On the analytic structure of three-point functions from contour deformations

Markus Q. Huber
Institute of Theoretical Physics
Giessen University

Nonperturbative QFT in the complex momentum space
Maynooth, Ireland, June 14, 2023

YM propagators:
Christian S. Fischer, MQH, Phys.Rev.D 102 (2020) 9, 094005, 2007.11505
3-point functions:
MQH, Wolfgang J. Kern, Reinhard Alkofer, Phys.Rev.D 107 (2023) 7, 074026, 2212.02515
3-point functions (short):
MQH, Wolfgang J. Kern, Reinhard Alkofer, Symmetry 15 (2023) 2, 414, 2302.01350

Bound states

- Calculation of bound states from different methods with individual challenges
- Bound state equations (Bethe-Salpeter, Faddeev, ...):

Require nonperturbative correlation functions as input
\rightarrow What input?
\rightarrow How to get it?
Hadron properties
Hadron spectrum: Examples here. \quad Hadron structure \rightarrow tomorrow's talks.

Correlation functions for complex momenta

$$
\lambda(P) \Gamma(P)=\mathcal{K} \cdot \Gamma(P)
$$

\rightarrow Eigenvalue problem for $\Gamma(P)$:
(1) Solve for $\lambda(P)$.
(2) Find P with $\lambda(P)=1$.
$\Rightarrow M^{2}=-P^{2}$

Correlation functions for complex momenta

$$
\lambda(P) \Gamma(P)=\mathcal{K} \cdot \Gamma(P)
$$

\rightarrow Eigenvalue problem for $\Gamma(P)$:
(1) Solve for $\lambda(P)$.
(2) Find P with $\lambda(P)=1$.

$$
\Rightarrow M^{2}=-P^{2}
$$

(pseudoscalar glueball)
However:
Propagators are probed at $\left(q \pm \frac{P}{2}\right)^{2}=\frac{p^{2}}{4}+q^{2} \pm \sqrt{P^{2} q^{2}} \cos \theta=-\frac{M^{2}}{4}+q^{2} \pm i M \sqrt{q^{2}} \cos \theta$ \rightarrow Complex for $P^{2}<0$!

Time-like quantities $\left(P^{2}<0\right) \rightarrow$ Correlation functions for complex arguments.

Functional spectrum calculations

Functional methods successful in describing many aspects of the hadron spectrum qualitatively and quantitatively!

[Eichmann, Sanchis-Alepuz, Williams, Alkofer, Fischer, Prog.Part.Nucl.Phys. 91 (2016); Eichmann,
Few Body Syst. 63 (2022)]

Functional spectrum calculations

Functional methods successful in describing many aspects of the hadron spectrum qualitatively and quantitatively!

[Eichmann, Sanchis-Alepuz, Williams, Alkofer, Fischer, Prog.Part.Nucl.Phys. 91 (2016); Eichmann, Few Body Syst. 63 (2022)]

Workhorse for more than 20 years: Rainbow-ladder truncation with an effective interaction, e.g., Maris-Tandy (or similar) which depends only one scale!

Results for mesons beyond rainbow-ladder, e.g., [Williams, Fischer, Heupel, Phys.Rev.D 93 (2016)].

Kernels

Systematic derivation from 3PI eff. action: [Berges, Phys. Rev. D 70 (2004); Carrington, Gao, Phys. Rev. D 83 (2011)] Need propagators and vertices!

[Fukuda, Prog. Theor. Phys 78 (1987); McKay, Munczek, Phys. Rev. D 40 (1989); Sanchis-Alepuz, Williams, J. Phys: Conf. Ser. 631 (2015); MQH, Fischer, Sanchis-Alepuz, Eur.Phys.J.C80 (2020)]

Correlation functions of quarks and gluons

Equations of motion: 3-loop 3PI effective action

- Conceptual and technical challenges: nonperturbative renormalization, two-loop diagrams, convergence, size of kernels, ..
- Self-contained: Only parameters are the strong coupling and the quark masses!
- Long way, e.g., ghost-gluon vertex, three-gluon vertex, four-gluon vertex, ...
- \rightarrow MQH, Phys.Rev.D 101 (2020)

Correlation functions of quarks and gluons

Equations of motion: 3-loop 3PI effective action

\rightarrow [Review: MQH, Phys.Rept. 879 (2020)]

- Conceptual and technical challenges: nonperturbative renormalization, two-loop diagrams, convergence, size of kernels, ..
- Self-contained: Only parameters are the strong coupling and the quark masses!
- Long way, e.g., ghost-gluon vertex, three-gluon vertex, four-gluon vertex, ...
- \rightarrow MQH, Phys.Rev.D 101 (2020)

Start with pure gauge theory.

