Non-perturbative analysis of the Gribov-Zwanziger action

Markus Q. Huber, Reinhard Alkofer, Silvio P. Sorella

Institute of Theoretical Physics, Friedrich-Schiller-University Jena

Aug. 30, 2010

Quark Confinement and the Hadron Spectrum IX, Madrid

Gribov-Zwanziger

- Gribov problem: conventional gauge fixing insufficient for non-perturbative regime
- restriction to Gribov region Ω in Landau gauge:
 - Gribov-Zwanziger action
 - \bullet IR is dominated by configurations close to Gribov horizon $\partial \Omega$

Gribov-Zwanziger action

- Landau gauge + restriction of integration in the path integral to the first Gribov region [Zwanziger, NPB323]
- confined gluon at tree-level: vanishes at p = 0 like p^2

 \Rightarrow maximal violation of positivity

• horizon condition [Zwanziger, NBP399]

 \Rightarrow IR enhanced ghost propagator, 1-loop: $1/p^4$

Cf. functional equations:

- Faddeev-Popov action (no reference to the Gribov problem)
- boundary condition required

[Zwanziger, PRD65; Fischer, Maas, Pawlowski, AP324]:

e.g., horizon condition or the Kugo-Ojima criterion

• scaling solution

(qualitatively the same, but non-integer exponents for dressings)

or

decoupling solution

Dyson-Schwinger equations in the Gribov region

Zwanziger, PRD65,69:

Faddeev-Popov action can be used for DSEs, but boundary condition required \leftarrow horizon condition.

Derivation of DSEs:

Integral of a total derivative vanishes:

$$\int [DA\bar{c}c]\frac{\delta}{\delta A}e^{-S+JA} = \int [DA\bar{c}c]\left(J-\frac{\delta S}{\delta A}\right)e^{-S+JA} = 0.$$

 \Rightarrow DSEs for all Green functions (full, connected, 1PI) by further differentiations.

Dyson-Schwinger equations in the Gribov region

Zwanziger, PRD65,69:

Faddeev-Popov action can be used for DSEs, but boundary condition required \leftarrow horizon condition.

Derivation of DSEs:

Integral of a total derivative vanishes [Zwanziger, PRD65, PRD69]:

$$\int_{\Omega} [DA\bar{c}c] \frac{\delta}{\delta A} e^{-S+JA} = \int_{\Omega} [DA\bar{c}c] \left(J - \frac{\delta S}{\delta A}\right) e^{-S+JA} = 0.$$

 \Rightarrow DSEs for all Green functions (full, connected, 1PI) by further differentiations.

Dyson-Schwinger equations in the Gribov region

Zwanziger, PRD65,69:

Faddeev-Popov action can be used for DSEs, but boundary condition required \leftarrow horizon condition.

Derivation of DSEs:

Integral of a total derivative vanishes [Zwanziger, PRD65, PRD69]:

$$\int_{\Omega} [DA\bar{c}c] \frac{\delta}{\delta A} e^{-S+JA} = \int_{\Omega} [DA\bar{c}c] \left(J - \frac{\delta S}{\delta A}\right) e^{-S+JA} = 0.$$

 \Rightarrow DSEs for all Green functions (full, connected, 1PI) by further differentiations.

$$\int_{\Omega} [DA] \left(J - \frac{\delta S}{\delta A} \right) \delta(\partial \cdot A) \det(M) e^{-S_{YM} + JA} = 0.$$

$$det(M)\Big|_{\partial\Omega}=0$$

Local Gribov-Zwanziger action

Add non-local horizon function *h* to the Faddeev-Popov action [Zwanziger, NPB323]:

$$\mathcal{L} = \mathcal{L}_{FP} + \gamma^4 h.$$

Local Gribov-Zwanziger action

Add non-local horizon function *h* to the Faddeev-Popov action [Zwanziger, NPB323]:

