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Phenomenology of the strong interaction
Particles under the influence of the strong force: hadrons, e. g. 7, K, 1,
proton, neutron, A, X, ...

@ High energy experiments: point-like particles inside the hadrons
(quarks).

@ Quarks only exist in bound states, never as free particles
(confinement).

e Mediator of the strong force: gluons (also confined).
@ Theory: Quantum Chromodynamics (QCD).

@ At high energies QCD is asymptotically free, i. e. the coupling gets
small and we can "observe" quarks (Nobel prize 2004).

@ At lower energies non-perturbative methods are needed.

This talk
In this talk | will focus on the low energy behavior of Yang-Mills theory
(gluonic part of QCD).

Huber KFU Graz 3/35



Introduction Infrared Analysis of Yang-Mills Theory Details about the MAG Solution Conclusions

oe 00000 000
00000000 0000
00000 0000

Confinement of quarks and gluons

e Confinement is a long-range < IR phenomenon: We do not see
individual ~ infinitely separated quarks or gluons.

@ One expects that the property of being confined is encoded in the
particles’ propagators.
o Different confinement criteria for the propagators:
e Positivity violations: negative norm contributions — not a particle of
the physical state space
e Gribov-Zwanziger (Landau gauge, Coulomb gauge): IR suppression
of the gluon propagator — no long-distance propagation
e Kugo-Ojima: quartet mechanism, e. g. Gupta-Bleuler formalism in
QED: timelike and longitudinal photon cancel each other

Functional methods employ

correlation functions/Green fcts./n-point fcts./propagators and vertices.

The equations of motion of these are the Dyson-Schwinger equations.

Huber KFU Graz



Introduction Infrared Analysis of Yang-Mills Theory Details about the MAG Solution Conclusions

(e]e} 00000 000
®0000000 0000
00000 0000

Propagators and vertices

The theory is encoded in the Green functions: "building blocks" for
functional equations.
They describe propagation and interactions of fields.

Graphical notation

Propagators: , ,

Ty XX

The propagators and interactions are given by the Lagrangian of the

theory.

Shorthand notation: propagator of field A is AA, quartic interaction is

AAAA etc. UNI

Vertices:

Huber
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Details about the MAG Solution
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The tower of DSEs

DSE describe non-perturbatively how particles propagate and interact.

A AR A

Conclusions

n-point functions couple to n-point, (n+1)- and (n+2)-point functions.

.|
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The tower of DSEs

DSE describe non-perturbatively how particles propagate and interact.

ENANE

n-point functions couple to n-point, (n+1)- and (n+2)-point functions.
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The tower of DSEs

DSE describe non-perturbatively how particles propagate and interact.

EWAN

A

n-point functions couple to n-point, (n+1)- and (n+2)-point functions.
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Deriving Dyson-Schwinger equations

Starting from the translation invariance of the path integral,

5

5S
567 30

_ _ —S4+JD _
[J]—J[Dd)](J éd))e e —q,

Conclusions

the DSEs for all Green functions (full, connected, 1PI) can be derived by

further differentiations.

After the first derivative is done, the procedure is iterative. Doing it by

hand becomes tedious.

= DoDSE [Alkofer, M.Q.H., Schwenzer, CPC 180]

Given a structure of interactions, the DSEs are derived symbolically using

Mathematica.

Example (Landau gauge): only one things is needed as input

@ interactions in Lagrangian AA, AAA, AAAA, cc, Acc
@ Which DSE do | want?

Huber KFU Graz
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Landau Gauge: Propagators

Gluon propagator:

i2 i1

. 3 iy 2y i2 : noe : i
e Ty
Ghost propagator: —e—— -+ L " O

Huber
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Landau Gauge: Four-Gluon Vertex

66 terms
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Landau Gauge: Five-Gluon Vertex
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DoDSE upgrade: Symb2Alg

Symbolic expressions are fine for some tasks, e. g. infrared analysis, but
also algebraic expressions are needed!
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Conclusions

DoDSE upgrade: Symb2Alg

Symbolic expressions are fine for some tasks, e. g. infrared analysis, but
also algebraic expressions are needed!