Landau gauge correlation functions

Self-contained: Only external input is the coupling!

Gluon dressing function:

Three-gluon vertex:

[lattice: Sternbeck, hep-lat/0609016;
Cucchieri, Maas, Mendes, Phys.Rev.D77 (2008); Sternbeck et al.,

Proc.Sci.LATTICE2016 (2017); FRG: Cyrol et al., Phys.Rev.D 94 (2016); DSE: MQH, Phys.Rev.D 101 (2020)]

Family of solutions [von Smekal, Alkofer, Hauck,
PRL79 (1997); Aguilar, Binosi, Papavassiliou,
Phys.Rev.D 78 (2008); Boucaud et al., JHEP06 (2008);
Fischer, Maas, Pawlowski, Ann.Phys. 324 (2008);
Alkofer, MQH, Schwenzer, Phys. Rev. D 81 (2010)]
Nonperturbative completions of Landau
gauge [Maas, Phys. Lett. B 689 (2010)]?

Ghost dressing function:

Glueballs as bound states of gluons

Use results for glueball calculations?
All results for spacelike momenta. \rightarrow Not directly.

Glueballs as bound states of gluons

Use results for glueball calculations?

All results for spacelike momenta. \rightarrow Not directly.

- Reconstruction from Euclidean results to get correlation functions for complex arguments.

Glueballs as bound states of gluons

Use results for glueball calculations?

All results for spacelike momenta. \rightarrow Not directly.

- Reconstruction from Euclidean results to get correlation functions for complex arguments.
- Extrapolation of the eigenvalue curve. \rightarrow More stable and tests possible.

Extrapolation of $\lambda\left(P^{2}\right)$

Extrapolation method

- Extrapolation to time-like P^{2} using Schlessinger's continued fraction method (proven superior to default Padé approximants) [Schlessinger, Phys.Rev. 167 (1968)]
- Average over extrapolations using subsets of points for error estimate

$$
f(x)=\frac{f\left(x_{1}\right)}{1+\frac{a_{1}\left(x-x_{1}\right)}{1+\frac{x_{2}\left(x-x_{2}\right)}{1+\frac{e_{3}\left(x-x_{3}\right)}{\cdots}}}}
$$

Coefficients a_{i} can determined such that $f(x)$ exact at x_{i}.

Extrapolation of $\lambda\left(P^{2}\right)$

Extrapolation method

- Extrapolation to time-like P^{2} using Schlessinger's continued fraction method (proven superior to default Padé approximants) [Schlessinger, Phys.Rev. 167 (1968)]
- Average over extrapolations using subsets of points for error estimate

Test extrapolation for solvable system:
Heavy meson [MQH, Sanchis-Alepuz, Fischer, Eur.Phys.J.C 80 (2020)]

$$
f(x)=\frac{f\left(x_{1}\right)}{1+\frac{a_{1}\left(x-x_{1}\right)}{1+\frac{\partial_{2}\left(x-x_{2}\right)}{1+\frac{a_{3}\left(x-x_{3}\right)}{\cdots}}}}
$$

Coefficients a_{i} can determined such that $f(x)$ exact at x_{i}.

Glueball results

[MQH, Fischer, Sanchis-Alepuz, Eur.Phys.J.C81 (2021)]

- Agreement with lattice results
- New states: $0^{* *++}, 0^{* *-+}, 3^{-+}, 4^{-+}$

All results for $r_{0}=1 / 418(5) \mathrm{MeV}$.

