On the analytic structure of three-point functions from contour deformations

Markus Q. Huber

Institute of Theoretical Physics Giessen University

Nonperturbative QFT in the complex momentum space Maynooth, Ireland, June 14, 2023

YM propagators: Christian S. Fischer, MQH, Phys.Rev.D 102 (2020) 9, 094005, 2007.11505 3-point functions: MQH, Wolfgang J. Kern, Reinhard Alkofer, Phys.Rev.D 107 (2023) 7, 074026, 2212.02515 3-point functions (short): MQH, Wolfgang J. Kern, Reinhard Alkofer, Symmetry 15 (2023) 2, 414, 2302.01350





Markus Q. Huber (Giessen University)

Analytic structure of three-point functions

### **Bound states**

- Calculation of bound states from different methods with individual challenges
- Bound state equations (Bethe-Salpeter, Faddeev, ...): Require nonperturbative correlation functions as input
  - $\rightarrow$  What input?
  - $\rightarrow~$  How to get it?

Hadron properties Hadron spectrum: Examples here.

Hadron structure  $\rightarrow$  tomorrow's talks.

# Correlation functions for complex momenta

Bound states



(pseudoscalar glueball)

 $\boldsymbol{\lambda(P)}\boldsymbol{\Gamma(P)} = \mathcal{K} \cdot \boldsymbol{\Gamma(P)}$ 

 $\rightarrow$  Eigenvalue problem for  $\Gamma(P)$ :

• Solve for  $\lambda(P)$ .

Find *P* with 
$$\lambda(P) = 1$$
.  
 $\Rightarrow M^2 = -P^2$ 

#### Bound states

# Correlation functions for complex momenta



(pseudoscalar glueball)

 $\boldsymbol{\lambda(P)}\boldsymbol{\Gamma(P)} = \mathcal{K}\cdot\boldsymbol{\Gamma(P)}$ 

 $\rightarrow$  Eigenvalue problem for  $\Gamma(P)$ :

- Solve for  $\lambda(P)$ .
- Find *P* with  $\lambda(P) = 1$ .  $\Rightarrow M^2 = -P^2$

However:

Propagators are probed at 
$$\left(q \pm \frac{P}{2}\right)^2 = \frac{P^2}{4} + q^2 \pm \sqrt{P^2 q^2} \cos \theta = -\frac{M^2}{4} + q^2 \pm i M \sqrt{q^2} \cos \theta$$
  
 $\rightarrow$  Complex for  $P^2 < 0!$ 

Time-like quantities ( $P^2 < 0$ )  $\rightarrow$  Correlation functions for complex arguments.

# Functional spectrum calculations

Functional methods successful in describing many aspects of the hadron spectrum qualitatively and quantitatively!



[Eichmann, Sanchis-Alepuz, Williams, Alkofer, Fischer, Prog.Part.Nucl.Phys. 91 (2016); Eichmann,

Few Body Syst. 63 (2022)]

## Functional spectrum calculations

Functional methods successful in describing many aspects of the hadron spectrum qualitatively and quantitatively!



Results for mesons beyond rainbow-ladder, e.g., [Williams, Fischer, Heupel, Phys.Rev.D 93 (2016)].

Markus Q. Huber (Giessen University)

Analytic structure of three-point functions

# Kernels

Systematic derivation from 3PI eff. action: [Berges, Phys. Rev. D 70 (2004); Carrington, Gao, Phys. Rev. D 83 (2011)] Need propagators and vertices!





[Fukuda, Prog. Theor. Phys 78 (1987); McKay, Munczek, Phys. Rev. D 40 (1989); Sanchis-Alepuz, Williams, J. Phys: Conf. Ser. 631 (2015); MQH, Fischer, Sanchis-Alepuz, Eur.Phys.J.C80 (2020)]

Markus Q. Huber (Giessen University)

Analytic structure of three-point functions

Correlation functions

# Correlation functions of quarks and gluons

Equations of motion: 3-loop 3PI effective action

 $\rightarrow$  [Review: MQH, Phys.Rept. 879 (2020)]