. (gt p12 _ p1it pl”) Sat b1
+

p12*

. Cag? (q1" q1* +2 g1 q1?) Sar by
-1 ( ) R

q1?*

N Cag? (<<1>>) Gaim

2 <<2>>22 (pll2 +2pl . «<2> + qlz)2

Cag2 gl (p1* +q1") Garns
N Q

q1? (p1® +2pl-ql+ql?)

Mathematica package Symb2Alg: Transforms output of DoDSE into
algebraic expressions.

Depending on Feynman rules compatible with FeynCalc.
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Dyson-Schwinger equations (DSEs) for investigating QCD

Infinitely large tower of equations

Equations of motion of Green functions
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Dyson-Schwinger equations (DSEs) for investigating QCD

Infinitely large tower of equations

Equations of motion of Green functions

Pros:

@ Exact equations
— non-perturbative regime accessible

@ Continuum, different scales accessible
— complement lattice method
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Dyson-Schwinger equations (DSEs) for investigating QCD

Infinitely large tower

Equations of motion o Green functions

Pros:

@ Exact equations runcatigns

— non-perturbative regime accessible o Gauge-dependent

@ Continuum, different scales accessible
— complement lattice method
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Dyson-Schwinger equations (DSEs) for investigating QCD

Infinitely large tower

Equations of motion o Green functions

Pros:

o Exact equations runcatighs (not for all tasks)

— non-perturbative regime accessible o Gauge-dependent

e Continuum, different scales accessible — Exploit advantages of different
— complement lattice method gauges
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The maximally Abelian gauge (MAG)

Dual superconductor picture of confinement

Magnetic monopoles condense — squeeze electric flux into flux tubes.

Ezawa, Iwazaki, PRD 25 (1981): Hypothesis of Abelian dominance
(Abelian part should dominate the infrared part of the theory, since
monopoles live in Abelian part of algebra.)

Gauge field: A, = ALT’, r=1,...,N>—1
T is the generator of the gauge group SU(N)

Abelian subalgebra: [T', T/] =0, can be written as diagonal matrices
Split the gauge field: Abelian/Diagonal and non-Abelian/off-diagonal
fields

AH:ALT"-FBSTE', i=1,...,N—1, a=N,... N> —1

Huber
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Gauge fixing to the MAG

A, :ALTI+ BiT?, i=1,...,N—1, a=N,.. N—1
1 1
Eg. T'= 5)@, T? = 57\8 for SU(3).
Fix the gauge such that norm of off-diagonal gluon field B is minimized:
DB = (8,50, — g F"'A])BY =0

Symmetry of diagonal part: U(1)V~1
Fix gauge of diag. gluon field A by Landau gauge condition: 0,A, = 0.

NB: SU(2) has only one diagonal field = only one type of color structure
constant: £ no fabc,

Huber KFU Graz 14/35
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Peculiarities of the maximally Abelian gauge for SU(2)

@ Yang-Mills vertices split: ABB, AABB, BBBB.

e Non-linear gauge fixing condition (depends on A) — Acc, AAcc,
BBcc.

@ Renormalizability requires an additional quartic ghost interaction —
cccc.

@ Ghosts also split into diagonal and off-diagonal parts, but diagonal
ghosts decouple (diagonal ghost equation).

e Two gauge fixing parameters: aqa = 0 (Landau gauge), os.

Note: For SU(N) there are four interactions more (due to £2°€) — more
DSEs with more terms.

This plethora of interactions makes the equations much more intricate
than in Landau gauge. To consider all possible solutions an improved
method is necessary.

Huber
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DSEs of the MAG

1, 1.1 .

