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Introduction

Confinement and the Gribov problem

e.g. lattice

Description: requires non-perturbative tools

Mechanisms: Kugo-Ojima, Gribov-Zwanziger

e.g. functional egs. like ERGEs, DSEs

Gribov-Zwanziger

@ Gribov problem:
conventional gauge fixing insufficient for non-perturbative regime
@ restriction to Gribov region Q in Landau gauge:

o Gribov-Zwanziger action
e IR is dominated by configurations close to Gribov horizon 9Q
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Gribov-Zwanziger action

Gribov-Zwanziger action

o Landau gauge + restriction of integration in the path integral to the
first Gribov region [Zwanziger, NPB323]
e confined gluon at tree-level: vanishes at p = 0 like p?
= maximal violation of positivity

@ horizon condition [Zwanziger, NBP399]
= IR enhanced ghost propagator, 1-loop: 1/p*

Cf. functional equations:
o Faddeev-Popov action (no reference to the Gribov problem)
@ boundary condition required
[Zwanziger, PRD65; Fischer, Maas, Pawlowski, AP324]:

e.g., horizon condition or the Kugo-Ojima criterion
T T

@ scaling solution
(qualitatively the same, but non-integer exponents for dressings’

or {/*

@ decoupling solution
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Gribov-Zwanziger action

o Landau gauge + restriction of integration in the path integral to the
first Grlbov region [Zwan2|ger NPB323]

T Y

@ scaling solution
(qualitatively the same, but non-integer exponents for dressings)

@ decoupling solution
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Gribov-Zwanziger action

Dyson-Schwinger equations in the Gribov region

Zwanziger, PRD65,69:

Faddeev-Popov action can be used for DSEs, but boundary condition
required < horizon condition.

Derivation of DSEs:
Integral of a total derivative vanishes:

- i —S+JA _ J - _§ —S+JA _
J' [DAcc] 6Ae = [DAcc] | J SA e =0.

= DSEs for all Green functions (full, connected, 1PI) by further
differentiations.
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required < horizon condition.

Derivation of DSEs:
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Gribov-Zwanziger action

Dyson-Schwinger equations in the Gribov region

Zwanziger, PRD65,69:

Faddeev-Popov action can be used for DSEs, but boundary condition
required < horizon condition.

Derivation of DSEs:
Integral of a total derivative vanishes [Zwanziger, PRD65, PRD69]:

- £—5+JA_J - _ﬁ —S+JA _
L)[DACC]SAG = Q[DAcc] J SA e =0.

= DSEs for all Green functions (full, connected, 1PI) by further
differentiations.

J [DA] (J 65) 5(0- A)det(M)e Sym+IA — ¢,
Q A

det(M)’aQ —0
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Gribov-Zwanziger action

Local Gribov-Zwanziger action

Add non-local horizon function h
to the Faddeev-Popov action [zZwanziger, NPB323]:

L=Lrp -|—’Y4h.
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Gribov-Zwanziger action

Local Gribov-Zwanziger action

Add non-local horizon function h
to the Faddeev-Popov action [zZwanziger, NPB323]:

L=Lrp+ ’Y4h.
Localization with (anti)commuting fields (11u MR by ij:

1
Lcz = Lrp — 7nac /V,abnu 5 + Vac Mab Vbc +i gYZ\/EfabcA::1 VSC

Faddeev-Popov operator: —dD2b

Connection to conventional fields:

(P:E(U+iv)y @:ﬁ(UfiV]

¢, ¢ U w, o —mnn

. . 0
from scale invariance, e.g., ¢ — ce
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DSEs taking into account the Gribov region

Derivation of DSEs (DoDSE)

= DoDSE [Alkofer, M.QH., Schwenzer, CPC 180 (2009)]

Given a structure of interactions, the DSEs are derived symbolically
using Mathematica.

Example (Landau gauge):

@ only input: interactions in Lagrangian (AA, AAA, AAAA, cc, Acc)
o Which DSE do | want?

@ Step-by-step calculations possible.

@ Can handle mixed propagators (then there are really many diagrams;
e. g. in Gribov-Zwanziger action).

