Functional equations

Dyson-Schwinger equations

DSEs in QCD

Results in the Yang-Mills sector

Quantum chromodynamics from the functional point of view

Markus Q. Huber

Institute of Physics, University of Graz

Seminar at APC, Université Paris Diderot

Der Wissenschaftsfonds.

Markus Q. Huber

University of Graz

Feb. 3, 2015

Functional equations

Dyson-Schwinger equations

DSEs in QCD

Results in the Yang-Mills sector

Outline

Introduction

- Functional equations
- 3 Dyson-Schwinger equations
- ④ DSEs in QCD
- Sesults in the Yang-Mills sector

Introduction	Functional equations	Dyson-Schwinger equations	DSEs in QCD	Results in the Yang-Mills sector
•0	0000 I	000	0000	00000000000000
	I he v	vorld in terms o	t particles	;

The standard model:

Intro duction	Functional equations	Dyson-Schwinger equations	DSEs in QCD	Results in the Yang-Mills sector
•0	0000	000	0000	0000000000000
	The v	vorld in terms o	f particles	i

The standard model:

Dyson-Schwinger equations

DSEs in QCD

Results in the Yang-Mills sector

The world in terms of particles

Quantum chromodynamics: self-consistent by itself, could be even fundamental

© CERN

fundamental fields: quarks and gluons

u, d quarks are light \sim MeV

physical degrees of freedom: hadrons $\sim \, {\rm GeV}$

G

d

Markus Q. Huber

University of Graz

u

U

U

Feb. 3, 2015

Functional equations

Dyson-Schwinger equations

DSEs in QCD

Results in the Yang-Mills sector

How to investigate QCD

Asymptotic freedom (Nobel prize 2004):

Perturbative description at high energies. Plenty of applications.

Functional equations

Dyson-Schwinger equations

DSEs in QCD

Results in the Yang-Mills sector

How to investigate QCD

Asymptotic freedom (Nobel prize 2004):

Perturbative description at high energies. Plenty of applications.

- Perturbative series is not convergent.
- Non-perturbative phenomena?
 - E.g., no mass creation to every order in perturbation theory.

 \Rightarrow Non-perturbative methods required.

Perturbation theory based on non-perturbative 'models', e.g.,

- (Refined) Gribov-Zwanziger model
- Massive extension [Peláez, Reinosa, Serreau, Tissier, Tresmontant, Wschebor, '10-'14]

Intro	du	ctio	n
00			

Functional equations

Dyson-Schwinger equations

DSEs in QCD

Results in the Yang-Mills sector

The family of functional equations

Coupled integro-differential/integral equations.

Functional equations

Dyson-Schwinger equations

DSEs in QCD

Results in the Yang-Mills sector

The family of functional equations

Coupled integro-differential/integral equations.

• Dyson-Schwinger equations: eqs. of motion for correlation functions

Functional equations

Dyson-Schwinger equations

DSEs in QCD

Results in the Yang-Mills sector

The family of functional equations

Coupled integro-differential/integral equations.

• Dyson-Schwinger equations: eqs. of motion for correlation functions

• Functional renormalization group: flow equations, RG scale k, regulator

Functional equations

Dyson-Schwinger equations

DSEs in QCD

Results in the Yang-Mills sector

The family of functional equations

Coupled integro-differential/integral equations.

• Dyson-Schwinger equations: eqs. of motion for correlation functions

• Functional renormalization group: flow equations, RG scale k, regulator

N-PI effective action

Functional equations

Dyson-Schwinger equations

DSEs in QCD

Results in the Yang-Mills sector

The family of functional equations

Coupled integro-differential/integral equations.

• Dyson-Schwinger equations: eqs. of motion for correlation functions

• Functional renormalization group: flow equations, RG scale k, regulator

N-PI effective action

Non-perturbative in the sense:

- Exact equations.
- No small coupling required.

In reality they cannot be solved exactly (with a few exceptions). Self-consistence!

Markus Q. Huber

University of Graz

Feb. 3, 2015

Functional equations ○●○○ Dyson-Schwinger equations

DSEs in QCD

Results in the Yang-Mills sector

Comparison: DSEs and flow equations

Dyson-Schwinger equations (DSEs)	Functional RG equations (FRGEs)
'integrated flow equations'	'differential DSEs'
effective action $\Gamma[\phi]$	effective average action $\Gamma^k[\phi]$
-	regulator
n-loop structure (n <i>const</i> .)	1-loop structure
exactly only bare vertex per diagram	no bare vertices
$\frac{\partial}{\partial \phi} \Gamma[\phi] = + + + + + + + + + + + + + + + + + + $	$k\frac{\partial}{\partial k}\Gamma^k[\phi] = $

• Both systems of equations are exact.