-1

- Conceptual and technical challenges: nonperturbative renormalization, two-loop diagrams, convergence, size of kernels, ...
- Self-contained: Only parameters are the strong coupling and the quark masses!
- Long way, e.g., ghost-gluon vertex, three-gluon vertex, four-gluon vertex, ....
- $\rightarrow$  MQH, Phys.Rev.D 101 (2020)

Correlation functions

# Correlation functions of quarks and gluons

Equations of motion: 3-loop 3PI effective action

 $\rightarrow$  [Review: MQH, Phys.Rept. 879 (2020)]



-1

- Conceptual and technical challenges: nonperturbative renormalization, two-loop diagrams, convergence, size of kernels, ...
- Self-contained: Only parameters are the strong coupling and the quark masses!
- Long way, e.g., ghost-gluon vertex, three-gluon vertex, four-gluon vertex, ....
- $\rightarrow$  MQH, Phys.Rev.D 101 (2020)

Start with pure gauge theory.

Introduction

Three-aluon vertex:

Correlation functions

# Landau gauge correlation functions

Self-contained: Only external input is the coupling!

Gluon dressing function:



[lattice: Sternbeck, hep-lat/0609016; Cucchieri, Maas, Mendes, Phys.Rev.D77 (2008); Sternbeck et al., Proc.Sci.LATTICE2016 (2017); FRG: Cyrol et al., Phys.Rev.D 94 (2016); DSE: MQH, Phys.Rev.D 101 (2020)]

Family of solutions [von Smekal, Alkofer, Hauck, PRL79 (1997); Aguilar, Binosi, Papavassiliou, Phys.Rev.D 78 (2008); Boucaud et al., JHEP06 (2008); Fischer, Maas, Pawlowski, Ann.Phys. 324 (2008); Alkofer, MQH, Schwenzer, Phys. Rev. D 81 (2010)]

Nonperturbative completions of Landau gauge [Maas, Phys. Lett. B 689 (2010)]?

### Ghost dressing function:



Markus Q. Huber (Giessen University)

June 14, 2023

# Glueballs as bound states of gluons

Use results for glueball calculations?

All results for spacelike momenta.  $\rightarrow$  Not directly.

# Glueballs as bound states of gluons

Use results for glueball calculations?

All results for spacelike momenta.  $\rightarrow$  Not directly.

• Reconstruction from Euclidean results to get correlation functions for complex arguments.

# Glueballs as bound states of gluons

Use results for glueball calculations?

All results for spacelike momenta.  $\rightarrow$  Not directly.

- Reconstruction from Euclidean results to get correlation functions for complex arguments.
- Extrapolation of the eigenvalue curve.  $\rightarrow$  More stable and tests possible.

#### Glueballs

# Extrapolation of $\lambda(P^2)$

Extrapolation method

- Extrapolation to time-like *P*<sup>2</sup> using Schlessinger's continued fraction method (proven superior to default Padé approximants) [Schlessinger, Phys.Rev.167 (1968)]
- Average over extrapolations using subsets of points for error estimate

$$f(x) = \frac{f(x_1)}{1 + \frac{a_1(x-x_1)}{1 + \frac{a_2(x-x_2)}{1 + \frac{a_3(x-x_3)}{1 + \frac{a_3(x$$

Coefficients  $a_i$  can determined such that f(x) exact at  $x_i$ .

### Glueballs

# Extrapolation of $\lambda(P^2)$

### Extrapolation method

- Extrapolation to time-like P<sup>2</sup> using Schlessinger's continued fraction method (proven superior to default Padé approximants) [Schlessinger, Phys.Rev.167 (1968)]
- Average over extrapolations using subsets of points for error estimate

Test extrapolation for solvable system:

Heavy meson [MQH, Sanchis-Alepuz, Fischer, Eur.Phys.J.C 80 (2020)]

$$f(x) = \frac{f(x_1)}{1 + \frac{a_1(x-x_1)}{1 + \frac{a_2(x-x_2)}{1 + \frac{a_2(x-x_2)}{1 + \frac{a_3(x-x_3)}{1 + \frac{a_3(x$$

Coefficients ai can determined such that f(x) exact at  $x_i$ .