+ — 7% +

Yy *

e L 13 -4

Details about the MAG Solution Conclusions
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Conclusions

Landau gauge and maximally Abelian gauge: Current Status

| Landau gauge MAG
propagators A c A B, c
interactions AAA, Acc; ABB, Acc;
AAAA AABB, AAcc, BBcc,
BBBB, cccc

Gribov region

bounded in all directions

bounded in off-diagonal
and unbounded in diagonal direction
[Capri et al, PRD 79 (2009)]

decoupling sol.

lattice, refined Gribov-
Zwanziger framework and
functional equations

lattice [Mendes et al., arXiv:0809.3741],
ref. Gribov-Zwanziger framework
[Capri et al., PRD 77 (2008)]; SU(Z) onIy

scaling solution

funct. egs., lattice in 2d
[von Smekal, Alkofer, Hauck,
PRL 79 (1997);

Pawlowski et al., PRL 93 (2004);
Maas, PRD 75 (2007)]

this talk (SU(N))
[M.Q.H., Schwenzer, Alkofer, arXiv:0904.1873]

c
z
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Loop integrals for low external momenta

We want to know how a vertex function behaves, when the external
momenta approach 0 simultaneously:

Generic propagator

i . D)

I'(p1, p2,...) for pj — 0 () p?’

assume power law behavior at low p
D'R(p 2)6
Example: Ghost propagator \
e DAA ( ) Dee ) IR exponent
q pP—q
J (2m)d g Puy rAce0( »Q)WFACC(P, q)

Integrals are dominated by 1/(p — q)? — use IR expressions for all
quantities.

Vertices also assume power law behavior [Alkofer, Fischer, Llanes-Estrada, PLB T
611 (2005)] (skeleton expansion).

Huber
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More infrared exponents

p—0
Up to now it was assumed that all momenta of a Green

function go to zero simultaneously — uniform IR exponents.

r—0 q—0

— 0 . . . . o
p For a three-point function there is one additional possibility:

Only one momentum goes to zero — kinematic IR exponents
[Alkofer, M.Q.H., Schwenzer, 0801.2762].

r ~ const. q~ const.

There is a non-uniform dependence on the momenta [Alkofer, M.Q.H.,
Schwenzer, EPJC to be pub.]; €X. on next slide.

Huber KFU Graz 10/35
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More infrared exponents: Examples
The first order contribution of the three-gluon vertex in the IR (ghost
triangle) can be described by 10 dressing functions:
10

T olpr P2, p3) = ) Eilp},p3,P%; % d)Thyp (P1, P2, P3).
i=1

Conclusions
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More infrared exponents: Examples
The first order contribution of the three-gluon vertex in the IR (ghost
triangle) can be described by 10 dressing functions:
10

T olpr P2, p3) = ) Eilp},p3,P%; % d)Thyp (P1, P2, P3).
i=1

These singularities only appear in the longitudinal parts [Alkofer, M.Q.H.,
Schwenzer, EPJC to be pub.] = pIay no role in Landau gauge [Fischer, Pawlowski, UNI
0810.1987, 0903.2193]. iy

Huber KFU Graz 20/35
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Power counting

In the remainder only uniform IR exponents.

@ The ghost propagator DSE:

@ Plug in power law ansatze for dressing functions in the IR (In
Landau gauge the ghost-gluon vertex has an IR constant dressing.):

—1
B . (p?)# NJ diq P A-(g®)* B-((p—q)?)P
p? md " g2 (p—q)?

Huber KFU Graz
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Power counting

In the remainder only uniform IR exponents.

@ The ghost propagator DSE:

@ Plug in power law ansitze for dressifg function

@ Only one momentum scale
— simple power counting is possible — scaling relation:

d d

Huber
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Conclusions

Functional Renormalization Group
Functional equations similar to DSEs, but with decisive differences:

@ only 1-loop diagrams
@ ALL quantities dressed

o (appearance of regulator)

Renormalization group equations (RGEs) are "differential DSEs".

Compare RGE and DSE of gluon propagator:

0.
1 S+ °,
[AVAVA \VAVAVERS RAVAV. AVAVAVAS “/‘éi;él\/v * “/‘! ’lv“v
= V-1 1% T 1

KFU Graz
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Systems of inequalities

e For every diagram the IR can be written down.

@ At least the IRE of one diagram must equal the IRE of the vertex
function on the |hs.