• Both contain infinitely many equations.

Functional equations 00●0 Dyson-Schwinger equations

DSEs in QCD

Results in the Yang-Mills sector

From Green functions to 'observables'

Functional equations are expressed in terms of Green functions/correlation functions/n-point functions.

The effective action is the generating functional of 1PI Green functions.

 \longleftrightarrow

The set of **all** Green functions describes the theory completely.

```
Green functions \rightarrow 'observables'?
```

Examples:

- ${\scriptstyle \bullet}$ Bound state equations ${\rightarrow}$ masses and properties of hadrons
- ${\scriptstyle \bullet}\,$ Analytic properties of Green functions ${\rightarrow}\,$ confinement
- (Pseudo-)Order parameters

Functional equations 000● Dyson-Schwinger equations

DSEs in QCD

Results in the Yang-Mills sector

Functional equations and lattice methods

	functional equations	lattice
source of error	truncation	finite volume,
		finite lattice spacing,
		statistics
temperature	\checkmark	\checkmark
chemical potential	\checkmark	sign problem
analytic structure	\checkmark	no

Functional equations 000● Dyson-Schwinger equations

DSEs in QCD

Results in the Yang-Mills sector

Functional equations and lattice methods

	functional equations	lattice
source of error	truncation	finite volume,
		finite lattice spacing,
		statistics
temperature	\checkmark	\checkmark
chemical potential	\checkmark	sign problem
analytic structure	\checkmark	no

Green functions	functional equations	lattice
propagators	\checkmark	\checkmark
three-point functions	ghost-gluon vertex: √ 3-gluon vertex: √ quark-gluon vertex: (√)	limited mom. dependence
four-point functions	\checkmark	not soon

roduction	Functional equations	Dyson-Schwinger equations	DSEs in QCD	Results in the Yang-Mills sector
>	0000	•00	0000	000000000000000

(1) Start from path integral: Integral of derivative vanishes.

$$0 = \int D[\phi] \frac{\delta}{\delta \phi} e^{-S + \int dy \phi(y) J(y)}$$

Details and example of scalar theory: http://tinyurl.com/dsenotes

ntroduction	Functional equations	Dyson-Schwinger equations	DSEs in QCD	Results in the Yang-Mills sector
00	0000	•00	0000	0000000000000

(1) Start from path integral: Integral of derivative vanishes.

$$0 = \int D[\phi] \frac{\delta}{\delta \phi} e^{-S + \int dy \phi(y) J(y)}$$

2 Go to effective action $\Gamma[\phi_{cl}]$ (Legendre transform of $W[J] = \ln Z[J]$).

Details and example of scalar theory: http://tinyurl.com/dsenotes

troduction	Functional equations	Dyson-Schwinger equations	DSEs in QCD	Results in the Yang-Mills sector
0	0000	•00	0000	000000000000000000000000000000000000000

(1) Start from path integral: Integral of derivative vanishes.

$$0 = \int D[\phi] \frac{\delta}{\delta \phi} e^{-S + \int dy \phi(y) J(y)}$$

3 Go to effective action Γ[φ_{cl}] (Legendre transform of W[J] = ln Z[J]).
 3 Master equation:

$$\frac{\delta S}{\delta \phi(\mathbf{x})} \bigg|_{\phi(\mathbf{x}') = \phi_{\mathbf{d}}(\mathbf{x}') + \int d\mathbf{z} \ D(\mathbf{x}', \mathbf{z})^{\mathbf{J}} \delta / \delta \phi_{\mathbf{d}}(\mathbf{z})} = \frac{\delta \Gamma[\phi_{\mathsf{cl}}]}{\delta \phi_{\mathsf{cl}}(\mathbf{x})}$$

Details and example of scalar theory: http://tinyurl.com/dsenotes

Markus Q. Huber

troduction	Functional equations	Dyson-Schwinger equations	DSEs in QCD	Results in the Yang-Mills sector
C	0000	•00	0000	00000000000000

(1) Start from path integral: Integral of derivative vanishes.

$$0 = \int D[\phi] \frac{\delta}{\delta \phi} e^{-S + \int dy \phi(y) J(y)}$$

3 Go to effective action Γ[φ_{cl}] (Legendre transform of W[J] = ln Z[J]).
 3 Master equation:

$$\frac{\delta S}{\delta \phi(\mathbf{x})} \bigg|_{\phi(\mathbf{x}') = \phi_{\mathsf{el}}(\mathbf{x}') + \int dz \, D(\mathbf{x}', z)^{J} \, \delta / \delta \phi_{\mathsf{el}}(z)} = \frac{\delta \Gamma[\phi_{\mathsf{cl}}]}{\delta \phi_{\mathsf{cl}}(\mathbf{x})}$$

OSEs for Green functions by differentiating wrt fields.