Glueballs

### Glueball results



[MQH, Fischer, Sanchis-Alepuz, Eur.Phys.J.C81 (2021)]

Agreement with lattice results

All results for  $r_0 = 1/418(5)$  MeV.

Markus Q. Huber (Giessen University)

# Correlation functions in the complex plane

Standard integration techniques fail.

Consider example integral:

$$l_2(p^2) = \int dq^2 J(q^2, p^2), \quad J(p^2, q^2) = \int d\theta \sin^2 \theta_1 \frac{1}{q^2 + p^2 + \sqrt{p^2}\sqrt{q^2}\cos\theta_1 + m^2} \frac{1}{q^2 + m^2}$$

 $\int d^4 q 
ightarrow \int_{\Lambda^2_{
m LD}}^{\Lambda^2_{
m UV}} dq^2 \int d heta_1$ 

# Correlation functions in the complex plane

Standard integration techniques fail.

Consider example integral:

$$I_2(p^2) = \int dq^2 J(q^2, p^2), \quad J(p^2, q^2) = \int d\theta \sin^2 \theta_1 \frac{1}{q^2 + p^2 + \sqrt{p^2}\sqrt{q^2}\cos\theta_1 + m^2} \frac{1}{q^2 + m^2}$$

After  $\theta_1$  integration:



Markus Q. Huber (Giessen University)

 $\int d^4 q 
ightarrow \int_{\Lambda^2_{
m LD}}^{\Lambda^2_{
m UV}} dq^2 \int d heta_1$ 

# Correlation functions in the complex plane

Standard integration techniques fail.

Consider example integral:

$$I_2(p^2) = \int dq^2 J(q^2, p^2), \quad J(p^2, q^2) = \int d\theta \sin^2 \theta_1 \frac{1}{q^2 + p^2 + \sqrt{p^2}\sqrt{q^2} \cos \theta_1 + m^2} \frac{1}{q^2 + m^2}$$

After  $\theta_1$  integration:



Integration path  $\Lambda_{IR}^2 \rightarrow \Lambda_{UV}^2$  on real line forbidden.  $\rightarrow$  Take a detour.

 $\int d^4 q 
ightarrow \int_{\Lambda^2_{
m LD}}^{\Lambda^2_{
m UV}} dq^2 \int d heta_1$ 



# Contour deformation method (CDM)

Originally used for QED: [Maris, Phys.Rev.D52, (1995)])



Recent resurgence: massive propagators, three-point functions, e.g.: [Alkofer et al., Phys.Rev.D 70 (2004); Eichmann, Krassnigg, Schwinzerl, Alkofer, Ann.Phys. 323 (2008); Strauss, Fischer, Kellermann, Phys.Rev.Lett, 109 (2012); Windisch, MQH, Alkofer, Phys.Rev.D 87 (2013), Acta Phys.Polon.Supp. 6 (2013); Strodthoff, Phys.Rev.D 95 (2017); Weil, Eichmann, Fischer, Williams, Phys.Rev.D 96 (2017): Pawlowski, Strodthoff, Wink, Phys.Rev.D 98 (2018); Williams, Phys.Lett.B 798 (2019); Miramontes, Sanchis-Alepuz, Eur.Phys.J.A 55 (2019); Eichmann, Duarte, Pena, Stadler, Phys.Rev.D 100 (2019); Fischer, MQH, Phys.Rev.D 102 (2020); Miramontes, Sanchis-Alepuz, Phys.Rev.D 103 (2021); Eichmann, Ferreira, Stadler, Phys.Rev.D 105 (2022): Miramontes, Alkofer, Fischer, Sanchis-Alepuz, Phys.Lett.B 833 (2022); MQH, Kern, Alkofer, Phys.Rev.D 107 (2023); ... 1

Landau conditions: When do singularities arise in external momenta [Landau, Sov. Phys. JETP 10 (1959)]? Directly reflected in possible contours [Windisch, MQH, Alkofer, Acta Phys.Polon.Supp. 6 (2013); MQH, Kern, Alkofer, Phys.Rev.D 107 (2023)].

Markus Q. Huber (Giessen University)

Simpler truncation:



Simpler truncation:

 $\operatorname{max}^{-1} = \operatorname{max}^{-1} - \frac{1}{2} \operatorname{max}^{\operatorname{max}} + \operatorname{max}^{-1} + \operatorname{max}^{-1}$ 

m = 0: Branch cuts are circles with one opening.



