Landau gauge propagators of two-dimensional Yang-Mills theory

Markus Q. Huber, Axel Maas, Lorenz von Smekal

Institute of Nuclear Physics, Technical University Darmstadt

Mar. 19, 2012

DPG-Frühjahrstagung 2012

Unterstützt von / Supported by

Alexander von Humboldt Stiftung/Foundation

Propagators of four-dimensional Yang-Mills theory

Behavior at low momenta:

	ghost dressing	gluon dressing	Scaling relation
scaling	$\sim (p^2)^{-\kappa}$	$\sim (p^2)^{2\kappa}$	$2\delta_c + \delta_A = 0$
decoupling	$\sim (p^2)^0$	$\sim (p^2)^1$	

Non-perturbative gauge choice [Maas, PLB 689]?

Why d < 4?

n lattice points per direction: *n^d* total lattice points
⇒ lower dimensions require (much) less computer power

• Example lattices: d = 4: 128⁴ ($L \approx 27 \text{ fm}$) [Cucchieri, Mendes, Pos LAT2007, 297] d = 2: 2560² ($L \approx 460 \text{ fm}$) [Cucchieri, Mendes, AIP CP 1343, 185]

d = 2

- ullet No transverse directions o gluons have no degrees of freedom
- Gribov problem
- Ambiguity of solutions?
- Good lattice results, even for three-point functions

Lattice results for d = 2

Lattice calculations find only the decoupling type of solution for d = 3, 4.

Lattice results for d = 2

Lattice calculations find only the decoupling type of solution for d = 3, 4.

d = 2 seems different: Only the scaling type solution is found.

What to expect for d = 2

Scaling type solution:

• IR analysis allows two sets of IR exponents $\{\delta_c, \delta_A\}$ [Zwanziger, PRD65]:

 $\{0,1\}$ and $\{-0.2, 1.4\}$,

always $2\delta_c + \delta_A = -(d-4)/2 = 1$

• Qualitative behavior of all Green functions known [Huber, Alkofer, Fischer, Schwenzer, PLB659].

What to expect for d = 2

Scaling type solution:

• IR analysis allows two sets of IR exponents $\{\delta_c, \delta_A\}$ [Zwanziger, PRD65]:

 $\{0,1\}$ and $\{-0.2, 1.4\}$,

always $2\delta_c + \delta_A = -(d-4)/2 = 1$

• Qualitative behavior of all Green functions known [Huber, Alkofer, Fischer, Schwenzer, PLB659].

Decoupling type solutions:

• finite ghost dressing, finite gluon propagator

Note: Set 1 looks like a decoupling type (peculiar to d = 2).

Ghost equation

Ghost DSE:

(Presented results have been obtained with CrasyDSE [Huber, Mitter, 1112.5622].)

input: various gluon propagator ansätze, trivial ghost-gluon vertex

Ghost equation

$\kappa = 0$ revisited

IR exponents can be determined analytically from the IR dominant diagrams:

Value of κ is determined from

$$\frac{\sin(\pi\kappa)\Gamma(d/2-\kappa)\Gamma(\kappa)\Gamma(1+d/2+\kappa)}{2(d-1)\sin(\pi(d/2-2\kappa))\Gamma(d-2\kappa)\Gamma(2\kappa)\Gamma(1+\kappa)} = 1$$

There is no solution $d \rightarrow 2$, $\kappa = 0$.

To obtain $\kappa = 0$ an additional prescription is required.

 \rightarrow Existence of decoupling solution is scheme dependent.

Ghost and gluon DSEs

trivial ghost-gluon vertex, ansatz for three-gluon vertex

Coupled system of equations:

Ghost and gluon DSEs

trivial ghost-gluon vertex, ansatz for three-gluon vertex

Coupled system of equations:

 \Rightarrow Ghost does not approach 1 in the UV.

From dim. arguments:

(

$$G(p^2) \xrightarrow{p^2 \to \infty} \frac{1}{1 + c/p^2}$$

Preliminary results!

Mid-momentum regime and UV behavior

What is the source of this deviation of the ghost propagator in the UV?

Mid-momentum regime and UV behavior

What is the source of this deviation of the ghost propagator in the UV?

Return to ghost equation: Use gluon ansätze which differ in mid-momentum regime.

Mid-momentum regime and UV behavior

What is the source of this deviation of the ghost propagator in the UV?

Return to ghost equation: Use gluon ansätze which differ in mid-momentum regime.

 \Rightarrow Mid-momentum regime has (for d = 2 and contrary to d = 4) a direct influence on the UV behavior.

Ghost-gluon vertex DSE

Various truncations for ghost-gluon vertex DSEs:

Three-point function depends on 3 variables. Here: 2 ghost momenta p^2 and q^2 , angle φ between them.

Ghost-gluon vertex

Calculated from fully iterated propagators (bare ghost-gluon vertex used): *Preliminary results!*

Fixed momentum:

Fixed angle:

- ightarrow 1 in the UV
- \rightarrow IR constant
- \rightarrow Almost no dependence on angle

 \rightarrow Direct influence on propagators

Conclusions

Correct UV behavior of ghost propagator in two dimensions depends on mid-momentum regime.

For the full solution more information needed than in d = 4:

- \rightarrow Bare ghost-gluon vertex insufficient
- \rightarrow Three-gluon vertex important as well
- \rightarrow Even two-loop diagrams important
- → No decoupling type solution exists in d = 2 in agreement with lattice results: IR divergences, scheme dependence.

Conclusions

Correct UV behavior of ghost propagator in two dimensions depends on mid-momentum regime.

For the full solution more information needed than in d = 4:

- \rightarrow Bare ghost-gluon vertex insufficient
- \rightarrow Three-gluon vertex important as well
- \rightarrow Even two-loop diagrams important
- → No decoupling type solution exists in d = 2 in agreement with lattice results: IR divergences, scheme dependence.

Thank you very much for your attention.