Details and example of scalar theory: http://tinyurl.com/dsenotes

Functional equations

Dyson-Schwinger equations

DSEs in QCD

Results in the Yang-Mills sector

Automated derivation

Derivation by hand becomes tedious:

- Large Lagrangians.
- Higher Green functions.
- Larger truncations.
- Error-prone.

Functional equations

Dyson-Schwinger equations

DSEs in QCD

Results in the Yang-Mills sector

Automated derivation

Derivation by hand becomes tedious:

- Large Lagrangians.
- Higher Green functions.
- Larger truncations.
- Error-prone.

Functional equations

Dyson-Schwinger equations

DSEs in QCD

Results in the Yang-Mills sector

Automated derivation

Derivation by hand becomes tedious:

- Large Lagrangians.
- Higher Green functions.
- Larger truncations.
- Error-prone.

 $\left[2 g^{2} \text{ Nc Z1 DAAA}\left[y, qs + y + 2 sp[q, q1], \frac{-y - sp[q, q1]}{\sqrt{y(qs + y + 2 sp[q, q1])}}\right]\right]$ DAAA [x2+y+2 sp[p, q], qs+x2-2 sp[p, q1], $\frac{-x2-sp[p, q]+sp[p, q]+sp[q, q1]}{\sqrt{(x2+y+2 sp[p, q])(qs+x2-2 sp[p, q1))}} Dq1[qs] Dq1[qs+x2-2 sp[p, q1]] Dq1$ $sp[p, q]^{4} (sp[p, q1]^{2} sp[q, q1] (y + sp[q, q1]) + qs x2 (y (9 qs + 6 (x2 + y)) + (5 qs + 6 x2 + 10 y) sp[q, q1]) - sp[p, q1] (qs y (5 qs + 10 x) sp[q, q1]) - sp[q, q1] (qs y (5 qs + 10 x) sp[q, q1]) - sp[q, q1]) - sp[q, q1] (qs y (5 qs + 10 x) sp[q, q1]) - sp[q, q1] (qs y (5 qs + 10 x) sp[q, q1]) - sp[q, q1]) - sp[q, q1] (qs y (5 qs + 10 x) sp[q, q1]) - sp[q, q1] (qs y (5 qs + 10 x) sp[q, q1]) - sp[q, q1]) - sp[q, q1] (qs + 10 x) sp[q, q1]) - sp[q, q1] (qs + 10 x) sp[q, q1]) - sp[q, q1] (qs + 10 x) sp[q, q1]) - sp[q, q1]) - sp[q, q1] (qs + 10 x) sp[q, q1]) - sp[q, q1] (qs + 10 x) sp[q, q1]) - sp[q, q1] (qs + 10 x) sp[q, q1]) - sp[q, q1] (qs + 10 x) sp[q, q1] (qs + 10 x) sp[q, q1]) - sp[q, q1]) - sp[q, q1] (qs + 10 x) sp[q, q1]) - sp[q, q1] (qs + 10 x) sp[q, q1]) - sp[q, q1] (qs$ $sp[p, q]^{3}(2 sp[p, q1]^{3}(qsy - sp[q, q1]^{2}) + sp[p, q1](qsy(10 qs^{2} + (-5 x2 - 3 y)y + qs(19 x2 + 3 y)) + (3 qs^{3} + 8 qs x2 y + 21 qs^{2} + (-5 x2 - 3 y)y + (-5 x2$ gs x2 (y (-9 gs² + 3 x2² + 7 x2 y + 3 y² + 2 gs (x2 + y)) + (-10 gs² + gs (-3 x2 - 19 y) + x2 (3 x2 + 5 y)) sp [q, q1] + (-16 gs - 7 x2 - 11 sp[p, q1]² (qs (-16 qs - 11 x2 - 7 y) y + (-5 qs² + qs (-9 x2 - 19 y) + 2 y (5 x2 + 3 y)) sp[q, q1] + (-5 qs + 12 (x2 + y)) sp[q, q1]² + (-5 qs + 12 (x2 $sp[p, q]^{2} (sp[p, q1]^{4} sp[q, q1] (qs + sp[q, q1]) + sp[p, q1]^{3} (qs y (7 qs + 11 x2 + 16 y) + (-6 qs^{2} + y (9 x2 + 5 y) + qs (-10 x2 + 19 y)) + (-10 x2 + 19 y) + (-10 x2 + 19 x2 + 19 y) + (-10 x2 + 19 x2 + 19 x2 + 19 y) + (-10 x2 + 19 x2 + 1$ $qs x 2 \left(y \left(-3 qs^{3} - 10 qs^{2} (x2 + y) - 6 x2 y (x2 + y) + qs \left(-3 x2^{2} - 19 x2 y - 3 y^{2}\right)\right) + \left(-6 qs^{3} + qs^{2} (-21 x2 - 32 y) + qs \left(-9 x2^{2} - 60 x2 y - 3 y^{2}\right)\right) + \left(-6 qs^{3} + qs^{2} (-21 x2 - 32 y) + qs \left(-9 x2^{2} - 60 x2 y - 3 y^{2}\right)\right) + \left(-6 qs^{3} + qs^{2} (-21 x2 - 32 y) + qs \left(-9 x2^{2} - 60 x2 y - 3 y^{2}\right)\right) + \left(-6 qs^{3} + qs^{2} - 10 x2 - 32 y\right) + qs \left(-9 x2^{2} - 60 x2 y - 3 y^{2}\right) + qs \left(-9 x2^{2} - 10 x2 - 32 y^{2}\right) + qs \left(-9 x2^{2} - 10 x2 - 10 x2 + 10 x2 +$ (-15 qs² - 15 x2² + qs (-46 x2 - 41 y) - 41 x2 y - 12 y²) sp[q, q1]² + (-7 qs - 16 x2 - 11 y) sp[q, q1]³) + sp[p, q1]² (qs y (-15 qs - 16 x2 - 11 y) sp[q, q1]³) + sp[p, q1]² (qs y (-15 qs - 16 x2 - 11 y) sp[q, q1]³) + sp[p, q1]² (qs y (-15 qs - 16 x2 - 11 y) sp[q, q1]³) + sp[p, q1]² (qs y (-15 qs - 16 x2 - 11 y) sp[q, q1]³) + sp[p, q1]² (qs y (-15 qs - 16 x2 - 11 y) sp[q, q1]³) + sp[p, q1]² (qs y (-15 qs - 16 x2 - 11 y) sp[q, q1]³) + sp[p, q1]² (qs y (-15 qs - 16 x2 - 11 y) sp[q, q1]³) + sp[p, q1]² (qs y (-15 qs - 16 x2 - 11 y) sp[q, q1]³) + sp[p, q1]² (qs y (-15 qs - 16 x2 - 11 y) sp[q, q1]³) + sp[p, q1]² (qs y (-15 qs - 16 x2 - 11 y) sp[q, q1]³) + sp[p, q1]² (qs y (-15 qs - 16 x2 - 11 y) sp[q, q1]³) + sp[p, q1]² (qs y (-15 qs - 16 x2 - 11 y) sp[q, q1]³) + sp[p, q1]² (qs y (-15 qs - 16 x2 - 11 y) sp[q, q1]³) + sp[p, q1]² (qs y (-15 qs - 16 x2 - 11 y) sp[q, q1]³) + sp[p, q1]² (qs y (-15 qs - 16 x2 - 11 y) sp[q, q1]³) + sp[p, q1]² (qs y (-15 qs - 16 x2 - 11 y) sp[q, q1]³) + sp[p, q1]² (qs y (-15 qs - 16 x2 - 11 y) sp[q, q1]³) + sp[p, q1]² (qs y (-15 qs - 16 x2 - 11 y) sp[q, q1]³) + sp[p, q1]³) + sp[p, q1]² (qs y (-15 qs - 16 x2 - 11 y) sp[q, q1]³) + sp[p, q1]³) + sp[p, q1]³ (qs y (-15 qs - 16 x2 - 11 y) sp[q, q1]³) + sp[p, q1]³) + sp[p, q1]³ (qs y (-15 qs - 16 x2 - 11 y) sp[q, q1]³) + sp[p, q1]³) + sp[p, q1]³ (qs y (-15 qs - 16 x2 - 11 y) sp[q, q1]³) + sp[p, q1]³ (qs y (-15 qs - 16 x2 - 11 y) sp[q, q1]³) + sp[p, q1]³ (qs y (-15 qs - 16 x2 - 11 y) sp[q, q1]³) + sp[p, q1]³ (qs y (-15 qs - 16 x2 - 16 (3 qs³ + qs² (5 x2 - 39 y) + qs (-81 x2 - 39 y) y + y² (5 x2 + 3 y)) sp [q, q1] + (12 qs² + 12 x2² + 3 x2 y + 12 y² + 3 qs (x2 + y)) sp [q, q1] + (12 qs² + 12 x2² + 3 x2 y + 12 y² + 3 x2 + 12 $(-3 gs^3 + x2^2 (-3 x2 - 5 y) + gs^2 (39 x2 - 5 y) + gs x2 (39 x2 + 81 y)) sp [q, q1]^2 + (-6 gs^2 + gs (19 x2 - 10 y) + x2 (5 x2 + 9 y)) sp [q, q1]^2 + (-6 gs^2 + gs (19 x2 - 10 y) + (-6 gs^2 + 10 y)$ x2 y (-sp[p, q1]⁵ (qs + sp[q, q1]) + sp[p, q1]⁴ (qs (6 qs + 6 x2 + 9 y) + (10 qs + 6 x2 + 5 y) sp[q, q1]) - qs (qs y - sp[q, q1]²) (x2 (- $(6 gs + 9 x2 + 6 y) sp[q, q1]^{2} + sp[q, q1]^{3}) + sp[p, q1]^{3} (gs (-3 gs^{2} - 3 x2^{2} + gs (-7 x2 - 2 y) - 2 x2 y + 9 y^{2}) + (-3 x2^{2} + 3 x2 y + 9 y^{2}$ $sp[p, q1]^{2} (qs (-3 qs^{2} (2 x2 + y) + qs (-6 x2^{2} - 19 x2 y - 10 y^{2}) + y (-3 x2^{2} - 10 x2 y - 3 y^{2})) + (-3 qs^{3} - 25 qs^{2} (x2 + y) + qs (-15 x2 y - 10 y^{2}) + (-3 qs^{3} - 25 qs$ $(-12 \text{ cm}^2 - 15 \text{ x2}^2 - 46 \text{ x2} \text{ v} - 15 \text{ v}^2 - 41 \text{ cm} (\text{x2} + \text{v}))$ sp(a, a)² + (-11 ms - 16 x2 - 7 v) sp(a, a)³ +

