Quenched glueball spectrum from functional equations

JUSTUS-LIEBIG-

Deutsche
Forschungsgemeinschaft

Markus Q. Huber
Institute of Theoretical Physics Giessen University

In collaboration with
Christian S. Fischer, Hèlios Sanchis-Alepuz:
Eur.Phys.J.C 80, arXiv:2004.00415
Eur.Phys.J.C 80, arXiv:2110.09180
vConf21, arXiv:2111.10197
HADRON2021, arXiv:2201.05163

Bound states of the strong interaction

Quark model 1964: abundance of known states

Baryon

Bound states of the strong interaction

Quark model 1964: abundance of known states

Baryon

Exotics:

Glueball

Multiplets

Quark model

Classification in terms of mesons or baryons \rightarrow multiplets

Outside this classification \rightarrow exotics

Multiplets

Quark model

Classification in terms of mesons or baryons \rightarrow multiplets

Outside this classification \rightarrow exotics

Classification not always easy, e.g., scalar sector $J^{P C}=0^{++}$:

Glueballs from J / ψ decay

Coupled-channel analyses of exp. data (BESIII):

- +add. data, largest overlap with $f_{0}(1770)$
[Sarantsev, Denisenko, Thoma, Klempt, Phys. Lett. B 816 (2021)]
- largest overlap with $f_{0}(1710)$
[Rodas et al., Eur.Phys.J.C 82 (2022)]

Glueball calculations

Lattice methods

Pure gauge theory:
No dynamic quarks.
\rightarrow "Pure" glueballs

- [Morningstar, Peardon, Phys. Rev. D60 (1999)]: standard reference
- [Athenodorou, Teper, JHEP11 (2020)]: improved statistics, more states

[Morningstar, Peardon, Phys. Rev. D60 (1999)]

Glueball calculations

Lattice methods

Pure gauge theory:
No dynamic quarks.
\rightarrow "Pure" glueballs

- [Morningstar, Peardon, Phys. Rev. D60 (1999)]: standard reference
- [Athenodorou, Teper, JHEP11 (2020)]: improved statistics, more states
"Real QCD":

- [Gregory et al., JHEP10 (2012)]

Challenging:

- poor signal-to-noise ratio
- continuum extrapolation
- operator basis incomplete
- large pion masses (360 MeV)

No quantitative results yet.

Functional glueball calculations

Functional methods successful in describing many aspects of the hadron spectrum qualitatively and quantitatively!

[Fischer, Kubrak, Williams, Eur.Phys.J.A50 (2014)]

[Eichmann, Fischer, Sanchis-Alepuz, Phys.Rev.D94 (2016)]

Glueballs?

Functional glueball calculations

Functional methods successful in describing many aspects of the hadron spectrum qualitatively and quantitatively!

[Fischer, Kubrak, Williams, Eur.Phys.J.A50 (2014)]

[Eichmann, Fischer, Sanchis-Alepuz, Phys.Rev.D94 (2016)]

Glueballs?

Extreme sensitivity on input!

Bound state equations for QCD

- Require scattering kernel K and propagator.
[\rightarrow Hagel, HK19.4]

Bound state equations for QCD

- Require scattering kernels K and propagators.
- Quantum numbers determine which amplitudes 「 couple.

Bound state equations for QCD

- Require scattering kernels K and propagators.
- Quantum numbers determine which amplitudes Γ couple.
- Ghosts from gauge fixing

One framework

- Natural description of mixing.
- Similar equations for hadrons with more than two constituents

Bound state equations for QCD

Focus on pure glueballs.

- Require scattering kernels K and propagators.
- Quantum numbers determine which amplitudes Γ couple.
- Ghosts from gauge fixing

One framework

- Natural description of mixing.
- Similar equations for hadrons with more than two constituents
[\rightarrow Hoffer, HK19.6].

Construction of kernels

Systematic derivation from 3PI effective action: Self-consistent treatment of 3 -point functions requires 3-loop expansion.

Correlation functions and their equations of motion

Example: Equation of motion (Dyson-Schwinger equations) for the quark propagator

Correlation functions and their equations of motion

Example: Equation of motion (Dyson-Schwinger equations) for the quark propagator

Dealing with the unknowns:
Model

Correlation functions and their equations of motion

Example: Equation of motion (Dyson-Schwinger equations) for the quark propagator

Dealing with the unknowns:

Model

Calculate

唔空

Correlation functions of quarks and gluons

Equations of motion:

Truncation: 3-loop 3PI effective action

- Self-contained: Only parameters are the strong coupling and the quark masses!

Correlation functions of quarks and gluons

Equations of motion:

\rightarrow [Review: MQH, Phys.Rept. 879 (2020)]

Truncation: 3-loop 3PI effective action

- Self-contained: Only parameters are the strong coupling and the quark masses!

