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Phenomenology of the strong interaction

Particles under the influence of the strong force: hadrons, e. g. 7, K, 1,
proton, neutron, A, X, ...

@ High energy experiments: point-like particles inside the hadrons
(quarks).

@ Quarks only exist in bound states, never as free particles
(confinement).

o Mediator of the strong force: gluons (also confined).
@ Theory: Quantum Chromodynamics (QCD).

@ At high energies QCD is asymptotically free, i. e. the coupling gets
small and we can "observe" quarks (Nobel prize 2004).

@ At lower energies non-perturbative methods are needed.

This talk
In this talk | will focus on the low energy behavior of Yang-Mills theory
(gluonic part of QCD).
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Confinement of quarks and gluons

o Confinement is a long-range < IR phenomenon: We do not see
individual ~ infinitely separated quarks or gluons.

@ One expects that the property of being confined is encoded in the
particles’ propagators.

o Different confinement criteria for the propagators:

o Positivity violations: negative norm contributions — not a particle of
the physical state space

o Gribov-Zwanziger (Landau gauge, Coulomb gauge): IR suppression
of the gluon propagator — no long-distance propagation

o Kugo-Ojima: quartet mechanism, e. g. Gupta-Bleuler formalism in
QED: timelike and longitudinal photon cancel each other

Functional methods employ

correlation functions/Green fcts. /n-point fcts./propagators and vertices. ‘

The equations of motion of these are the Dyson-Schwinger equations. milth
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Propagators and vertices

The theory is encoded in the Green functions: "building blocks" for
functional equations.
They describe propagation and interactions of fields.

Graphical notation

Propagatorss ——M |, . . .,

Yy X

The propagators and interactions are given by the Lagrangian of the

Vertices:

theory.
Shorthand notation: propagator of field A is AA, quartic interaction is
AAAA etc.
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The tower of DSEs

DSE describe non-perturbatively how particles propagate and interact.
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Deriving Dyson-Schwinger equations

Starting from the translation invariance of the path integral,

5 _ 85\ siso _
s 211 = (0 (J 5¢)e ~o,

the DSEs for all Green functions (full, connected, 1PI) can be derived by
further differentiations.

After the first derivative is done, the procedure is iterative. Doing it by
hand becomes tedious.

For example: Landau gauge, only 2 propagators, 3 interactions
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Landau Gauge: Propagators

Gluon propagator:

N i1 i2 7%
1 i2 i1 1
F ’—@—‘ Tz
i1 2
Ghost propagator: .
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Landau Gauge: Four-Gluon Vertex

66 terms
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DoDSE

= DoDSE [Alkofer, M.Q.H., Schwenzer, CPC 180 (2009)]
Given a structure of interactions, the DSEs are derived symbolically using
Mathematica.
Example (Landau gauge):
@ only input: interactions in Lagrangian (AA, AAA, AAAA, cc, Acc)
@ Which DSE do | want?

@ Step-by-step calculations possible.
@ Can handle mixed propagators (then there are really many

diagrams).

Upgrade: Symb2Alg produces algebraic from the symbolic expressions.
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DoDSE upgrade: Symb2Alg

Symbolic expressions are fine for some tasks, e. g. infrared analysis, but
also algebraic expressions are needed!

MQH KFU Graz Oct. 1, 2009 12/44



DoDSE upgrade: Symb2Alg

Symbolic expressions are fine for some tasks, e. g. infrared analysis, but

also algebraic expressions are needed!

(grart p12 _ p1it plvl) Satb1

p12’
Cag? (a1 gl + 2411 q1%) a1

q1?’

Cag? (<<1>>) Ga1b1

2 <<2>>22 (pl2 +2pl - «<2> + qlz)2
Cag? a1 (p1 +ql"™) Sarmn

q1? (p1® +2pl-ql+ql?)

Mathematica package Symb2Alg: Transforms output of DoDSE into

algebraic expressions.

Depending on Feynman rules compatible with FeynCalc.