Correlation functions in the complex plane

Standard integration techniques fail. $\quad \int d^{4} q \rightarrow \int_{\Lambda_{\mathrm{R}}^{2}}^{\Lambda_{\mathrm{UV}}^{2}} d q^{2} \int d \theta_{1}$ Consider example integral:

$$
I_{2}\left(p^{2}\right)=\int d q^{2} J\left(q^{2}, p^{2}\right), \quad J\left(p^{2}, q^{2}\right)=\int d \theta \sin ^{2} \theta_{1} \frac{1}{q^{2}+p^{2}+\sqrt{p^{2}} \sqrt{q^{2}} \cos \theta_{1}+m^{2}} \frac{1}{q^{2}+m^{2}}
$$

Correlation functions in the complex plane

Standard integration techniques fail. $4 \quad \int d^{4} q \rightarrow \int_{\Lambda_{\mathrm{R}}^{2}}^{\Lambda_{\mathrm{UV}}^{2}} d q^{2} \int d \theta_{1}$ Consider example integral:

$$
I_{2}\left(p^{2}\right)=\int d q^{2} J\left(q^{2}, p^{2}\right), \quad J\left(p^{2}, q^{2}\right)=\int d \theta \sin ^{2} \theta_{1} \frac{1}{q^{2}+p^{2}+\sqrt{p^{2}} \sqrt{q^{2}} \cos \theta_{1}+m^{2}} \frac{1}{q^{2}+m^{2}}
$$

After θ_{1} integration:

Correlation functions in the complex plane

Standard integration techniques fail. 7

$$
\int d^{4} q \rightarrow \int_{\Lambda_{\mathbb{R}}^{2}}^{\Lambda_{U V}^{2}} d q^{2} \int d \theta_{1}
$$

Consider example integral:

$$
I_{2}\left(p^{2}\right)=\int d q^{2} J\left(q^{2}, p^{2}\right), \quad J\left(p^{2}, q^{2}\right)=\int d \theta \sin ^{2} \theta_{1} \frac{1}{q^{2}+p^{2}+\sqrt{p^{2}} \sqrt{q^{2}} \cos \theta_{1}+m^{2}} \frac{1}{q^{2}+m^{2}}
$$

After θ_{1} integration:

Integration path $\Lambda_{\mathrm{IR}}^{2} \rightarrow \Lambda_{\mathrm{UV}}^{2}$ on real line forbidden. \rightarrow Take a detour.

Contour deformation method (CDM)

Originally used for QED: [Maris, Phys.Rev.D52, (1995)])

Recent resurgence: massive propagators, three-point functions, e.g.: [Alkofer et al., Phys.Rev.D 70 (2004); Eichmann, Krassnigg, Schwinzerl, Alkofer, Ann.Phys. 323 (2008);

Strauss, Fischer, Kellermann, Phys.Rev.Lett. 109 (2012); Windisch, MQH, Alkofer, Phys.Rev.D 87 (2013), Acta Phys.Polon.Supp. 6 (2013); Strodthoff, Phys.Rev.D 95 (2017); Weil, Eichmann, Fischer, Williams, Phys.Rev.D 96 (2017); Pawlowski, Strodthoff, Wink, Phys.Rev.D 98 (2018); Williams, Phys.Lett.B 798 (2019); Miramontes, Sanchis-Alepuz, Eur.Phys.J.A 55 (2019); Eichmann, Duarte, Pena, Stadler, Phys.Rev.D 100 (2019); Fischer, MQH, Phys.Rev.D 102 (2020); Miramontes, Sanchis-Alepuz, Phys.Rev.D 103 (2021); Eichmann, Ferreira, Stadler,

Phys.Rev.D 105 (2022); Miramontes, Alkofer, Fischer, Sanchis-Alepuz, Phys.Lett.B 833 (2022); MQH, Kern, Alkofer, Phys.Rev.D 107 (2023); ...]

Landau conditions: When do singularities arise in external momenta [Landau, Sov. Phys. JETP 10 (1959)]?
Directly reflected in possible contours [Windisch, MQH, Alkofer, Acta Phys.Polon.Supp. 6 (2013); MQH, Kern, Alkofer,
Phys.Rev.D 107 (2023)].

Landau gauge propagators in the complex plane

Simpler truncation:

Landau gauge propagators in the complex plane

Simpler truncation:

$m=0$: Branch cuts are circles with one opening.

\rightarrow Opening at $q^{2}=p^{2}$.

Landau gauge propagators in the complex plane

Simpler truncation:

$m=0$: Branch cuts are circles with one opening.

\rightarrow Opening at $q^{2}=p^{2}$.