Markus Q. Huber

University of Graz

Feb. 3, 2015

10/30

Functional equations

Dyson-Schwinger equations

DSEs in QCD

Results in the Yang-Mills sector

Automated derivation

Derivation by hand becomes tedious:

- Large Lagrangians.
- Higher Green functions.
- Larger truncations.
- Error-prone.

• Framework for numeric handling: *C++* program *CrasyDSE* [Huber, Mitter '11]

http://tinyurl.com/crasydse

Often people tend to think 'perturbatively':

No small parameter. \rightarrow What means to control the calculation?

Often people tend to think 'perturbatively': No small parameter. \rightarrow What means to control the calculation?

Comparisons with

- perturbation theory
- attice calculation
- Sometimes analytic results possible.
- Deform truncation.

Will come back to this for Yang-Mills theory.

Example: Mesons from Bethe-Salpeter equation (BSE) with rainbow-ladder approximation

Example: Mesons from Bethe-Salpeter equation (BSE) with rainbow-ladder approximation

Contains quark propagator S and kernel K.

Example: Mesons from Bethe-Salpeter equation (BSE) with rainbow-ladder approximation

Contains quark propagator S and kernel K.

Rainbow-ladder

- $K \longrightarrow \text{dressed one gluon exchange}$
- effective gluon propagator
- bare quark-gluon vertex

Markus Q. Huber

University of Graz

Feb. 3, 2015

nt roduction	Functional
00	0000

nctional equations

Dyson-Schwinger equations

DSEs in QCD O●OO Results in the Yang-Mills sector

Rainbow-ladder approximation

What is special about rainbow-ladder?

Respects axial-vector Ward-Takahashi identity.

- \rightarrow Consistent with chiral symmetry.
- \rightarrow Pion is the massless Goldstone boson in the chiral limit.

troduction	Functional equa
0	0000

Dyson-Schwinger equations

DSEs in QCD 0000

Results in the Yang-Mills sector

Rainbow-ladder approximation

What is special about rainbow-ladder?

Respects axial-vector Ward-Takahashi identity.

- \rightarrow Consistent with chiral symmetry.
- \rightarrow Pion is the massless Goldstone boson in the chiral limit.

Dressed one-gluon exchange parametrized by model for the coupling: Maris-Tandy '99, one effective parameter

$$\frac{G(p^2)}{p^2} = \frac{4\pi^2 D}{\omega^6} p^2 \exp^{-p^2/\omega^2} + 4\pi \frac{\gamma_m \pi F(p^2)}{1/2 \ln(\tau + (1 + p^2/\Lambda_{QCD})^2)}$$

Good description of many mesons with light quarks.

troduction	Functional equ
C	0000

Dyson-Schwinger equations

DSEs in QCD 0000

Results in the Yang-Mills sector

Rainbow-ladder approximation

What is special about rainbow-ladder?

Respects axial-vector Ward-Takahashi identity.

- \rightarrow Consistent with chiral symmetry.
- \rightarrow Pion is the massless Goldstone boson in the chiral limit.

Dressed one-gluon exchange parametrized by model for the coupling: Maris-Tandy '99, one effective parameter

$$\frac{G(p^2)}{p^2} = \frac{4\pi^2 D}{\omega^6} p^2 \exp^{-p^2/\omega^2} + 4\pi \frac{\gamma_m \pi F(p^2)}{1/2 \ln(\tau + (1 + p^2/\Lambda_{QCD})^2)}$$

Good description of many mesons with light quarks.