Simpler truncation:



m = 0: Branch cuts are circles with one opening.







- Current truncation leads to a pole-like structure in the gluon propagator.
- Analyticity up to 'pole' confirmed by various tests (Cauchy-Riemann, Schlessinger, reconstruction)
- Effect of dynamic three-point functions?
- $\rightarrow$  Talk by Wink.

[Fischer, MQH, Phys.Rev.D 102 (2020)]

June 14, 2023

## Kinematics



 $r = \sqrt{q^2}$ 

# Singularities in the integrand

Integration over  $\theta_1$  and  $\theta_2$  creates branch cuts.  $\rightarrow$  One generic form ( $z_1 = \cos \theta_1$ ):



$$\gamma_{\pm}(\boldsymbol{z}_{1};\boldsymbol{p}^{2},m^{2}) = \sqrt{\boldsymbol{p}^{2}} \, \boldsymbol{z}_{1} \pm i \sqrt{m^{2} + \boldsymbol{p}^{2}(1-\boldsymbol{z}_{1}^{2})}$$
$$= \sqrt{\boldsymbol{p}^{2}} \cos \theta_{1} \pm i \sqrt{m^{2} + \boldsymbol{p}^{2} \sin^{2} \theta_{1}}$$

# Singularities in the integrand

Integration over  $\theta_1$  and  $\theta_2$  creates branch cuts.  $\rightarrow$  One generic form ( $z_1 = \cos \theta_1$ ):



$$\gamma_{\pm}(\mathbf{z}_{1}; \mathbf{p}^{2}, m^{2}) = \sqrt{\mathbf{p}^{2}} \, \mathbf{z}_{1} \pm i \sqrt{m^{2} + \mathbf{p}^{2}(1 - \mathbf{z}_{1}^{2})}$$
$$= \sqrt{\mathbf{p}^{2}} \cos \theta_{1} \pm i \sqrt{m^{2} + \mathbf{p}^{2} \sin^{2} \theta_{1}}$$

3-point

$$\begin{split} k_a &\to \gamma_{a\pm}(z_1; p_a^2, m^2) = \gamma_{\pm}(z_1; p_a^2, m^2), \\ k_b &\to \gamma_{b\pm}(\tilde{z}; p_b^2, m^2) = \gamma_{\pm}(-\tilde{z}; p_b^2, m^2) \end{split}$$

$$\tilde{z} = \cos \tilde{\theta} = \cos \theta \, \cos \theta_1 + \sin \theta \, \sin \theta_1 \, \cos \theta_2.$$

 $p^2 = (-3 + 0.2i)m^2$ :



$$p^2 = (-3 + 0.2i)m^2$$
:



$$p^2 = -3m^2$$
:

- Cuts touch!
- Cut is on imaginary axis and runs over *i m* (pole of propagator).



Markus Q. Huber (Giessen University)

Analytic structure of three-point functions

June 14, 2023

17/28

 $p^2 = (-3 + 0.2i)m^2$ :



 $p^2 = -3m^2$  + deformation of  $\theta_1$  integration:



A branch point arises in the external momenta if the integration contour cannot be deformed.



A branch point arises in the external momenta if the integration contour cannot be deformed.



Markus Q. Huber (Giessen University

Increasing  $p^2$  until *i m* is at the end point of the branch cut.  $\rightarrow$  Contour deformation no longer possible and branch point is created.

- Analytical determination of branch points possible from contour deformations [Windisch, MQH, Alkofer, Acta Phys.Polon.Supp. 6 (2013)]
- $\rightarrow$  Landau conditions [Landau, Sov.Phys.JETP10 (1959)]:  $p_B^2 = -(m_1 + m_2)^2$

### Contour deformations Three-point functions **3-point for** $p_a^2 = p_b^2 = p^2$





Markus Q. Huber (Giessen University

Analytic structure of three-point functions

# Creation of branch points (3-point)

2-point

Match a pole and the end points of the branch cuts ( $\theta_1 = 0, \pi$ ).