Self-consistent solution

Self-contained: Only external input is the coupling!
Gluon dressing function:

Conceptual and technical challenges: nonperturbative renormalization, two-loop diagrams, convergence, size of kernels, ...

Stability of the solution

- Agreement with lattice results.

Stability of the solution

- Agreement with lattice results.
- Concurrence between functional methods: 3PI vs. 2-loop DSE:

Stability of the solution

- Agreement with lattice results.
- Concurrence between functional methods:

3PI vs. 2-loop DSE:

DSE vs. FRG:

[Cucchieri, Maas, Mendes, Phys.Rev.D77 (2008); Sternbeck et al., Proc.Sci. LATTICE2016 (2017); Cyrol et al., Phys.Rev.D 94 (2016); MQH, Phys.Ref.D101 (2020)]

Stability of the solution

- Agreement with lattice results.
- Concurrence between functional methods:

3PI vs. 2-loop DSE:

DSE vs. FRG:

[Cucchieri, Maas, Mendes, Phys.Rev.D77 (2008); Sternbeck et al., Proc.Sci. LATTICE2016 (2017); Cyrol et al., Phys.Rev.D 94 (2016); MQH, Phys.Ref.D101 (2020)]

- Stable against extensions: Four-point functions [MQH, Phys.Rev.D93 (2016); MQH, Eur.Phys.J.C 77 (2017); Corell, SciPost Phys. 5 (2018); MQH, Phys.Rept. 879 (2020)]

Glueball results $\mathrm{J}=0$

Lattice $0^{* *} \pm+$: Conjectured based on irred. rep. of octahedral group

All results for
$r_{0}=1 / 418(5) \mathrm{MeV}$.
$J=0$ best investigated case:

- Leading kernel contributions [MQH, Fischer, Sanchis-Alepuz, Eur.Phys.J.C 80 (2020)]
- Subleading effects: none $\left(0^{-+}\right)$, tiny $\left(<2 \%, 0^{++}\right)$: $[\mathrm{MQH}$, Fischer, Sanchis-Alepuz, EPJ Web Conf. 258 (2022); MQH, Fischer, Sanchis-Alepuz, HADRON2021, arXiv:2201.05163]

Amplitudes

Information about significance of single parts.

Ground state scalar glueball:
Amplitudes 0^{++}

Excited scalar glueball:
Amplitudes 0 *++

\rightarrow Amplitudes have different behavior for ground state and excited state. Useful guide for future developments.
\rightarrow Meson/glueball amplitudes: Information about mixing.

Glueball results

Lattice:

*: identification with some uncertainty
${ }^{\dagger}$: conjecture based on irred. rep of octahedral group
[MQH, Fischer, Sanchis-Alepuz, Eur.Phys.J.C81 (2021)]

- Agreement with lattice results
- New states: $0^{* *++}, 0^{* *-+}, 3^{-+}, 4^{-+}$

Summary and outlook

Reliable input: stable against extensions, agreement between different methods

Pure glueball spectrum from first principles.

Summary and outlook

Reliable input: stable against extensions, agreement between different methods

Pure glueball spectrum from first principles.

Outlook: Inclusion of quarks

- Gluon sector fully back-coupled \rightarrow Glueballs/mesons mixing
- \rightarrow Roles of $f_{0}(1370), f_{0}(1500), f_{0}(1710)$

Thank you for your attention.

$J=1$ glueballs

Landau-Yang theorem

Two-photon states cannot couple to $J^{P}=1^{ \pm}$or $(2 n+1)^{-}$
[Landau, Dokl.Akad.Nauk SSSR 60 (1948); Yang, Phys. Rev. 77 (1950)].
(\rightarrow Exclusion of $J=1$ for Higgs because of $h \rightarrow \gamma \gamma$.)

Applicable to glueballs?
\rightarrow Not in this framework, since gluons are not on-shell.
\rightarrow Presence of $J=1$ states is a dynamical question.

$$
J=1 \text { not found here. }
$$

Extrapolation

Input only for $P^{2}>0 \rightarrow$ extrapolation of eigenvalue curve. Solution when $\lambda\left(P^{2}\right)=1$.

Schlessinger's continued fraction method [Schlessinger, Phys.Rev. 167 (1968)]
Superior performance compared to other extrapolations in this context.

Test for solvable system: Heavy meson
[MQH, Fischer, Sanchis-Alepuz, Eur.Phys.J.C 80 (2020)]

Extrapolation for glueball eigenvalue curves

Scalar glueball $\left(0^{++}\right)$:

Pseudoscalar glueball $\left(0^{-+}\right)$:

Several curves: ground state and excited states.