Baryons: Faddeev equation

Introduction	Functional equations	Dyson-Schwinger equations	DSEs in QCD	Results in the Yang-Mills sector
00	0000	000	○○●○	
	P		-	

Beyond rainbow-ladder: Examples

• Vertex dressing [Bender, Roberts, von Smekal '96]:

 Include pion back coupling effects [e.g., Fischer, Nickel, Wambach '07; Fischer, Nickel, Williams '08; Fischer, Williams '08]:

• Include gluon self-interaction [e.g., Maris, Tandy '06; Fischer, Williams '09]:

 \rightarrow Three-gluon vertex required!

Functional equations

Dyson-Schwinger equations

DSEs in QCD 000● Results in the Yang-Mills sector

QCD phase diagram

Examples for accessible quantities:

- quark condensate (chiral symm.)
- dual quark condensate/dressed Polyakov loop (conf.)
- dual density (conf.)
- (dual) quark dressing function (chiral symm./conf.)
- Polyakov loop potential (conf.)

Functional equations

Dyson-Schwinger equations

DSEs in QCD 000● Results in the Yang-Mills sector

QCD phase diagram

Examples for accessible quantities:

- quark condensate (chiral symm.)
- dual quark condensate/dressed Polyakov loop (conf.)
- dual density (conf.)
- (dual) quark dressing function (chiral symm./conf.)
- Polyakov loop potential (conf.)

200 Quarks and Gluons Critical point? Hadrons 100 Universe Uni

Input

• Functional equations: propagators, three-point functions

Functional equations

Dyson-Schwinger equations

DSEs in QCD 000● Results in the Yang-Mills sector

QCD phase diagram

Examples for accessible quantities:

- quark condensate (chiral symm.)
- dual quark condensate/dressed Polyakov loop (conf.)
- dual density (conf.)
- (dual) quark dressing function (chiral symm./conf.)
- Polyakov loop potential (conf.)

Input

- Functional equations: propagators, three-point functions
- Lattice: propagators at $\mu=$ 0, three-point functions
- Models

Dyson-Schwinger equations

DSEs in QCD

Results in the Yang-Mills sector •^^^^

Landau gauge Yang-Mills theory

Gluonic sector of quantum chromodynamics: Yang-Mills theory

$$\mathcal{L} = \frac{1}{2}F^2 + \mathcal{L}_{gf} + \mathcal{L}_{gh}$$
$$F_{\mu\nu} = \partial_{\mu}\mathbf{A}_{\nu} - \partial_{\nu}\mathbf{A}_{\mu} + ig[\mathbf{A}_{\mu}, \mathbf{A}_{\nu}]$$

Landau gauge

 simplest one for functional equations • $\partial_{\mu}\mathbf{A}_{\mu} = 0$: $\mathcal{L}_{gf} = \frac{1}{2\xi}(\partial_{\mu}\mathbf{A}_{\mu})^{2}, \quad \xi \to 0$ • requires ghost fields: $\mathcal{L}_{gh} = \bar{c} (-\Box + g \mathbf{A} \times) c$

Intro	du	cti	on
00			

Functional equations

Dyson-Schwinger equations

DSEs in QCD

Results in the Yang-Mills sector

The tower of DSEs

Functional equations

Dyson-Schwinger equations

DSEs in QCD

Results in the Yang-Mills sector

The tower of DSEs

Infinitely many equations. In QCD, every *n*-point function depends on (n + 1)-and possibly (n + 2)-point functions.

Markus Q. Huber

University of Graz

Feb. 3, 2015

Intro	duction	
00		

Functional equations

Dyson-Schwinger equations

DSEs in QCD

Results in the Yang-Mills sector

Taming the equations

Keep most important parts!

- Drop quantities
- Model quantities

Intro	duction	
00		

Functional equations

Dyson-Schwinger equations

DSEs in QCD

Results in the Yang-Mills sector

Taming the equations

Keep most important parts! The art ...