# Creation of branch points (3-point)

2-point

Match a pole and the end points of the branch cuts ( $\theta_1 = 0, \pi$ ).

3-point: End point in  $\theta_2$ !

- Two cuts cross for same  $\theta_1$  at pole. or
- Two cuts meet for  $\theta_1$  'inside' of circle.

$$p_{B,1}^2 = -4m^2\sin^2rac{ heta}{2}$$
 $p_{B,2}^2 = -rac{m^2}{\cos^2rac{ heta}{2}}$ 

### Critical points

2 solutions: Relevant one is that with the critical point in the *r* plane closer to the origin.





### Critical points

2 solutions: Relevant one is that with the critical point in the *r* plane closer to the origin.



Similar analysis:

• Identify case where all three propagators agree.

$$ightarrow p_a^2 \, p_b^2 \, p_c^2 = m^2 (p_a^4 + p_b^4 + p_c^4 - 2 (p_a^2 \, p_b^2 + p_a^2 \, p_c^2 + p_b^2 \, p_c^2))$$

Similar analysis:

• Identify case where all three propagators agree.

$$\rightarrow p_a^2 p_b^2 p_c^2 = m^2 (p_a^4 + p_b^4 + p_c^4 - 2(p_a^2 p_b^2 + p_a^2 p_c^2 + p_b^2 p_c^2))$$

Identify cases where cuts cross closer to the origin than the pole.
 Shortcut: Ignore one propagator and analyze a two-point integral. ↔ Contracted diagrams of Landau analysis.

Similar analysis:

• Identify case where all three propagators agree.

$$\rightarrow p_a^2 p_b^2 p_c^2 = m^2 (p_a^4 + p_b^4 + p_c^4 - 2(p_a^2 p_b^2 + p_a^2 p_c^2 + p_b^2 p_c^2))$$

- Identify cases where cuts cross closer to the origin than the pole.
   Shortcut: Ignore one propagator and analyze a two-point integral. ↔ Contracted diagrams of Landau analysis.
- Quadratic equation for  $p_c^2 \rightarrow$  only one solution relevant.

Similar analysis:

• Identify case where all three propagators agree.

$$\rightarrow p_a^2 p_b^2 p_c^2 = m^2 (p_a^4 + p_b^4 + p_c^4 - 2(p_a^2 p_b^2 + p_a^2 p_c^2 + p_b^2 p_c^2))$$

- Identify cases where cuts cross closer to the origin than the pole.
   Shortcut: Ignore one propagator and analyze a two-point integral. ↔ Contracted diagrams of Landau analysis.
- Quadratic equation for  $p_c^2 \rightarrow$  only one solution relevant.



Landau condition

$$p_c^2 = \frac{2m^2(p_a^2 + p_b^2) + p_a^2 p_b^2 + \sqrt{p_a^2(4m^2 + p_a^2)}\sqrt{p_b^2(4m^2 + p_b^2)}}{2m^2}$$
for  $-4m^2 \le p_a^2, p_b^2 \le 0$ , and  $p_a^2 + p_b^2 \le -4m^2$   
 $p_a^2 = p_b^2 = p_c^2 = -4m^2$  else.

Markus Q. Huber (Giessen University)

# $\phi^3$ theory

Simple scalar theory with cubic interaction:

$$\mathcal{L}=rac{1}{2}(\partial_{\mu}\phi)\partial^{\mu}\phi-rac{1}{2}m^{2}\phi^{2}+rac{g}{3!}\phi^{3}$$

 $\rightarrow$  Technical testbed for QCD: 2-point, triangle, swordfish integrals



(Ignoring instability of theory.)

Markus Q. Huber (Giessen University)

# Nonperturbative equations

3PI effective action truncated at 3 loops [Berges, Phys. Rev. D 70 (2004); Carrington, Gao, Phys. Rev. D 83 (2011)]



# Nonperturbative equations

3PI effective action truncated at 3 loops [Berges, Phys. Rev. D 70 (2004); Carrington, Gao, Phys. Rev. D 83 (2011)]





Simplified kinematics:  $p_a^2 = p_b^2 = p^2$ 

# Propagator



- Nonperturbative pole at  $p^2 = -0.75m^2 = -m_r^2$
- A branch cut starting at  $-3m^2 = -4m_r^2$

Markus Q. Huber (Giessen University)

0.0 <u>–</u>0.2 D(p<sup>2</sup>/m<sup>2</sup>) -0.8 -1.0-1.75 1.50 1.25 1.00 1.00 0.50 Re p<sup>2</sup>/m<sup>2</sup> 0.25 -3 0.00-4



• Numerically more demanding due to calculations close to cuts.