KFU Graz
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Dyson-Schwinger equations (DSEs) for investigating QCD

Infinitely large tower of equations

Equations of motion of Green functions
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Dyson-Schwinger equations (DSEs) for investigating QCD

Infinitely large tower of equations

Equations of motion of Green functions

Pros:

@ Exact equations
— non-perturbative regime accessible

@ Continuum, different scales accessible
— complement lattice method
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Dyson-Schwinger equations (DSEs) for investigating QCD

Infinitely large tower

Equations of motion o Green functions

Pros:

@ Exact equations runcatighs

— non-perturbative regime accessible o Gauge-dependent

@ Continuum, different scales accessible
— complement lattice method
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Dyson-Schwinger equations (DSEs) for investigating QCD

Infinitely large tower

Equations of motion o Green functions

Pros:

o Exact equations runcatigns (not for all tasks)

— non-perturbative regime accessible o Gauge-dependent

o Continuum, different scales accessible — Exploit advantages of different
— complement lattice method gauges

]
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About infrared propagators in Landau gauge

Yang-Mills theory's Green functions are best investigated
in Landau gauge:
@ Decoupling solution: IR constant gluon propagator, tree-level ghost
propagator
@ Scaling solution: IR dressing functions characterized by power laws,
exponents related by scaling relation, ghost IR enhanced, gluon IR
vanishing

Different methods
@ Most lattice calculations find the decoupling scenario.
@ Functional equations use boundary conditions to get either solution.

@ The Gribov-Zwanziger action yields the scaling solution, which can
be altered to the decoupling type by the addition of condensates
(refined GZ framework).

Knowledge about the IR behavior: useful for numerical calculations, test gy

some confinement scenarios.
MQH KFU Graz Oct. 1, 2009 14/44



Infrared propagators in Landau gauge: Decoupling solution

@ Lattice produces decoupling type solution [e. g. Cucchieri, Mendes,
PoS(LAT) 2007; Bogolubsky, ligenfritz, Miiller-Preussker PoS(LAT) 2007]

] exceptions: d=2 [Maas, PRD75], [?) = 0 [Sternbeck, von Smekal, PoS(LAT)
2008]

o refined Gribov—Zwanziger framework [Dudal, Sorella, Vandersickel, Verschelde,
PRD77]: introduce condensates

o first results using partly Dyson-Schwinger equations [Boucaud et al.,
JHEP06(2008)], used input from lattice for gluon propagator

@ obtained by modified DSEs [Aguilar, Binosi, Papavassiliou, PRD 78]

o full solution of propagators DSEs/RGEs [Fischer, Maas, Pawlowski,
0810.1987]

@ higher vertex functions are not IR enhanced [Alkofer, M.Q.H., Schwenzer,
0801.2763]

Always a family of solutions is found. -]
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Infrared propagators in Landau gauge: Scaling solution

o Qualitative solution for the whole tower of vertex
functions known [Alkofer, Fischer, Llanes-Estrada, PLB 611
(2005); M.Q.H., Alkofer, Fischer, Schwenzer,PLB 659 (2008)].

@ Details about three- and four-point functions
known, [e. g. Kellermann, Fischer, PRD 78 (2008); Alkofer,
M.Q.H., Schwenzer, EPJC 62 (2009), 0801.2762].

@ In agreement with Kugo-Ojima and
Gribov-Zwanziger scenarios.

Fischer, Alkofer, Phys. Lett. B 536, 2002

@ Positivity violating propagators.

Maas, 0907.5185: Alternative algorithm to choose gauge copy can
produce IR enhancement of the ghost on the lattice — Landau-B-gauges,
where B is related to the ghost dressing function at zero momentum.

]
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IR behavior of the maximally Abelian gauge

Lattice calculations [e. g. Mendes et al., 0809.3741] and the refined GZ
framework [Capri et al., PRD 77 (2008)] support a decoupling scenario (all
propagators finite).

Is there a scaling solution even possible?
An investigation using functional methods is also desirable from other

points of view:

o Calculations on lattice and in refined GZ framework done in SU(2)
— generalization to SU(N)?

@ IR region easier accessible by continuum methods than by lattice
calculations.

Can the methods used in the Landau gauge be applied straightforwardly?
NI
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Landau gauge and maximally Abelian gauge: Current Status

| Landau gauge | MAG
propagators A c A B, c
interactions AAA, Acc; ABB, Acc;
AAAA AABB, AAcc, BBcc,
BBBB, cccc

Gribov region

bounded in all directions

bounded in off-diagonal
and unbounded in diagonal direction
[Capri et al, PRD 79 (2009)]

decoupling sol.

lattice, refined Gribov-
Zwanziger framework and
functional equations

lattice [Mendes et al., arXiv:0809.3741],
ref. Gribov-Zwanziger framework
[Capri et al., PRD 77 (2008)]; SU(2) only

scaling solution

MQH

funct. egs., lattice in 2d
[von Smekal, Alkofer, Hauck,
PRL 79 (1997);

Pawlowski et al., PRL 93 (2004);
Maas, PRD 75 (2007)]

KFU Graz

this talk (SU(N))
[M.Q.H., Schwenzer, Alkofer, arXiv:0904.1873]

]
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The maximally Abelian gauge (MAG)

Dual superconductor picture of confinement
(Mandelstam, 't Hooft)

Magnetic monopoles condense — squeeze electric flux into flux tubes.

