# Quenched glueball spectrum from functional equations



#### Markus Q. Huber

Institute of Theoretical Physics Giessen University In collaboration with Christian S. Fischer, Hèlios Sanchis-Alepuz: Eur.Phys.J.C 80, arXiv:2004.00415 Eur.Phys.J.C 80, arXiv:2110.09180 vConf21, arXiv:2111.10197 HADRON2021, arXiv:2201.05163

Markus Q. Huber (Giessen University)

Quenched glueball spectrum

The strong interaction in the Standard Model

#### Bound states of the strong interaction

Quark model 1964: abundance of known states



The strong interaction in the Standard Model

## Bound states of the strong interaction

Quark model 1964: abundance of known states



#### Exotics:



Markus Q. Huber (Giessen University)

# **Multiplets**

#### Quark model

 $\label{eq:classification} Classification in terms of mesons \\ or baryons \rightarrow multiplets$ 

 $\begin{array}{l} \text{Outside this classification} \\ \rightarrow \text{exotics} \end{array}$ 



# **Multiplets**



Classification not always easy, e.g., scalar sector  $J^{PC} = 0^{++}$ :



+ more states not considered established

### Glueballs from $J/\psi$ decay



Coupled-channel analyses of exp. data (BESIII):

• +add. data, largest overlap with  $f_0(1770)$ 

[Sarantsev, Denisenko, Thoma, Klempt, Phys. Lett. B 816 (2021)]

largest overlap with f<sub>0</sub>(1710)





Markus Q. Huber (Giessen University)

#### **Glueball calculations**



[Morningstar, Peardon, Phys. Rev. D60 (1999)]

## **Glueball calculations**



## Functional glueball calculations

Functional methods successful in describing many aspects of the hadron spectrum qualitatively and quantitatively!



[Fischer, Kubrak, Williams, Eur.Phys.J.A50 (2014)]

[Eichmann, Fischer, Sanchis-Alepuz, Phys.Rev.D94 (2016)]

#### Glueballs?

## Functional glueball calculations

Functional methods successful in describing many aspects of the hadron spectrum qualitatively and quantitatively!



#### Glueballs?

#### Extreme sensitivity on input!

Markus Q. Huber (Giessen University)

#### Bound state equations for QCD



• Require scattering kernel *K* and propagator.

 $[\rightarrow \text{Hagel},\,\text{HK19.4}]$ 

#### Bound state equations for QCD



- Require scattering kernels *K* and propagators.
- Quantum numbers determine which amplitudes Γ couple.

### Bound state equations for QCD



- Require scattering kernels *K* and propagators.
- Quantum numbers determine which amplitudes Γ couple.
- Ghosts from gauge fixing

#### One framework

- Natural description of mixing.
- Similar equations for hadrons with more than two constituents

 $[\rightarrow$  Hoffer, HK19.6].

# Bound state equations for QCD



#### • Require scattering kernels *K* and propagators.

- Quantum numbers determine which amplitudes Γ couple.
- Ghosts from gauge fixing

#### One framework

- Natural description of mixing.
- Similar equations for hadrons with more than two constituents

 $[\rightarrow$  Hoffer, HK19.6].

# Construction of kernels

Systematic derivation from 3PI effective action: Self-consistent treatment of 3-point functions requires 3-loop expansion.





### Correlation functions and their equations of motion

Example: Equation of motion (Dyson-Schwinger equations) for the quark propagator



## Correlation functions and their equations of motion

Example: Equation of motion (Dyson-Schwinger equations) for the quark propagator



Dealing with the unknowns:



## Correlation functions and their equations of motion

Example: Equation of motion (Dyson-Schwinger equations) for the quark propagator



Dealing with the unknowns:



# Correlation functions of quarks and gluons

Equations of motion:

 $\rightarrow$  [Review: MQH, Phys.Rept. 879 (2020)]



 $- - - 1 = - - 1 - e^{-1} - e^{-1}$ 

Truncation: 3-loop 3PI effective action

 Self-contained: Only parameters are the strong coupling and the quark masses!

# Correlation functions of quarks and gluons

Equations of motion:  $\rightarrow$  [Review: MQH, Phys.Rept. 879 (2020)] Truncation: 3-loop 3PI effective action Self-contained: Only parameters are the strong coupling and the quark masses

# Self-consistent solution

Self-contained: Only external input is the coupling!

[MQH, Phys.Rev.D 101 (2020)]

Gluon dressing function:



Conceptual and technical challenges: nonperturbative renormalization, two-loop diagrams, convergence, size of kernels, ...