Landau gauge propagators in the complex plane

Ray technique for self-consistent solution of a DSE:

- Current truncation leads to a pole-like structure in the gluon propagator.
- Analyticity up to 'pole' confirmed by various tests (Cauchy-Riemann, Schlessinger, reconstruction)
- Effect of dynamic three-point functions?
\rightarrow Talk by Wink.
[Fischer, MQH, Phys.Rev.D 102 (2020)]

Kinematics

Singularities in the integrand

Integration over θ_{1} and θ_{2} creates branch cuts. \rightarrow One generic form $\left(z_{1}=\cos \theta_{1}\right)$:

$$
\begin{aligned}
\gamma_{ \pm}\left(z_{1} ; p^{2}, m^{2}\right) & =\sqrt{p^{2}} z_{1} \pm i \sqrt{m^{2}+p^{2}\left(1-z_{1}^{2}\right)} \\
& =\sqrt{p^{2}} \cos \theta_{1} \pm i \sqrt{m^{2}+p^{2} \sin ^{2} \theta_{1}}
\end{aligned}
$$

Singularities in the integrand

Integration over θ_{1} and θ_{2} creates branch cuts. \rightarrow One generic form $\left(z_{1}=\cos \theta_{1}\right)$:

$$
\begin{aligned}
\gamma_{ \pm}\left(z_{1} ; p^{2}, m^{2}\right) & =\sqrt{p^{2}} z_{1} \pm i \sqrt{m^{2}+p^{2}\left(1-z_{1}^{2}\right)} \\
& =\sqrt{p^{2}} \cos \theta_{1} \pm i \sqrt{m^{2}+p^{2} \sin ^{2} \theta_{1}}
\end{aligned}
$$

3-point

$$
\begin{gathered}
k_{a} \rightarrow \gamma_{a \pm}\left(z_{1} ; p_{a}^{2}, m^{2}\right)=\gamma_{ \pm}\left(z_{1} ; p_{a}^{2}, m^{2}\right) \\
k_{b} \rightarrow \gamma_{b \pm}\left(\tilde{z} ; p_{b}^{2}, m^{2}\right)=\gamma_{ \pm}\left(-\tilde{z} ; p_{b}^{2}, m^{2}\right) \\
\tilde{z}=\cos \tilde{\theta}=\cos \theta \cos \theta_{1}+\sin \theta \sin \theta_{1} \cos \theta_{2}
\end{gathered}
$$

Creation of branch points in external momentum (2-point)

$$
p^{2}=(-3+0.2 i) m^{2}:
$$

Creation of branch points in external momentum (2-point)

$p^{2}=(-3+0.2 i) m^{2}:$

$p^{2}=-3 m^{2}$:

- Cuts touch!
- Cut is on imaginary axis and runs over im (pole of propagator).

Creation of branch points in external momentum (2-point)

$p^{2}=(-3+0.2 i) m^{2}:$

$p^{2}=-3 m^{2}+$ deformation of θ_{1} integration:

Creation of branch points in external momentum (2-point)

A branch point arises in the external momenta if the integration contour cannot be deformed.

Creation of branch points in external momentum (2-point)

A branch point arises in the external momenta if the integration contour cannot be deformed.

Increasing p^{2} until im is at the end point of the branch cut. \rightarrow Contour deformation no longer possible and branch point is created.

- Analytical determination of branch points possible from contour deformations [Windisch, MQH, Alkofer, Acta Phys.Polon.Supp. 6 (2013)]
- \rightarrow Landau conditions [Landau, Sov.Phys.JETP10 (1959)]: $p_{B}^{2}=-\left(m_{1}+m_{2}\right)^{2}$

3-point for $p_{a}^{2}=p_{b}^{2}=p^{2}$
Branch cuts on top of each other:

- $\gamma_{a \pm}$ as for 2-point integral.
- $\gamma_{b \pm}$ is a function of θ_{1} AND θ_{2}. Im r / m

$p^{2}=-3 m^{2}, \theta=2 \pi / 3, \theta_{2}=\pi:$
two cuts cross at im

$p^{2}=-4 m^{2} / 3, \theta=\pi / 3, \theta_{2}=\pi:$
four cuts touch at $-m^{2} / 3$

Creation of branch points (3-point)

2-point

Match a pole and the end points of the branch cuts $\left(\theta_{1}=0, \pi\right)$.

Creation of branch points (3-point)

2-point

Match a pole and the end points of the branch cuts $\left(\theta_{1}=0, \pi\right)$.

3-point: End point in θ_{2} !