Ezawa, lwazaki, PRD 25 (1981): Hypothesis of Abelian dominance
(Abelian part should dominate the infrared part of the theory, since
monopoles live in Abelian part of algebra.)
Suzuki et al., 0907.0583

@ String tension is the same from non-Abelian, Abelian and monopole

part, if no gauge is fixed.

o Colorelectric flux is squeezed into flux tubes.

e = Confinement by monopoles.
String tensions of Abelian and monopole part agree more or less with the

string tension of the non-Abelian part, if MAG is employed. = MAG a
"cheap" way to obtain monopoles? [ GRi:]
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Diagonal and off-diagonal fields

Gauge field components:
AH:A’uT’qL , i=1,...,N—1, a=N,...,N2—1

Abelian subalgebra: [T', T/] =0, can be written as diagonal matrices
= Abelian/diagonal fields A, non-Abelian/off-diagonal fields

Eg T'= %)&, T? = %)\8 for SU(3).
[Tr, Ts] _ l'frst Tt
fik=0, fi7=0, f*"#0
SU(2): f* =0, SUIN>2): f#£0

SU(2): only 2 off-diagonal and 1 diagonal fields = only 1 possible set of
field combinations for three-point function
SU(N > 2): three off-diagonal fields can interact
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Gauge fixing condition of the MAG

Stress role of diagonal fields = minimize norm of off-diagonal field B:

[|Byll = J dx B(;B{; — minimize wrt. gauge transformations U
Dfibel’ = (0.60,—& fabiAL)BS =0 non-linear gauge fixing condition!

Remaining symmetry of diagonal part: U(1)V~?

Fix gauge of diag. gluon field A by Landau gauge condition: 9,A, = 0.
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Peculiarities of the maximally Abelian gauge for SU(2)

@ Yang-Mills vertices split: ABB, AABB, BBEB.

@ Non-linear gauge fixing condition (depends on A) — Acc, AAcc,
BBcc.

@ Renormalizability requires an additional quartic ghost interaction —
cccc.

@ Ghosts also split into diagonal and off-diagonal parts, but diagonal
ghosts decouple (diagonal ghost equation).

o Two gauge fixing parameters: aa = 0 (Landau gauge), as.

Note: For SU(N > 2) there are more interactions (due to f2¢): BBB,
Becc, ABBB, ABcc — more DSEs with more terms.

This plethora of interactions makes the equations much more intricate
than in Landau gauge. To consider all possible solutions an improved
method is necessary. =
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DSEs of the MAG
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Loop integrals for low external momenta

We want to know how a vertex function behaves, when the external
momenta approach 0 simultaneously: I'(py, p2,...) for p; — 0

Generic propagator

kinematic divergences: D(p)
I'(p1,po,...) for pr — 0, Lipv) - —5»
P2, ... = const [Alkofer, M.Q.H., P

assume power law behavior at low p
DR(p) = A- (p?P

Integrals are dominated by 1/(p — q)? — use IR expressions for all IR exponent

quantities.
Vertices also assume power law behavior [Alkofer, Fischer, Llanes-Estrada, PLB

Schwenzer, EPJC 62 (2009)]

611 (2005) (skeleton expansion)].
In scaling solutions the qualitative behavior of the whole tower of
equations can be determined. =
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Power counting

@ The ghost propagator DSE:

1 -1 SVN\A%
,,,,,, e e P Y-

@ Plug in power law ansatze for dressing functions in the IR (In
Landau gauge the ghost-gluon vertex has an IR constant dressing.):

—1
B - (p?)* - dlg , A-(¢)" B-((p—a))P
p? md " g2 (p—q)?
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Power counting

@ The ghost propagator DSE:

1
,,,,,, - L=
@ Plug in power law ansitze for dressifg function
Landay gauge the ghost-gluon vertex has an IR |con
—1
B (p*)® J dq
p? (2m)d
@ Only one momentum scale

— simple power counting is possible — scaling relation:

d d
1—B=§+a—1+6—1+ to=2B=at+s -2
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More infrared exponents

p—0
Up to now it was assumed that all momenta of a Green

function go to zero simultaneously — uniform IR exponents.

r—0 q—0

For a three-point function there is one additional possibility:
Only one momentum goes to zero — kinematic IR exponents
[Alkofer, M.Q.H., Schwenzer, 0801.2762].

r ~ const. ™~ const.