Markus Q. Huber (Giessen University)

Quenched glueball spectrum

# Stability of the solution

Agreement with lattice results.

# Stability of the solution

- Agreement with lattice results.
- Concurrence between functional methods:

3PI vs. 2-loop DSE:



## Stability of the solution

DSE vs. FRG:

- Agreement with lattice results.
- Concurrence between functional methods:

3PI vs. 2-loop DSE:



[Cucchieri, Maas, Mendes, Phys.Rev.D77 (2008); Sternbeck et al., Proc.Sci. LATTICE2016 (2017); Cyrol et al., Phys.Rev.D 94 (2016); MQH, Phys.Ref.D101 (2020)]

# Stability of the solution

DSE vs. FRG:

- Agreement with lattice results.
- Concurrence between functional methods:

3PI vs. 2-loop DSE:



[Cucchieri, Maas, Mendes, Phys.Rev.D77 (2008); Sternbeck et al., Proc.Sci. LATTICE2016 (2017); Cyrol et al., Phys.Rev.D 94 (2016); MQH, Phys.Ref.D101 (2020)]

• Stable against extensions: Four-point functions

[MQH, Phys.Rev.D93 (2016); MQH, Eur.Phys.J.C 77 (2017); Corell, SciPost Phys. 5 (2018); MQH, Phys.Rept. 879 (2020)]

Markus Q. Huber (Giessen University)

Solving glueball equations

### Glueball results J=0



#### J = 0 best investigated case:

- Leading kernel contributions [MQH, Fischer, Sanchis-Alepuz, Eur.Phys.J.C 80 (2020)]
- Subleading effects: none (0<sup>-+</sup>), tiny (< 2%, 0<sup>++</sup>): [MQH, Fischer, Sanchis-Alepuz, EPJ Web Conf. 258 (2022); MQH, Fischer, Sanchis-Alepuz, HADRON2021, arXiv:2201.05163]

Solving glueball equations

# Amplitudes

Information about significance of single parts.



 $\rightarrow$  Amplitudes have different behavior for ground state and excited state. Useful guide for future developments.

 $\rightarrow$  Meson/glueball amplitudes: Information about mixing.

Markus Q. Huber (Giessen University)

Quenched glueball spectrum

Solving glueball equations

### Glueball results



[MQH, Fischer, Sanchis-Alepuz, Eur.Phys.J.C81 (2021)]

- Agreement with lattice results
- New states: 0<sup>\*\*++</sup>, 0<sup>\*\*-+</sup>, 3<sup>-+</sup>, 4<sup>-+</sup>

Summary and outlook

## Summary and outlook



Reliable input: stable against extensions, agreement between different methods



Pure glueball spectrum from first principles.

Summary and outlook

# Summary and outlook



Reliable input: stable against extensions, agreement between different methods

Outlook: Inclusion of quarks

- Gluon sector fully back-coupled  $\rightarrow$  Glueballs/mesons mixing
- $\rightarrow$  Roles of  $f_0(1370), f_0(1500), f_0(1710)$

#### Thank you for your attention.

Markus Q. Huber (Giessen University)

Quenched glueball spectrum

Pure glueball spectrum from first principles.



Appendix

J = 1 glueballs

Landau-Yang theorem

Two-photon states cannot couple to  $J^{P} = 1^{\pm}$  or  $(2n+1)^{-}$ 

[Landau, Dokl.Akad.Nauk SSSR 60 (1948); Yang, Phys. Rev. 77 (1950)].

 $(\rightarrow$  Exclusion of J = 1 for Higgs because of  $h \rightarrow \gamma \gamma$ .)

Applicable to glueballs?

- $\rightarrow$  Not in this framework, since gluons are not on-shell.
- $\rightarrow$  Presence of J = 1 states is a dynamical question.

J = 1 not found here.

Markus Q. Huber (Giessen University)

Appendix

## Extrapolation

Input only for  $P^2 > 0 \rightarrow$  extrapolation of eigenvalue curve. Solution when  $\lambda(P^2) = 1$ .

Schlessinger's continued fraction method [Schlessinger, Phys.Rev.167 (1968)] Superior performance compared to other extrapolations in this context.





Glueball results

## Extrapolation for glueball eigenvalue curves

Scalar glueball  $(0^{++})$ :

Pseudoscalar glueball  $(0^{-+})$ :



Several curves: ground state and excited states.