$$\mathcal{L} = \mathcal{L}_{FP} + \gamma^4 h.$$

Localization with (anti)commuting fields $(\bar{\eta}_{\mu}^{ab}, \eta_{\mu}^{ab}) V_{\mu}^{ab}$:

$$\mathcal{L}_{GZ} = \mathcal{L}_{FP} - \frac{1}{2} \bar{\eta}_{\mu}^{ac} M^{ab} \eta_{\mu}^{bc} \frac{1}{2} + V_{\mu}^{ac} M^{ab} V_{\mu}^{bc} + \mathbf{i} \mathbf{g} \gamma^2 \sqrt{2} \mathbf{f}^{abc} A_{\mu}^{a} V_{\mu}^{bc}$$

$$\int_{\mathbf{F}}^{\mathbf{F}} Faddeev-Popov \text{ operator: } -\partial D^{ab}$$

Connection to conventional fields:

$$\begin{split} \phi &= \frac{1}{\sqrt{2}} \left(U + i \, V \right), \quad \bar{\phi} = \frac{1}{\sqrt{2}} \left(U - i \, V \right) \\
c, \bar{c}, U, \omega, \bar{\omega} \longrightarrow \eta, \bar{\eta} \\
from scale invariance, e.g., c \rightarrow ce^{\theta} \end{split}$$

Derivation of DSEs (*DoDSE*)

 $\Rightarrow DoDSE$ [Alkofer, M.Q.H., Schwenzer, CPC 180 (2009)]

Given a structure of interactions, the DSEs are derived symbolically using *Mathematica*.

Example (Landau gauge):

- only input: interactions in Lagrangian (AA, AAA, AAAA, cc, Acc)
- Which DSE do I want?
- Step-by-step calculations possible.
- Can handle mixed propagators (then there are really many diagrams; e. g. in Gribov-Zwanziger action).

Upgrade

Provide Feynman rules and get complete algebraic expressions.

 \rightarrow E. g. calculate color algebra with *FORM* and integrals with *C*.

Landau Gauge: Propagators

Landau Gauge: Four-Gluon Vertex

66 terms

Landau Gauge: Five-Gluon Vertex

434 terms

**** ***** **** ************* ***** · * * * * * & & & & * * * * * * ĸ`Ħ`や'ヸ゚゚ヸ゚゚゙や゙ゕ゚ゕ゙ゕ゙ゕ゚ゕ゚ゕ

DSEs of Gribov-Zwanziger action 1

Just to give an impression:

DSEs of Gribov-Zwanziger action II

Just to give an impression:

Complete analysis of all diagrams!

Infrared analysis Resul

Infrared power counting

• Vertices also assume power law behavior

[e.g., Alkofer, Fischer, Llanes-Estrada, PLB 611 (2005) (skeleton expansion)].

- Limit of all momenta approaching zero simultaneously.
- Upon integration all momenta converted into powers of external momenta.

 \Rightarrow counting of IR exponents

System of inequalities

• Ihs is dominated by at least one diagram on rhs and rhs cannot be more divergent than lhs.

• Not knowing which diagram is leading on the rhs, we can write inequalities from all diagrams.

$$\sum_{i=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1}$$

 $-\delta_{\text{gl}} \leq 2\delta_{\text{gl}} + \delta_{3\text{g}}, \qquad -\delta_{\text{gl}} \leq 2\delta_{\text{gh}} + \delta_{\text{gg}}, \qquad \ldots$

That's the basic idea.

Still, for a large system a lot of work.

System of inequalities

• Ihs is dominated by at least one diagram on rhs and rhs cannot be more divergent than lhs.

$$\rightarrow \delta_{lhs} \leq \delta_{rhs,any} \, diagram$$

• Not knowing which diagram is leading on the rhs, we can write inequalities from all diagrams.

$$\sum_{i=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1}$$

 $-\delta_{gl} \leq 2\delta_{gl} + \delta_{3g}, \qquad -\delta_{gl} \leq 2\delta_{gh} + \delta_{gg}, \qquad \dots$

Still, for a large system a lot of work.