There is a non-uniform dependence on the momenta [Alkofer, M.Q.H.,
Schwenzer, EPJC 62 (2009)]; €x. on next slide.
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More infrared exponents: Examples

The first order contribution of the three-gluon vertex in the IR (ghost
triangle) can be described by 10 dressing functions:
10

TP p2,p3) = Y Eilp}, p3,p3; % d)Thy o (P1, P2, P3).
i=1
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More infrared exponents: Examples

The first order contribution of the three-gluon vertex in the IR (ghost
triangle) can be described by 10 dressing functions:
10

TP p2,p3) = Y Eilp}, p3,p3; % d)Thy o (P1, P2, P3).
i=1

0.001F Eg
e

10°F 40xE3
10°F
L L L L 2
210° 10° 107 10° Pr
These singularities only appear in the longitudinal parts [Alkofer, M.Q.H.,
Schwenzer, EPJC 62 (2009)] = play no role in Landau gauge [Fischer, Maas, un

Pawlowski, 0810.1987; Fischer, Pawlowski, PRD 80 (2009)].
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Functional renormalization group equations

Functional equations similar to DSEs, but with decisive differences:

@ only 1-loop diagrams
@ ALL quantities dressed

o (appearance of regulator)

Renormalization group equations (RGEs) are "differential DSEs".

Compare RGE and DSE of gluon propagator:

0
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Deriving a scaling relation

DSE-FRG consistency condition by Fischer & Pawlowski
[Fischer, Pawlowski, PRD 75 (2005)]

o Investigated system of DSEs/RGEs in Landau gauge.

@ The ghost propagator DSE has only 1 loop diagram.
@ The ghost propagator RGE has 4 loop diagrams.
(*]

For consistent solutions of DSEs and RGEs you expect the same
scaling of the propagators = the DSE diagram has to match the
counting of the RGE diagrams.

@ Connection between DSEs and RGEs is the bare ghost-gluon vertex,
which is not IR enhanced.

We proof here in general [M.Q.H., Schwenzer, Alkofer, 0904:1873]:

Scaling relations are intimately connected to the appearance of bare

vertices in DSEs and not in RGEs. = Possible scaling relations can be

read off from the interactions. GRAz

c
z
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System of inequalities

o For every diagram the IR can be written down.

o At least the IRE of one diagram must equal the IRE of the vertex
function on the lhs.

@ No diagram can be more IR divergent than the vertex function on
the lhs — O1hs <Orhs-

@ Not knowing which diagram is leading on the rhs, we can write
inequalities from all diagrams.

—0q = min( 0 ,20gh + Ogg, Ogi ,25g/+53g,35g/+54g‘45g/+253g)
~ e o ——  —— e — —

bare prop. gl loop tadpole gh loop sunset squint

G ST 1
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Relevant inequalities

A closed form for all relevant inequalities can be derived
from DSEs and RGEs.

2 types:
type derived from #
dressed vertices C1 = bvertex + % Z d; >0 | RGEs infinite
legs j of
vertex
prim. div. vertices | C = % Z 5 >0 DSEs/RGEs | finite
legs j of
prim. div.
vertex

Some inqualities are contained within others.
E. g. in MAG: 65 > 0 and &, > 0 render dg + 6. > 0 useless.

NB: These inequalities explicitly show that the skeleton expansion used in
previous studies is a consistent expansion. However, the skeleton -
expansion is now obsolete. mily

MQH KFU Graz Oct. 1, 2009 31/44



Infrared exponent for an arbitrary diagram

Having so many diagrams, isn't there a shorter way than writing all
expressions down explicitly?

Arbitrary Diagram v
Numbers of vertices and propagators related = possible to get a formula

for the IR exponent by pure combinatorics in terms of:

O PIEpEEATEr [ X CHenens O, @ number of external legs m®

@ number of vertices

5, = L mié; —+

i

+ Z (# of dressed vertices),C + Z (# of bare vertices),C}
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Infrared exponent for an arbitrary diagram

Having so many diagrams, isn't there a shorter way than writing all
expressions down explicitly?