- Drop quantities
- Model quantities

Most important parts

- UV leading (perturbation theory)
- IR leading (analytic, lattice)

Functional equations

Dyson-Schwinger equations

DSEs in QCD

Results in the Yang-Mills sector

Four-gluon vertex

• 20 one-loop, 39 two-loop diagrams

Markus Q. Huber

University of Graz

Feb. 3, 2015

19/30

n	Functional equations	Dyson-Schwinger equations	DSEs in QCD
	0000	000	0000

Results in the Yang-Mills sector

Four-gluon vertex

- 20 one-loop, 39 two-loop diagrams
- Keep UV leading diagrams

ightarrow 16 diagrams

Intro du ctiv

Introduction	Functional equations 0000	Dyson-Schwinger equations 000	DSEs in QCD	Results in the Yang-Mills sector

Four-gluon vertex

- 20 one-loop, 39 two-loop diagrams
- Keep UV leading diagrams
- Calculate **full** momentum dependence.
 - \rightarrow Access to all permutations of this diagram.

ightarrow 16 diagrams

 \rightarrow 6 diagrams

 $k = k + i + \frac{3}{2}$ $k = k + \frac{3}{2}$ $k + \frac{3}{2}$ k

Introduction	Functional equations 0000	Dyson-Schwinger equations 000	DSEs in QCD	Results in the Yang-Mills sector ○○○●○○○○○○○○○○

3

Four-gluon vertex

- 20 one-loop, 39 two-loop diagrams
- Keep UV leading diagrams
- Calculate full momentum dependence.
 - \rightarrow Access to all permutations of this diagram.

 $+\frac{3}{2}$

ightarrow 16 diagrams

 \rightarrow 6 diagrams

Introduction 00	Functional equations 0000	Dyson-Schwinger equations 000	DSEsin QCE	Results in the Yang-Mills sector
		Four-gluon ve	ertex	
		_		
● 20 c	one-loop, 39 two-	loop diagrams		
Kee	p UV leading dia	grams		ightarrow 16 diagrams
• Calc $ ightarrow$ A	ulate full momen Access to all pern	ntum dependence. nutations of this diag	ram.	ightarrow 6 diagrams
i j				6 external variables4 integration variables

20

1-

No model dependence! \rightarrow 'Truncation closes.'

+ 3

+ 3

Intro	du	ctic	n
00			

Functional equations

Dyson-Schwinger equations

DSEs in QCD

Results in the Yang-Mills sector ○○○●○○○○○○○○○

Truncation recap

Principle

- Drop or model unknown quantities
- ... but capture the important part.

troduction	Functional equations	Dyson-
0	0000	000

)yson-Schwinger equations

DSEs in QCD

Results in the Yang-Mills sector

Truncation recap

Principle

- Drop or model unknown quantities
- ... but capture the important part.

Yan-Mills theory:

- Complete at leading UV order: primitively divergent quantities only. \rightarrow 5 coupled DSEs
- Truncation closes.

In the following consider subparts of this system.

Long-time standard truncation

- No four-gluon vertex
- Ghost-gluon vertex: bare
- Three-gluon vertex: model

Long-time standard truncation

- No four-gluon vertex
- Ghost-gluon vertex: bare \rightarrow dressed (dynamic)
- Three-gluon vertex: model \rightarrow optimized model

Long-time standard truncation

- No four-gluon vertex
- Ghost-gluon vertex: bare \rightarrow dressed (dynamic)
- Three-gluon vertex: model \rightarrow optimized model

Missing strength in mid-momentum regime: • neglected diagrams? • vertices?

Introduction	Functional equations	Dyson-Schwinger equations 000	DSEs in QCD	Results in the Yang-Mills sector
		Strategy		

oduction	Functiona
	0000

Intr

nctional equations

Dyson-Schwinger equations

DSEs in QCD

Results in the Yang-Mills sector

The three-gluon vertex |

Four-gluon vertex model (decoupling):

$$D^{A^4}(p,q,r,s) = (a anh(b/ar{p}^2) + 1) D^{A^4}_{RG}(p,q,r,s)$$

 \rightarrow Test model dependence by varying *a* and *b*.

Functional equations

Dyson-Schwinger equations

DSEs in QCD

Results in the Yang-Mills sector

The three-gluon vertex I

Four-gluon vertex model (decoupling):

$$\mathcal{D}^{\mathcal{A}^{4}}(p,q,r,s)=\left(extsf{a} anh(b/ar{p}^{2})+1
ight)\mathcal{D}^{\mathcal{A}^{4}}_{\mathcal{R}\mathcal{G}}(p,q,r,s)$$

 \rightarrow Test model dependence by varying a and b.

[Blum, MQH, Mitter, von Smekal '14; lattice: Cucchieri, Maas, Mendes '08]

 \rightarrow Truncation reliable. Neglected terms, including two-loop, suppressed.

See also results by [Eichmann, Williams, Alkofer, Vujinovic '14], esp. other dressings, and [Peláez, Tissier, Wschebor '13].

Markus Q. Huber

University of Graz

Feb. 3. 2015

$$\Gamma^{AAA,abc}_{\mu\nu\rho}(p,q,k) := i g f^{abc} D^{AAA}(p^2,q^2,\cos\theta) \Gamma^{AAA,(0)}_{\mu\nu\rho}(p,q,k)$$

Fixed angle:

Couplings:

- Bose symmetry visible (enforced by hand).
- Zero crossing (in this tensor), also found by [Peláez, Tissier, Wschebor '13; Aguilar, Binosi, Ibáñez, Papavassiliou '13; Eichmann, Williams, Alkofer, Vujinovic '14] and on lattice in d = 2, 3.