### Vertex



- Numerically more demanding due to calculations close to cuts.
- ullet Branch cuts start close to the predicted value  $\checkmark$

[MQH, Kern, Alkofer, Phys.Rev.D 107 (2023)]

Nonperturbative masses

[MQH, Kern, Alkofer, Phys.Rev.D 107 (2023)]

- Nonperturbative masses ✓
- Up to 3 different masses  $\checkmark$

- Nonperturbative masses
- Up to 3 different masses ✓
- Outs instead of poles
   → continuum of singular points → Forbidden area, but deformation doable.



- Nonperturbative masses
- Up to 3 different masses  $\checkmark$
- Cuts instead of poles

 $\rightsquigarrow$  continuum of singular points  $\rightarrow$  Forbidden area, but deformation doable.

• Nonperturbative vertices with singularities in dressings: similar branch cuts in integrands as from propagators.



# Summary and outlook

- Propagators and vertices at complex momenta for bound state studies needed.  $\rightarrow$  resonances, decays
- Contour deformation method gives access to analytic structure of correlation functions.
- Landau conditions from CDM (perturbative).
- (Nonperturbative) generalizations: different masses, branch cuts, nonperturbative dressing
- Testbed  $\phi^3$  theory.
- QCD and its three-point functions for bound state studies.

# Summary and outlook

- Propagators and vertices at complex momenta for bound state studies needed.  $\rightarrow$  resonances, decays
- Contour deformation method gives access to analytic structure of correlation functions.
- Landau conditions from CDM (perturbative).
- (Nonperturbative) generalizations: different masses, branch cuts, nonperturbative dressing
- Testbed  $\phi^3$  theory.
- QCD and its three-point functions for bound state studies.

### Thank you for your attention.

# Stability of the solution

• Agreement with lattice results.

## Stability of the solution

- Agreement with lattice results.
- Concurrence between functional methods: 3PI vs. 2-loop DSE:



# Stability of the solution

DSE vs. FRG:

- Agreement with lattice results.  $\checkmark$
- Concurrence between functional methods:  $\checkmark$

3PI vs. 2-loop DSE:



[Cucchieri, Maas, Mendes, Phys.Rev.D77 (2008); Sternbeck et al., Proc.Sci. LATTICE2016 (2017); Cyrol et al., Phys.Rev.D 94 (2016); MQH, Phys.Ref.D101 (2020)]

Markus Q. Huber (Giessen University)

# Stability of the solution: Extensions

• Three-gluon vertex: Tree-level dressing dominant, others subleading [Eichmann, Williams, Alkofer,

Vujinovic, Phys.Rev.D89 (2014); Pinto-Gómez et al., 2208.01020]

## Stability of the solution: Extensions

- Three-gluon vertex: Tree-level dressing dominant, others subleading [Eichmann, Williams, Alkofer, Vujinovic, Phys.Rev.D89 (2014); Pinto-Gómez et al., 2208.01020]
- Four-gluon vertex: Influence on propagators tiny for d = 3 [MQH, Phys.Rev.D93 (2016)]



# Stability of the solution: Extensions

- Three-gluon vertex: Tree-level dressing dominant, others subleading [Eichmann, Williams, Alkofer, Vujinovic, Phys.Rev.D89 (2014); Pinto-Gómez et al., 2208.01020]
- Four-gluon vertex: Influence on propagators tiny for d = 3 [MQH, Phys.Rev.D93 (2016)]
- Two-ghost-two-gluon vertex [MQH, Eur. Phys.J.C77 (2017)]: (FRG: [Corell, SciPost Phys. 5 (2018)])



2/3

# Branch points for general kinematics (3-point)

Exclusion of one solution of the quadratic equation for  $p_c^2$ :