Arbitrary Diagram v
Numbers of vertices and propagators related = possible to get a formula

for the IR exponent by pure combinatorics in terms of:

O PIEpEEATEr [ X CHenens O, @ number of external legs m®

@ number of vertices

/\/Iower bound on IRE
5, = L mié; —+

i

+ Z (# of dressed vertices),C + Z (# of bare vertices),C}

Only depends on the external legs — equal for all diagrams in a
DSE/RGE [M.Q.H., Schwenzer, Alkofer, arXiv:0904.1873]. UNI
Similar formula with slightly different arguments: Fischer, Pawlowski, arXiv:0903.2193

Oct. 1, 2009



Scaling relations

General analysis of propagator DSEs

At least one inequality from a prim. divergent vertex has to be saturated,

i. e. | Ci =0 for at least one i |

Necessary condition for a scaling solution.
Related to bare vertices in DSEs: Fischer-Pawlowski consistency
condition DSEs <+ RGEs [Fischer, Pawlowski, PRD 75 (2007)].

= One primitively divergent vertex is not IR enhanced.

This does not necessarily mean that it is bare:

@ Dependence on momentum configuration.

o Consider different dressing functions: Vanishing or constant.
The non-enhanced vertex is also called the leading vertex, because it
determines the leading diagram in a DSE.

The non-enhancement of at least one primitively divergent vertex
is now established for all scaling type solutions. [M.Q.H., Schwenzer, Alkofer, UNI
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How to obtain a scaling relation: Landau gauge

@ Look at all inequalities for primitively divergent vertices, i. e. at C2".
© Try all possibilities of Cj = 0.
© Choose the non-trivial solutions.

MQH KFU Graz Oct. 1, 2009 34/44



MQH

How to obtain a scaling relation: Landau gauge

@ Look at all inequalities for primitively divergent vertices, i. e. at C2".
© Try all possibilities of Cj = 0.
© Choose the non-trivial solutions.

Application to Landau gauge:

Qo 5g/ >0, 5g/ +25gh >0

Q a
b
9 a
b

Scaling relation of the Landau gauge:

dg1 =0

5g/ + 25g;, =0
g =8z=10
6g/ + 25g/-, =0

KFU Graz

§5g/ = —dgh = KiLG

Oct. 1, 2009
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From scaling relation to vertices

How to get the IRE of an arbitrary vertex?

© Start with an appropriate propagator DSE.
© Add successively the leading vertex until you get the desired vertex.

A general formula for m gluon and 2n ghost legs in d dimensions can be

determined [Alkofer, Fischer, Llanes-Estrada, PLB 611 (2005); M.Q.H., Alkofer, Fischer,
Schwenzer, PLB 659 (2008)]:

6m,2n = (n_m) KLe + (l_n) <C2/ _2>
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How to obtain a scaling relation: MAG

Many interactions = many inqualities, but some of them are contained
within others = reduces number of possibilities.

© Look at all inequalities for primitively divergent vertices, i. e. at Cj.
@ Try all possibilities of C3 = 0.
© Choose the non-trivial solutions.
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How to obtain a scaling relation: MAG

Many interactions = many inqualities, but some of them are contained
within others = reduces number of possibilities.

© Look at all inequalities for primitively divergent vertices, i. e. at Cj.
© Try all possibilities of Cj = 0.
© Choose the non-trivial solutions.
Application to the MAG:
Q065>0,0,>0,04+065>0,0a+08:20

e a 63 =0
b b5.=0
C da+068=0
d da+0=0

Q@ 2 Sa=5p=5:=0
b M/:Bm
C da+0=0
d da+06c=0

Scaling relation of the MAG: ‘53 =0, = —0a = Kmac ‘ )
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The MAG in SU(3)

In general SU(N) there are more interactions than included above.
— Different solution for "physical system", i. e. SU(3)?

4 additional vertices: , Bcc, A , ABcc
Constraints:

3 1

255 > Z5p 4 5. >0,

2 B_O> 2 B+ _0
1 3 1 1
= 255> = = >
25A+253_0, 25A+253+6c_0

Solution for SU(N > 2) = solution for SU(2)

@ Constraints already contained in "old" system — nothing new,
solution still valid.

@ No new solutions possible — unique solution.
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IR Scaling solutions for other gauges

The analysis can be used also for other gauges. Beware: This
corresponds to a naive application!