- Two cuts cross for same θ_{1} at pole.
or

$$
\begin{aligned}
& p_{B, 1}^{2}=-4 m^{2} \sin ^{2} \frac{\theta}{2} \\
& p_{B, 2}^{2}=-\frac{m^{2}}{\cos ^{2} \frac{\theta}{2}}
\end{aligned}
$$

- Two cuts meet for θ_{1} 'inside' of circle.

Critical points

2 solutions: Relevant one is that with the critical point in the r plane closer to the origin.

Critical points

2 solutions: Relevant one is that with the critical point in the r plane closer to the origin.

Corresponds to Landau solution:

$$
p_{B}^{2}=\left\{\begin{array}{cl}
-4 m^{2} \sin \left(\frac{\theta}{2}\right)^{2} & \frac{\pi}{2} \leq \theta \leq \pi \\
\frac{-m^{2}}{\cos \left(\frac{\theta}{2}\right)^{2}} & 0 \leq \theta \leq \frac{\pi}{2}
\end{array}\right.
$$

General kinematics for 3-point integral

Similar analysis:

- Identify case where all three propagators agree.

$$
\rightarrow p_{a}^{2} p_{b}^{2} p_{c}^{2}=m^{2}\left(p_{a}^{4}+p_{b}^{4}+p_{c}^{4}-2\left(p_{a}^{2} p_{b}^{2}+p_{a}^{2} p_{c}^{2}+p_{b}^{2} p_{c}^{2}\right)\right)
$$

General kinematics for 3-point integral

Similar analysis:

- Identify case where all three propagators agree.

$$
\rightarrow p_{a}^{2} p_{b}^{2} p_{c}^{2}=m^{2}\left(p_{a}^{4}+p_{b}^{4}+p_{c}^{4}-2\left(p_{a}^{2} p_{b}^{2}+p_{a}^{2} p_{c}^{2}+p_{b}^{2} p_{c}^{2}\right)\right)
$$

- Identify cases where cuts cross closer to the origin than the pole.

Shortcut: Ignore one propagator and analyze a two-point integral. \leftrightarrow Contracted diagrams of Landau analysis.

General kinematics for 3-point integral

Similar analysis:

- Identify case where all three propagators agree.

$$
\rightarrow p_{a}^{2} p_{b}^{2} p_{c}^{2}=m^{2}\left(p_{a}^{4}+p_{b}^{4}+p_{c}^{4}-2\left(p_{a}^{2} p_{b}^{2}+p_{a}^{2} p_{c}^{2}+p_{b}^{2} p_{c}^{2}\right)\right)
$$

- Identify cases where cuts cross closer to the origin than the pole.

Shortcut: Ignore one propagator and analyze a two-point integral. \leftrightarrow Contracted diagrams of Landau analysis.

- Quadratic equation for $p_{c}^{2} \rightarrow$ only one solution relevant.

General kinematics for 3-point integral

Similar analysis:

- Identify case where all three propagators agree.

$$
\rightarrow p_{a}^{2} p_{b}^{2} p_{c}^{2}=m^{2}\left(p_{a}^{4}+p_{b}^{4}+p_{c}^{4}-2\left(p_{a}^{2} p_{b}^{2}+p_{a}^{2} p_{c}^{2}+p_{b}^{2} p_{c}^{2}\right)\right)
$$

- Identify cases where cuts cross closer to the origin than the pole.

Shortcut: Ignore one propagator and analyze a two-point integral. \leftrightarrow Contracted diagrams of Landau analysis.

- Quadratic equation for $p_{c}^{2} \rightarrow$ only one solution relevant.

Landau condition

$$
\begin{aligned}
& p_{c}^{2}=\frac{2 m^{2}\left(p_{a}^{2}+p_{b}^{2}\right)+p_{a}^{2} p_{b}^{2}+\sqrt{p_{a}^{2}\left(4 m^{2}+p_{a}^{2}\right)} \sqrt{p_{b}^{2}\left(4 m^{2}+p_{b}^{2}\right)}}{2 m^{2}} \\
& \quad \text { for }-4 m^{2} \leq p_{a}^{2}, p_{b}^{2} \leq 0, \quad \text { and } p_{a}^{2}+p_{b}^{2} \leq-4 m^{2} \\
& p_{a}^{2}=p_{b}^{2}=p_{c}^{2}=-4 m^{2} \quad \text { else. }
\end{aligned}
$$

Simple scalar theory with cubic interaction:

$$
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \phi\right) \partial^{\mu} \phi-\frac{1}{2} m^{2} \phi^{2}+\frac{g}{3!} \phi^{3}
$$

\rightarrow Technical testbed for QCD: 2-point, triangle, swordfish integrals

(Ignoring instability of theory.)