@ No diagram can be more IR divergent than the vertex function on
the lhs — O1hs <Orhs.

@ Not knowing which diagram is leading on the rhs, we can write
inequalities from all diagrams.

—Ogr=min( 0 204 4 035,20gh + Ogg, Ogi ,404 + 203,304 + dag)
~ e —— e ) ——— —  ——

bare prop. gh loop gl loop tadpole squint sunset

ol

= Ll l%& S e
AN AN *5% -3 W e *g«%ﬁ %EA
-

Huber KFU Graz 23/35




Introduction Infrared Analysis of Yang-Mills Theory Details about the MAG Solution
[e]e] 00000 000

00000000 [e] le]e}

00000 0000

Conclusions

Infrared exponent for an arbitrary diagram

Having so many diagrams, isn't there a shorter way than writing all
expressions down explicitly?

Arbitrary Diagram v Function of:
Numbers of vertices and propagators @ propagator IR exponents b,
related = possible to get a formula for @ number of external legs m®

the IR exponent by pure combinatorics. O murmber 6f verieEs,

6V = -1 ,mq"'éd,,. +

+ Z (# of dressed vertices),Ci + Z (# of bare vertices),C}

Only depends on the external legs — equal for all diagrams in a
DSE/RGE [M.Q.H., Schwenzer, Alkofer, arXiv:0904.1873].

[Similar formula with slightly different arguments: Fischer, Pawlowski, arXiv:0903.2193]
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Relevant inequalities
ALL relevant inequalities can be written down in closed form:

valid for derived from
Cl = dvertex + % Z d; > 0 | dressed vertices RGEs
legs j of
vertex
G=1 Z 5 >0 prim. divergent vertices | DSEs/RGEs
legs j of
prim. div.
vertex

Some inqualities are contained within others.
E. g. in MAG: 65 > 0 and &, > 0 render dg + 6. > 0 useless.

Only some inequalities are restrictive.

NB: These inequalities explicitly show that the skeleton expansion used in
previous studies is a consistent expansion. However, the skeleton
expansion is now obsolete.

Huber KFU Graz 25/35
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Conclusions

Maximally infrared divergent solution

The inequalities derived from DSEs and RGEs allow to derive a lower
bound on the IREs.

¢l >o, Ci>o0.

IR solution:

1 ; /
_ i ! )
5, =—3 Z m®i8, + 2 (# dr. vert.),C] + §' (# bare vert.), G.

Huber KFU Graz
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Conclusions

Maximally infrared divergent solution

The inequalities derived from DSEs and RGEs allow to derive a lower
bound on the IREs.

¢l >o, ¢ >o.

= Maximally IR divergent solution:

1 . ; -

Huber KFU Graz
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IR scaling solutions

A general analysis of propagator DSEs yields that at least one inequality
from a prim. divergent vertex has to be saturated. < one bare vertex in
DSEs, none in RGEs

Consistency condition DSEs <+ RGEs [Fischer, Pawlowski, PRD 75 (2007)].

One inequality saturated = one primitively divergent vertex does not
acquire an IR enhanced dressing.

The non-enhancement of at least one primitively divergent vertex
is now established for all scaling type solutions. [MQH, Schwenzer, Alkofer,

arXiv:0804.1873] ggg
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IR scaling solution of Landau gauge

Up to some time ago

@ Ghost-gluon vertex used as bare vertex (INPUT); connected to the
non-renormalization of the vertex.

@ Skeleton expansion to determine behavior of vertices.

@ Here it is shown that this is a necessary condition for the scaling
solution.

@ Skeleton expansion obsolete.

