound state equations → masses and properties of hadrons
 → talks of Hilger, Krassnigg, Sanchez-Alepuz, Sauli, ...
- $\bullet\,$ Analytic properties of Green functions $\rightarrow\,$ confinement
- (Pseudo-)Order parameters \rightarrow Phases and transitions \rightarrow talk of Reinosa

Markus Q. Huber

University of Graz

DAAA

Landau gauge Yang-Mills theory

Gluonic sector of quantum chromodynamics: Yang-Mills theory

$$\begin{split} \mathcal{L} &= \frac{1}{2} F^2 + \mathcal{L}_{gf} + \mathcal{L}_{gh} \\ F_{\mu\nu} &= \partial_{\mu} \mathbf{A}_{\nu} - \partial_{\nu} \mathbf{A}_{\mu} + i g \left[\mathbf{A}_{\mu}, \mathbf{A}_{\nu} \right] \end{split}$$

Landau gauge

• simplest one for functional equations • $\partial_{\mu} \mathbf{A}_{\mu} = 0$: $\mathcal{L}_{gf} = \frac{1}{2\xi} (\partial_{\mu} \mathbf{A}_{\mu})^2$, $\xi \to 0$ • requires ghost fields: $\mathcal{L}_{gh} = \overline{\mathbf{c}} (-\Box + g \mathbf{A} \times) \mathbf{c}$ $\mathcal{L}_{gh} = \overline{\mathbf{c}} (-\Box + g \mathbf{A} \times) \mathbf{c}$

The tower of DSEs

The tower of DSEs

Infinitely many equations. In QCD, every *n*-point function depends on (n + 1)-and possibly (n + 2)-point functions.

Markus Q. Huber

University of Graz

October 8, 2015

Truncating the equations

Truncation

- Drop quantities (unimportant?)
- Model quantities (good models available?)
- Use fits

Ideally: Find a truncation that has no parameters and yields quantitative results.

Truncating the equations

Truncation

- Drop quantities (unimportant?)
- Model quantities (good models available?)
- Use fits

Ideally: Find a truncation that has no parameters and yields quantitative results.

Guides

- Perturbation theory
- Symmetries
- Lattice
- Analytic results

Practical obstacle: Manage the system of equations. → Automatization tools [Alkofer, MQH, Schwenzer '08; Braun, MQH '11; MQH, Mitter '11; http://tinyurl.com/dofun2; http://tinyurl.com/crasydse]

Coupled system of propagators with models for three-point functions:

Coupled system of propagators with models for three-point functions:

Include three-point functions dynamically [Blum, MQH, Mitter, von Smekal '14]:

Coupled system of propagators with models for three-point functions:

Include three-point functions dynamically [Blum, MQH, Mitter, von Smekal '14]:

Open questions:

- Four-gluon vertex (in this truncation scheme no dependence on higher n-point functions, see also [Cyrol, MQH, von Smekal '14])
- Two-loop diagrams in propagators (ok for three-point functions)

Coupled system of propagators with models for three-point functions:

Include three-point functions dynamically [Blum, MQH, Mitter, von Smekal '14]:

Open questions:

- Four-gluon vertex (in this truncation scheme no dependence on higher n-point functions, see also [Cyrol, MQH, von Smekal '14])
- Two-loop diagrams in propagators (ok for three-point functions)
- Technical questions: spurious divergences in gluon propagator, RG resummation

Yang-Mills theory in 3 dimensions: Propagator results

$$d = 3$$

Yang-Mills theory in 3 dimensions: Propagator results

$$d = 3$$

Historically interesting because cheaper on the lattice \rightarrow easier to reach the IR, e.g., [Cucchieri '99; Cucchieri, Mendes, Taurines '03; Maas '08, '14; Cucchieri, Dudal, Mendes, Vandersickel '11; Bornyakov, Mitrjushkin, Rogalyov '11, '13]

Continuum results:

- Coupled propagator DSEs: Maas, Wambach, Grüter, Alkofer '04
- (R)GZ: Dudal, Gracey, Sorella, Vandersickel, Verschelde '08
- YM + mass term: Tissier, Wschebor '10, '11
- DSEs of PT-BFM: Aguilar, Binosi, Papavassiliou '10

Markus Q. Huber

University of Graz

October 8, 2015

Yang-Mills theory in 3 dimensions: Why again?

NB: Numerically not cheaper for functional equations.

Yang-Mills theory in 3 dimensions: Why again?

NB: Numerically not cheaper for functional equations.

Advantages:

- UV finite: no renormalization, no anomalous running
- Spurious divergences easier to handle
- \Rightarrow Many complications from d = 4 absent!