MQH

That's the basic idea.

All inequalities relevant?

Aug. 30, 2010

Relevant inequalities

Closed form for all relevant inequalities from 2 independent sets of funct. equations

type		derived from	#
dressed vertices	$C_1 := \delta_{vertex} + \frac{1}{2} \sum \delta_j \ge 0$	ERGEs	∞
	legs j of vertex		
prim. div. vertices	$egin{array}{ccc} \mathcal{C}_2\coloneqqrac{1}{2} & \sum & \delta_j\geq 0 \end{array}$	DSEs+ERGEs	a few
	legs j of prim. div. vertex		

Relevant inequalities

Shifting analysis to IR exponents \rightarrow exact from this point on.

Analysis of propagator DSEs

Very useful for complicated actions like the maximally Abelian gauge

(results support hypothesis of Abelian dominance [M.Q.H., Schwenzer, Alkofer, EPJC 68]).

Propagators and two-point functions

Mixing at two-point level: $i g \gamma^2 \sqrt{2} f^{abc} A^a_{\mu} V^{bc}_{\mu}$

$$D^{\phi\phi} = (\Gamma^{\phi\phi})^{-1}, \qquad \phi \in \{A, V\}$$

 \Rightarrow Non-trivial relationship between propagators and two-point functions.

Propagators and two-point functions

Mixing at two-point level: $i g \gamma^2 \sqrt{2} f^{abc} A^a_{\mu} V^{bc}_{\mu}$

$$D^{\phi\phi} = (\Gamma^{\phi\phi})^{-1}, \qquad \phi \in \{A, V\}$$

 \Rightarrow Non-trivial relationship between propagators and two-point functions.

Example: VV-two-point function,

$$\Gamma^{VV,abcd}_{\mu
u} = \delta^{ac} \delta^{bd} p^2 c_V(p^2) g_{\mu
u}$$

dressing function $c_V(p^2) \xrightarrow{p^2 \to 0} d_V \cdot (p^2)^{\mathsf{k}_V}$

infrared exponent

Propagators and two-point functions

Mixing at two-point level: $i g \gamma^2 \sqrt{2} f^{abc} A^a_{\mu} V^{bc}_{\mu}$

$$D^{\phi\phi} = (\Gamma^{\phi\phi})^{-1}, \qquad \phi \in \{A, V\}$$

 \Rightarrow Non-trivial relationship between propagators and two-point functions.

Example: VV-two-point function,

$$\Gamma^{VV,abcd}_{\mu\nu} = \delta^{ac} \delta^{bd} p^2 c_V(p^2) g_{\mu\nu}$$

dressing function $c_V(p^2) \xrightarrow{p^2 \to 0} d_V \cdot (p^2)^{\mathsf{K}_V}$ *VV*-propagator:

$$D_{\mu\nu}^{VV,abcd} = \frac{1}{p^2} \frac{1}{c_V(p^2)} \delta^{ac} \delta^{bd} g_{\mu\nu} - f^{abe} f^{cde} \frac{1}{p^2} P_{\mu\nu} \frac{2c_{AV}^2(p^2)}{c_A^{\perp}(p^2)c_V^2(p^2) + 2N c_{AV}^2(p^2)c_V(p^2)}$$

The four possibilities

Which part of the determinant $c_A^{\perp}(p^2)c_V(p^2) + 2N c_{AV}^2(p^2)$ dominates in the IR?

$$c_{ij}(p^2) = d_{ij} \cdot (p^2)^{\kappa_{ij}}$$

Cancelations:

Leading contributions cancel and some less dominant term takes over.