Nonperturbative equations

3PI effective action truncated at 3 loops [Berges, Phys. Rev. D 70 (2004); Carrington, Gao, Phys. Rev. D 83 (2011)]

Equations of motion:

Simplified kinematics: $p_{a}^{2}=p_{b}^{2}=p^{2}$

Nonperturbative equations

3PI effective action truncated at 3 loops [Berges, Phys. Rev. D 70 (2004); Carrington, Gao, Phys. Rev. D 83 (2011)]

Equations of motion:

Simplified kinematics: $p_{a}^{2}=p_{b}^{2}=p^{2}$

Propagator

- Nonperturbative pole at $p^{2}=-0.75 m^{2}=-m_{r}^{2}$
- A branch cut starting at $-3 m^{2}=-4 m_{r}^{2}$

Vertex

- Numerically more demanding due to calculations close to cuts.

Vertex

- Numerically more demanding due to calculations close to cuts.
- Branch cuts start close to the predicted value

Generalizations

- Nonperturbative masses

Generalizations

- Nonperturbative masses
- Up to 3 different masses

Generalizations

- Nonperturbative masses
- Up to 3 different masses
- Cuts instead of poles
\rightsquigarrow continuum of singular points \rightarrow Forbidden area, but deformation doable.
[MQH, Kern, Alkofer, Phys.Rev.D 107 (2023)]

Generalizations

[MQH, Kern, Alkofer, Phys.Rev.D 107 (2023)]

Summary and outlook

- Propagators and vertices at complex momenta for bound state studies needed.
\rightarrow resonances, decays
- Contour deformation method gives access to analytic structure of correlation functions.
- Landau conditions from CDM (perturbative).
- (Nonperturbative) generalizations: different masses, branch cuts, nonperturbative dressing
- Testbed ϕ^{3} theory.
- QCD and its three-point functions for bound state studies.

Summary and outlook

- Propagators and vertices at complex momenta for bound state studies needed.
\rightarrow resonances, decays
- Contour deformation method gives access to analytic structure of correlation functions.
- Landau conditions from CDM (perturbative).
- (Nonperturbative) generalizations: different masses, branch cuts, nonperturbative dressing
- Testbed ϕ^{3} theory.
- QCD and its three-point functions for bound state studies.

> Thank you for your attention.

Stability of the solution

- Agreement with lattice results.

Stability of the solution

- Agreement with lattice results.
- Concurrence between functional methods:

3PI vs. 2-loop DSE:

Stability of the solution

- Agreement with lattice results.
- Concurrence between functional methods:

3PI vs. 2-loop DSE:

DSE vs. FRG:

[Cucchieri, Maas, Mendes, Phys.Rev.D77 (2008); Sternbeck et al., Proc.Sci. LATTICE2016 (2017); Cyrol et al., Phys.Rev.D 94 (2016); MQH, Phys.Ref.D101 (2020)]

Stability of the solution: Extensions

- Three-gluon vertex: Tree-level dressing dominant, others subleading [Eichmann, Williams, Alkofer, Vujinovic, Phys.Rev.D89 (2014); Pinto-Gómez et al., 2208.01020]

Stability of the solution: Extensions

- Three-gluon vertex: Tree-level dressing dominant, others subleading [Eichmann, Williams, Alkofer, Vujinovic, Phys.Rev.D89 (2014); Pinto-Gómez et al., 2208.01020]
- Four-gluon vertex: Influence on propagators tiny for $d=3$ [MQH, Phys.Rev.D93 (2016)]

Stability of the solution: Extensions

- Three-gluon vertex: Tree-level dressing dominant, others subleading [Eichmann, Williams, Alkofer, Vujinovic, Phys.Rev.D89 (2014); Pinto-Gómez et al., 2208.01020]
- Four-gluon vertex: Influence on propagators tiny for $d=3$ [MQH, Phys.Rev.D93 (2016)]
- Two-ghost-two-gluon vertex [MQH, Eur. Phys.J.C77 (2017)]: (FRG: [Corell, SciPost Phys. 5 (2018)])

8
1
$1, ~$
1
1
1

Branch points for general kinematics (3-point)

Exclusion of one solution of the quadratic equation for p_{c}^{2} :