Upgrade
Provide Feynman rules and get complete algebraic expressions.
— E. g. calculate color algebra with FORM and integrals with C.
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Introduction Gribov-Zwanziger action DSEs taking into account the Gribov region

Infrared analysis Results

Landau Gauge: Propagators

Gluon propagator:

2 it

2 1 2 1
N oo 2 3 ! C> T D !
i i2
L2 [

Ghost propagator: e R G
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SEs taking into account the Gribov region

Landau Gauge: Four-Gluon Vertex

66 terms
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DSEs taking into account the Gribov region

Landau Gauge: Five-Gluon Vertex

434 terms
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DSEs taking into account the Gribov region

DSEs of Gribov-Zwanziger action |

Just to give an impression:
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DSEs taking into account the Gribov region

DSEs of Gribov-Zwanziger action |l

Just to give an impression:

i i

1 i [t i A A} i i A A} i
+ E— Ve - -—A—( .
—A——V— = —A———V—— AV- VV.
i v i i v i
R — A}Vﬁ R — A}vﬁ
AV- VV-

by [

—h—— v

[
e

;H(::}A_‘ . ;H(Q:}A_‘
R 0 S S GO

- R N ¢\ SN ¢ S

\
4
T

B ‘/Aj::}ﬂkv\‘ ' ‘/A/g}&v\‘ 4 ‘/A/(QAFVKV\‘ ! /A/@}:—Akv\‘ . 15k .
' ‘/AJV:;}Z—AKV\‘ ' ‘,Ajj}xﬁv‘\v\‘ i ‘,A/(:’AA}V‘JKV\' i ‘/A)v:;}x—v\v\‘ !
‘/A/\(_)i;;:_)\\.\v\‘ * ‘/A/\(_A;‘}:_A\.\V\‘ * ‘/A/?i:}:j\.\v\‘ ‘/A/\(_g;:_v\.\v\‘ :

S (N - (U I ¢ (S I L

IS

Complete analysis of all diagrams!
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Infrared analysis

Infrared power counting

Generic propagator
D(p?)

p2
IR exponent
assume power law behavior at low p? /

Tiij -

)

DR(p?) = A- (p?)°

@ Vertices also assume power law behavior
[e.g., Alkofer, Fischer, Llanes-Estrada, PLB 611 (2005) (skeleton expansion)].

@ Limit of all momenta approaching zero simultaneously.

@ Upon integration all momenta converted into powers of external
momenta.

= counting of IR exponents
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Infrared analysis

System of inequalities

o |hs is dominated by at least one diagram on rhs and rhs cannot be
more divergent than |hs.

- 6Ihs S 6rhs,any diagram

@ Not knowing which diagram is leading on the rhs, we can write
inequalities from all diagrams.

DOl

¥

841 < 2041+ O3gy  —Og1 < 28gh + Ogg

. :
That's the basic idea. Still, for a large system a lot of work. {W ‘?3
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Infrared analysis

System of inequalities

o |hs is dominated by at least one diagram on rhs and rhs cannot be
more divergent than |hs.

- 6Ihs S 6rhs,any diagram

@ Not knowing which diagram is leading on the rhs, we can write
inequalities from all diagrams.

DOl

¥

841 < 2041+ O3gy  —Og1 < 28gh + Ogg

That's the basic idea. Still, for a large system a lot of work. {M “%
All inequalities relevant?
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Infrared analysis
Relevant inequalities

Closed form for all relevant inequalities
from 2 independent sets of funct. equations

type derived from #
dressed vertices G = ve,tex—i— Z d; > 0 | ERGEs 00
legs j of
vertex
prim. div. vertices | C; = % Z 5 >0 DSEs+ERGEs | a few
legs j of
prim. div.
vertex
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Infrared analysis

Relevant inequalities

validity of skeleton expan-
Closed form for all relevant inequalities . Y P
. . sion basic property of scal-
from 2 independent sets of funct. equations . .
ing solutions
type derived from #
dressed vertices G = ve,tex—l— Z d; > 0 | ERGEs 00
legs j of
vertex
prim. div. vertices | C; = % Z 5 >0 DSEs+ERGEs | a few
legs j of
prim. div.
vertex

Shifting analysis to IR exponents — exact from this point on.
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Infrared analysis

Analysis of propagator DSEs

Example: 8gjyon + 28 ghose = 0 in Landau gauge

scaling relation

one vertex always IR constant (no Taylor argument req.) ‘

related to bare vertices in DSEs, cf. [Fischer, Pawlowski PRD77] ‘

necessary condition for scaling solutions ‘

qualitative behavior of higher Green functions ‘

valid for a large number of systems‘

Very useful for complicated actions like the maximally Abelian gauge

(results support hypothesis of Abelian dominance [M.Q.H., Schwenzer, Alkofer, EPJC 68]).
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Infrared analysis

Propagators and two-point functions

Mixing at two-point level: igyzx/if"’bCA‘:1 Vfl’c
Dd)d) = (]"‘bd’)—l’ ONS {A) V}

= Non-trivial relationship between propagators and two-point functions.
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Infrared analysis

Propagators and two-point functions

Mixing at two-point level: igyzx/if"’bCA‘:1 Vfl’c
Dd)d) = (]"‘bd’)—l’ d) € {A) V}
= Non-trivial relationship between propagators and two-point functions.