The four possibilities

Which part of the determinant $c_A^{\perp}(p^2)c_V(p^2) + 2N c_{AV}^2(p^2)$ dominates in the IR?

$$c_{ij}(p^2) = d_{ij} \cdot (p^2)^{\kappa_{ij}}$$

I: $c_{AV}^2 > c_A c_V \leftrightarrow \kappa_A + \kappa_V > 2\kappa_{AV}$ II: $c_A c_V > c_{AV}^2 \leftrightarrow 2\kappa_{AV} > \kappa_A + \kappa_V$ III: $c_{AV}^2 \sim c_A c_V \leftrightarrow \kappa_A + \kappa_V = 2\kappa_{AV}$, no cancelations IV: $c_{AV}^2 \sim c_A c_V \leftrightarrow \kappa_A + \kappa_V = 2\kappa_{AV}$, cancelations

Cancelations:

Leading contributions cancel and some less dominant term takes over.

 Extend method to mixed propagators [M.Q.H., Alkofer, Sorella, PRD 81]: Cases I and IV directly lead to inconsistencies.

The four possibilities

Which part of the determinant $c_A^{\perp}(p^2)c_V(p^2) + 2N c_{AV}^2(p^2)$ dominates in the IR?

$$c_{ij}(p^2) = d_{ij} \cdot (p^2)^{\kappa_{ij}}$$

I: $c_{AV}^2 > c_A c_V \leftrightarrow \kappa_A + \kappa_V > 2\kappa_{AV}$ II: $c_A c_V > c_{AV}^2 \leftrightarrow 2\kappa_{AV} > \kappa_A + \kappa_V$ III: $c_{AV}^2 \sim c_A c_V \leftrightarrow \kappa_A + \kappa_V = 2\kappa_{AV}$, no cancelations IV: $c_{AV}^2 \sim c_A c_V \leftrightarrow \kappa_A + \kappa_V = 2\kappa_{AV}$, cancelations

Cancelations:

Leading contributions cancel and some less dominant term takes over.

- Extend method to mixed propagators [M.Q.H., Alkofer, Sorella, PRD 81]: Cases I and IV directly lead to inconsistencies.
- System of equations of III has no solution.
- \Rightarrow Unique solution II with $\kappa_V = \kappa_c = -\kappa_A/2$.

17/20

Case II: Solution as from Faddeev-Popov

Scaling relation: $\kappa_V = \kappa_c = -\kappa_A/2 = 0.595353$

- System of equations reduces *in the IR* to the Faddeev-Popov system.
- $\bullet \ \Rightarrow \mathsf{Same IR \ solution, \ i.e.,}$
 - IR vanishing gluon propagator,
 - IR enhanced ghost propagator,
 - qualitative behavior of all vertices.
- Mixed propagator is IR suppressed.
- Auxiliary fields are IR enhanced, as in [Zwanziger, PRD81].

Corroborates Zwanziger's argument on cutting the integral at $\partial\Omega$.

Case II: Solution as from Faddeev-Popov

Scaling relation: $\kappa_V = \kappa_c = -\kappa_A/2 = 0.595353$

- System of equations reduces in the IR to the Faddeev-Popov system.
- $\bullet \Rightarrow \mathsf{Same IR solution, i.e.,}$
 - IR vanishing gluon propagator,
 - IR enhanced ghost propagator,
 - qualitative behavior of all vertices.
- Mixed propagator is IR suppressed.
- Auxiliary fields are IR enhanced, as in [Zwanziger, PRD81].

Corroborates Zwanziger's argument on cutting the integral at $\partial\Omega$.

Horizon condition: We allow the ghost propagator to be IR enhanced.

 \Rightarrow Consistent solution is obtained.

Summary

 \rightarrow Derivation of DSEs with <code>DoDSE</code>: useful for complicated systems

 \rightarrow Possible scaling relations directly from Lagrangian

 \rightarrow Explicit restriction to the Gribov region yields the same non-perturbative IR result as Faddeev-Popov theory.

 \rightarrow Consistent picture of confinement in the Landau gauge (scaling solution):

- physical state space (Kugo-Ojima),
- role of Gribov region,
- qualitative behavior of all Green functions

$\mathsf{The} \; \mathsf{end} \;$

Thank you very much for your attention.