Linear covariant gauges Ghost-antighost symmetric gauges

scaling solution only, if the longitudinal
part of the gluon propagator gets
dressed, but gauge fixing condition =
longitudinal part bare

quartic ghost interaction — 8g, > 0
— with non-negative IREs only the
trivial solution can be realized

This is valid for all possible dressings and agrees with the results from
[Alkofer, Fischer, Reinhardt, v. Smekal, PRD 68 (2003)], where only certain dressings
were considered.

o Either the existence of a
= scaling solution is something special (?) or
@ a more refined analysis is needed in these cases.
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IR propagators of the MAG

75A:65:6522KZO

The scaling solution for the MAG differs in several qualitative and
technical aspects from the Landau gauge solution:
@ Diagonal gluon propagator is IR enhanced (64 < 0). = Supports
hypothesis of Abelian dominance.
o Off-diagonal propagators are IR suppressed.
@ Two-loop terms are leading.
o Different structure of IR leading terms — new method for numerical
solutions required.
o Different DSEs for SU(2) and SU(3) — different solutions? — No.
@ Maas, 0807.5185: Parameter equivalent to ghost propagator in
Landau gauge is here the diagonal gluon propagator.
@ Abelian configurations are on the gauge orbit of the configurations
at the Gribov horizon in Landau gauge [Greensite, Olejnik, Zwanziger, PRD

UNI
69 (2004)]. mll
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Higher vertex functions in the MAG

Leading diagrams are determined by bare AABEB or AAcc vertices:

sunset ‘ squint ‘-

leading | possibly leading

n-point functions (n even): Successively add pairs of fields:

n odd: At least one vertex with an odd number of legs, cannot be
determined uniquely (leading vertex is even; how to construct an odd un

vertex?)
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Higher vertex functions in the MAG

Leading diagrams are determined by bare AABEB or AAcc vertices:

sunset ‘ squint ‘-

leading | possibly leading
n-point functions (n even): Successively add pairs of fields:
g Bu o«
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n odd: At least one vertex with an odd number of legs, cannot be
determined uniquely (leading vertex is even; how to construct an odd un
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Numerical solution

In Landau gauge truncation "straightforward": keep one-loop terms
(consistent UV behavior, contain IR leading term)

-1 -1 TN %
ANNNBNNNNN = + S ‘\/\/\ -1/2
-1/2 % -3t M/%WZ wAi::%vw
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Numerical solution

In Landau gauge truncation "straightforward": keep one-loop terms
(consistent UV behavior, contain IR leading term)

-1 -1 VR
ANANBANNNS = + e o\ -12 %

In MAG: two-loop terms leading — for consistent UV behavior keep ALL
two-loop terms = no truncation
Q f% @ - O

,1+ -1 _
o TS oo

e

WJ/A\Y?/

O r N v N
~o O



Complete solution for the MAG

@ Truncation?
o Odd vertices?

@ The IR part has to connect to the mid-momentum and UV-part
found by a numerical calculation.

@ Due to the involved structure of the terms there is ample space for
delicate cancellations (cf. propagator DSEs in Landau gauge: 1
diagram IR leading).

o Considerable more construction work for the tensors of the leading
vertices (four-point functions: color x Lorentz = 3 x 10 and 3 X
138) is necessary than in Landau gauge (ghost-gluon vertex: 2).
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@ It was shown for general systems of functional equations how the
Fischer-Pawlowski consistency condition can lead to a scaling
solution.

As expected (at least) one vertex does not get IR enhanced.
Qualitative solution for whole tower of functional equations.

Skeleton expansion, as used earlier, obsolete.

High number of interactions can be handled, because it is not
necessary to write down all equations explicitly.

@ Derivation of method technical, but it allows a straightforward
application based only on the type of interactions in the Lagrangian.

@ Method allows a first assessment what a scaling solution might look
like. — Input for a complete numeric calculation.
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Conclusions on MAG

@ The MAG may possess an IR scaling solution.

@ This solution is in support of the hypothesis of Abelian dominance,
because the diagonal gluon propagator is IR enhanced and thereby
the dynamics in the IR are dominated by the diagonal gluon.

@ Relation to monopole condensation has to be clarified.
@ Although the DSEs are more complicated for general SU(N > 2),
the qualitative behavior is the same as in SU(2).

The existence of the IR scaling solution in the MAG has to be verified by
a numerical solution of the DSEs, which is more involved than in Landau
gauge. — Task for the future.
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