Markus Q. Huber

University of Graz

Feb. 3, 2015

Propagators II: Limits of one-loop truncation

- Ghost almost unaffected.
- Gap in midmomentum regime must be due to missing two-loop diagrams!

NB: Employed projection of three-gluon vertex is the same as in gluon loop of gluon propagator DSE! \rightarrow Error from neglected tensors negligible.

Explicit two-loop studies [Bloch '03; Mader, Alkofer '12; Meyers, Swanson '14]: squint \gg sunset diagram

Markus Q. Huber

University of Graz

Feb. 3, 2015

Introduction 00	Functional equations 0000	Dyson-Schwinger equations 000	DSEs in QCD	Results in the Yang-Mills sector
		Four-gluon ver	rtex	
6 exteri4 integr	nal variables ration variables	Cf. propagat 2 propagato four-gluon v	tor: 1 ext., 2 rs $ ightarrow$ laptop ertex $ ightarrow > 1$	int. 00 cores on cluster

duction	Functional equations 0000	Dyson-Schwinger equations 000	DSEs in QCD
		Four-gluon ve	rtex

Cf. propagator: 1 ext., 2 int. 2 propagators \rightarrow laptop four-gluon vertex $\rightarrow>100$ cores on cluster

Intr

• 4 integration variables

[Cyrol, MQH, von Smekal '14]

2-parameter fit:

$$D^{4\mathrm{g},\;\mathrm{dec}}_{\mathsf{model}}(p,\;q,\;r,\;s) = \left(\mathsf{atanh}\left(b/ar{p}^2
ight) + 1
ight) D^{4\mathrm{g}}_{\mathsf{RG}}(p,\;q,\;r,\;s)$$

Markus Q. Huber

University of Graz

Feb. 3, 2015

Results in the Yang-Mills sector ○○○○○○○○○○○●○○

Functional equations

Dyson-Schwinger equations

DSEs in QCD

Results in the Yang-Mills sector

Beyond Landau gauge: Coulomb gauge

Why the Landau gauge is convenient

- Minimum number of terms in DSEs.
- Transversality \rightarrow longitudinal part decouples.
- Historically ghost-gluon vertex provided the entry point (special here).

Functional equations

Dyson-Schwinger equations

DSEs in QCD

Results in the Yang-Mills sector

Beyond Landau gauge: Coulomb gauge

Why the Landau gauge is convenient

- Minimum number of terms in DSEs.
- Transversality \rightarrow longitudinal part decouples.
- Historically ghost-gluon vertex provided the entry point (special here).

Markus Q. Huber

University of Graz

Three-gluon vertex:

- Zero crossing
- IR divergent like p⁻³

Ghost-gluon vertex:

• Different truncations quite similar

oduction	Functional equations	Dyson-Schwinger equations	DSEs in Q
	0000	000	0000

Results in the Yang-Mills sector 0000000000000●

Summary

Highlighted prospects:

Int

- Description of hadron properties from first principles.
- QCD phase diagram: explore non-zero density.

it roduction	Functional equations	Dyson-Schwinger equations	DSEs in QCD	l
0	0000	000	0000	0

Results in the Yang-Mills sector ○○○○○○○○○○○○

Summary

Highlighted prospects:

- Description of hadron properties from first principles.
- QCD phase diagram: explore non-zero density.

Technical challenges!

ntroduction	Functional equations	Dyson-Schwinger equations	DSEs in QCD	Results in the Yang-Mills sector
00	0000	000	0000	0000000000000

Summary

Highlighted prospects:

- Description of hadron properties from first principles.
- QCD phase diagram: explore non-zero density.

Technical challenges!

Truncation:

- 2-, 3- and 4-point functions calculated
- Truncation effects understood (after more than 30 years!)
- Two-loop terms important in 2- but not in higher n-functions
- System of DSEs closes with this truncation

 \rightarrow self-contained, quantitative description.

ntroduction	Functional equations	Dyson-Schwinger equations	DSEs in QCD	Results in the Yang-Mills sector
00	0000	000	0000	0000000000000

Summary

Highlighted prospects:

- Description of hadron properties from first principles.
- QCD phase diagram: explore non-zero density.

Technical challenges!

Truncation:

- 2-, 3- and 4-point functions calculated
- Truncation effects understood (after more than 30 years!)
- Two-loop terms important in 2- but not in higher n-functions
- System of DSEs closes with this truncation

 \rightarrow self-contained, quantitative description.

Thank you for your attention.