Example: VV-two-point function,

FXQ,/’ade _ 5305bdp2 cv (p2 )gp.v

2
dressing function cy (p?) 0, dy - (p?)<V —
infrared exponent
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Infrared analysis

Propagators and two-point functions

Mixing at two-point level: igyzx/if"’bCA‘:1 Vfl’c
Dd)d) = (]"‘bd’)—l’ ONS {A) V}

= Non-trivial relationship between propagators and two-point functions.

Example: VV-two-point function,
FXQ,/’ade _ 5305bdp2 cv (p2 )gp.v
2
dressing function cy (p?) 0, dy - (p?)<V —
VV/-propagator: infrared exponent

1 1

_?CV(P

VV, abcd ac s bd
DYY: 5

2) Euv—
- fabefcdeip N 2C,§v(p2)
7 T (97 + 2N, (P ew (7)
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Results

The four possibilities

Which part of the determinant ci (p*)cy (p?) + 2N cay (p?)
dominates in the IR?

s(p%) = di - ()

I: cf\v > CACy & Ka + Ky > 2Kay

Il: cacy > CE\V & 2Kay > Ka + Ky
I1: cf“/ ~ CACy < Ka + Ky = 2Kay, no cancelations
IV: cf\v ~ CACy ) Ka + Ky = 2Ky, cancelations

Cancelations:
Leading contributions cancel and some less dominant term takes over.
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Results

The four possibilities

Which part of the determinant ci (p*)cy (p?) + 2N cay (p?)
dominates in the IR?

2 2\ Kk
i{p?) = dy - (p7)%5
I:
Il: cacy > CE\V & 2Kay > Ka + Ky

I1: cf“/ ~ CACy < Ka + Ky = 2Kay, no cancelations
IV:

Cancelations:
Leading contributions cancel and some less dominant term takes over.

o Extend method to mixed propagators [M.Q.H., Alkofer, Sorella, PRD 81]:
Cases | and IV directly lead to inconsistencies.
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Results

The four possibilities

Which part of the determinant ci (p*)cy (p?) + 2N cay (p?)
dominates in the IR?

G (p?) = di - (p)%
I:
Il: cacy > CE\V — 2Kay > KA + Ky
I1:
IV:

Cancelations:
Leading contributions cancel and some less dominant term takes over.

o Extend method to mixed propagators [M.Q.H., Alkofer, Sorella, PRD 81]:
Cases | and IV directly lead to inconsistencies.

@ System of equations of Il has no solution.
@ = Unique solution Il with ky = k. = —k4/2.
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Results

Case Il: Solution as from Faddeev-Popov

Scaling relation: ky = k. = —k4/2 = 0.595353

@ System of equations reduces in the IR to the Faddeev-Popov system.
@ = Same IR solution, i.e.,

o IR vanishing gluon propagator,
o IR enhanced ghost propagator,
e qualitative behavior of all vertices.

@ Mixed propagator is IR suppressed.
@ Auxiliary fields are IR enhanced, as in [Zwanziger, PRDS81].

Corroborates Zwanziger's argument on cutting the integral at 0Q.

MQH FSU Jena Aug. 30, 2010 18/20



Results

Case Il: Solution as from Faddeev-Popov

Scaling relation: ky = k. = —k4/2 = 0.595353

@ System of equations reduces in the IR to the Faddeev-Popov system.
@ = Same IR solution, i.e.,

o IR vanishing gluon propagator,
o IR enhanced ghost propagator,
e qualitative behavior of all vertices.

@ Mixed propagator is IR suppressed.
@ Auxiliary fields are IR enhanced, as in [Zwanziger, PRDS81].

Corroborates Zwanziger's argument on cutting the integral at 0Q.

Horizon condition: We allow the ghost propagator to be IR enhanced. {/;

= Consistent solution is obtained.
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Results

‘ — Derivation of DSEs with DoDSE: useful for complicated systems

‘ — Possible scaling relations directly from Lagrangian

— Explicit restriction to the Gribov region yields the same
non-perturbative IR result as Faddeev-Popov theory.

\—/—\
— Consistent picture of confinement

in the Landau gauge (scaling solution):
@ physical state space (Kugo-Ojima),
@ role of Gribov region,

@ qualitative behavior of all Green functions
\—/—\
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The end

Thank you very much for your attention.
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