Subtraction of divergences of gluon propagator

- (1) Logarithmic divergences handled by subtraction at p_0 .
- 2 Quadratic divergences subtracted, coefficient $C_{\rm sub}$.

$$Z(p^2)^{-1} := Z_{\Lambda}(p^2)^{-1} - C_{sub} \left(\frac{1}{p^2} - \frac{1}{p_0^2}\right)$$

$$\uparrow$$
calculated right-hand side

 $C_{\rm sub}$ can be calculated anlytically, since it is a purely perturbative [MQH, von Smekal '14].

Subtraction of divergences of gluon propagator

- Logarithmic divergences handled by subtraction at p₀.
- ² Quadratic Linear and logarithmic divergences subtracted.

$$Z(p^2)^{-1} := Z_{\Lambda}(p^2)^{-1} - C_{sub} \left(\frac{1}{p^2} - \frac{1}{p_0^2}\right)$$

$$\uparrow$$
calculated right-hand side

 $C_{\rm sub}$ can be calculated anlytically, since it is a purely perturbative [MQH, von Smekal '14].

A solution for the propagators

'Standard' truncation of propagators:

1-loop, bare ghost-gluon vertex, three-gluon vertex model

Form of spurious divergences (analytic):

$$C_{sub} = a \Lambda + b \ln \Lambda$$

Three-gluon vertex model

$$D^{A^{3}}(x, y, z) = \frac{\overline{p}^{2}}{\overline{p}^{2} + L^{2}} - G(\overline{p}^{2})^{3} \frac{L^{6}}{(L^{2} + x)(L^{2} + y)(L^{2} + z)}$$
$$\overline{p}^{2} = \frac{x + y + z}{2}$$

Not possible to raise the gluon bump further by playing with the vertex models!

Two-loop diagrams

Squint:

Sunset:

4d: [Bloch '03; Mader, Alkofer '12; Meyers, Swanson '14]

Main obstacle: spurious divergences

Spurious divergences

Leading order corrections to subtraction coefficient: $g^4
ightarrow \log(\Lambda)$

Determined by a fit:

- Very small.
- Still large effect.

Two-loop diagrams

Squint:

Sunset:

4d: [Bloch '03; Mader, Alkofer '12; Meyers, Swanson '14]

Main obstacle: spurious divergences

Spurious divergences

Leading order corrections to subtraction coefficient: $g^4 \rightarrow \log(\Lambda)$

Determined by a fit:

- Very small.
- Still large effect.

New vertex enters: Four-gluon vertex

Markus Q. Huber

Four-gluon vertex

4d: Solution of four-gluon DSE (full momentum dependence)

[Cyrol, MQH, von Smekal '14]

Similar results by

[Binosi, Ibáñez, Papavassiliou '14]

Markus Q. Huber

Four-gluon vertex

4d: Solution of four-gluon DSE (full momentum dependence)

3d:

Simple ansatz with suppression in mid-momentum regime:

Markus Q. Huber

University of Graz

October 8, 2015

A solution for the propagators with two-loop diagrams

Improved truncation of propagators:

1- and 2-loops, bare ghost-gluon vertex, three-gluon vertex model

 \rightarrow Two-loop diagrams essential to allow raising the gluon bump.

A solution for the propagators with two-loop diagrams

Improved truncation of propagators:

1- and 2-loops, bare ghost-gluon vertex, three-gluon vertex model

 \rightarrow Two-loop diagrams essential to allow raising the gluon bump.

\Rightarrow Next step: include vertices dynamically.

Markus Q. Huber

University of Graz

October 8, 2015

Ghost-gluon vertex

Full momentum dependence calculated!

Three-gluon vertex

Lattice: [Cucchieri, Maas, Mendes '08]

Full momentum dependence calculated!

```
Note: IR divergent!
Cf. [Peláez, Tissier, Wschebor '13]
```

Propagators

Markus Q. Huber

Overview d = 3

Summary and conclusions

- 3d Yang-Mills theory as a testbed for truncations of DSEs
- Various improvements (two-loop diagrams, dynamic three-point functions) lead to results close to lattice results.
- Missing piece: four-gluon vertex

Implications

• An example of a self-consistent, self-contained truncation of a set of DSEs with quantitative results???

Parameter-less truncation possible!?

What about 4d?

Summary and conclusions

- 3d Yang-Mills theory as a testbed for truncations of DSEs
- Various improvements (two-loop diagrams, dynamic three-point functions) lead to results close to lattice results.
- Missing piece: four-gluon vertex

Implications

• An example of a self-consistent, self-contained truncation of a set of DSEs with quantitative results???

Parameter-less truncation possible !?

What about 4d?

Thank you for your attention.