Huber
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IR scaling solutions for Landau gauge and MAG

Inequalities:

Landau gauge

MAG

Sg > 0

632016C20

%5g/ +8gn >0

oa+05>0,04+0.>0

Test the consequences, if some of the inequalities are saturated:

Huber
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IR scaling solutions for Landau gauge and MAG
Inequalities:

Landau gauge MAG
dg1 >0 06 >0,6,>0
50881 +0gn >0 || 34 +0p>0,8a+0>0

Test the consequences, if some of the inequalities are saturated:

@ Saturation in first row corresponds to trivial solution:
8; = 0 (— perturbation theory)

@ Second row yields scaling relations:
Bg/ = _25gh = 2KLG and 63 = 65 = *5A = KMAG
e New scaling solution for MAG [M.Q.H., Schwenzer, Alkofer,
arXiv:0904.1873].
e Known IR scaling solution of Landau gauge [von Smekal, Hauck, Alkofer,
PRL (1997)]. But: no skeleton expansion, no external input for
ghost-gluon vertex.

Huber
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IR Scaling solutions for other gauges

The analysis can be used also for other gauges. Beware: This
corresponds to a naive application!

Linear covariant gauges Ghost-antighost symmetric gauges

scaling solution only, if the longitudinal | quartic ghost interaction — 8z, > 0
part of the gluon propagator gets — with non-negative IREs only the
dressed (STI?) trivial solution can be realized

@ Either the existence of a
= scaling solution is something special (?) or

@ a more refined analysis is needed in these cases.
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Details about the MAG solution

—5A:6B:6CZ:KZO

@ Diagonal gluon propagator is IR enhanced (64 < 0). = Supports
hypothesis of Abelian dominance.

e Off-diagonal propagators are IR suppressed.
@ Two-loop terms are leading.

The scaling solution for the MAG differs in several qualitative and
technical aspects from the Landau gauge solution:

e Different qualitative behavior of ghosts.

@ Different structure of IR leading terms — new method for numerical
solutions required.

o Different DSEs for SU(2) and SU(3) — different solutions? a2

Huber KFU Graz 31/35
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Numerical solution

In Landau gauge trunction "straight forward": keep one-loop terms
(consistent UV behavior, contain IR leading term)

Conclusions
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Numerical solution

In Landau gauge trunction "straight forward": keep one-loop terms
(consistent UV behavior, contain IR leading term)

1 1
ANANBANNNS = + e o -12 %

Conclusions
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Numerical solution

In Landau gauge trunction "straight forward": keep one-loop terms
(consistent UV behavior, contain IR leading term)

-1 -1 VR
ANANBANNNS = + e o -12 %

In MAG: two-loop terms leading — for consistent UV behavior keep ALL
two-loop terms = no truncation
4 _0 - _0O

_1 <.
© g —

4Ty A

. \v

—O— t ——

O

g =

v - A
A Ty Ty Ty

A A

Conclusions
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The MAG in SU(3)

In general SU(N) there are more interactions than included above.
— Different solution for "physical system", i. e. SU(3)?

4 additional vertices: BBB, Bcc, ABBB, ABcc
Constraints:

3 1

255 > = >

253_0, 253+5c_0,
1 3 1 1
— — > — — >
25A-|-25370, 25A+253+5C,O

Solution for SU(N > 2) = solution for SU(2)

e Constraints already contained in "old" system — nothing new,
solution still valid.

@ No new solutions possible — unique solution.

Huber
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Summary

Improved method establishes consistency condition between DSEs
and RGEs: One vertex gets not IR enhanced.

Skeleton expansion obsolete.
Qualitative solution for whole tower of functional equations.

High number of interactions can be handled, because it is not
necessary to write down all equations explicitly.

Derivation of method technical, but it allows a straightforward
application based only on the type of interactions in the Lagrangian.
Method allows a first assessment what a scaling solution might look
like. — Input for a complete numeric calculation.

Huber
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Conclusions on MAG

@ The MAG may possess an IR scaling solution.

@ This solution is in support of the hypothesis of Abelian dominance,
because the diagonal gluon propagator is IR enhanced and thereby
the dynamics in the IR are dominated by the diagonal gluon.

@ Relation to monopole condensation has to be clarified.
@ Although the DSEs are more complicated for general SU(N > 2),
the qualitative behavior is the same as in SU(2).

The existence of the IR scaling solution in the MAG has to be verified by
a numerical solution of the DSEs, which is more involved than in Landau
gauge. — Task for the future.
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