On infrared scaling solutions in Yang-Mills theory

and on the maximally Abelian gauge

R. Alkofer, Markus Q. Huber, K. Schwenzer

Institute for Physics, Karl-Franzens-University Graz

July 27, 2009

Pathways to Confinement, Rio de Janeiro

|
LLI F Der Wissenschaftsfonds. SICIQFT

Alkofer, Huber, Schwenzer KFU Graz July 27, 2009 1/34



Table of contents

© Introduction

@ IR propagators

@ Functional equations
© The maximally Abelian gauge (MAG)
© Deriving scaling solutions

@ The method

@ The application

© Details about the MAG Solution

© Conclusions

Alkofer, Huber, Schwenzer KFU Graz July 27, 2009 2/34



About infrared propagators

Yang-Mills theory's Green functions are best investigated
in Landau gauge:
@ Decoupling solution: IR constant gluon propagator, tree-level ghost
propagator
@ Scaling solution: IR dressing functions characterized by power laws,
exponents related by scaling relation, ghost IR enhanced, gluon IR
vanishing

Different methods
@ Most lattice calculations find the decoupling scenario.
o Functional equations use boundary conditions to get either solution.

@ The Gribov-Zwanziger action yields the scaling solution, which can
be altered to the decoupling type by the addition of condensates
(refined GZ framework).

Knowledge about the IR behavior: useful for numerical calculations, test gy
some confinement scenarios.
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IR behavior of the maximally Abelian gauge

Lattice calculations [e. g. Mendes et al., arXiv:0809.3741] and the refined GZ
framework [Capri et al., PRD 77 (2008)] support a decoupling scenario (all
propagators finite).

Is there a scaling solution even possible?

An investigation using functional methods is also desirable from other
points of view:

o Calculations on lattice and in refined GZ framework done in SU(2)
[but: see poster by Capri et al.] — generalization to SU(N)?

o IR region easier accessible by continuum methods than by lattice
calculations.

Can the methods used in the Landau gauge be applied straightforwardly?

]
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The tower of DSEs

DSE describe non-perturbatively how particles propagate and interact.
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n-point functions couple to n-point, (n+1)- and (n+2)-point functions
= truncations?
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Deriving Dyson-Schwinger equations

Starting from the translation invariance of the path integral,

5 _ 85\ siso _
w21 = [1D4] (J &b)e ~o,

the DSEs for all Green functions (full, connected, 1PI) can be derived by
further differentiations.

After the first derivative is done, the procedure is iterative. Doing it by
hand becomes tedious.

For example: Landau gauge, only 2 propagators, 3 interactions
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Landau Gauge: Propagators

Gluon propagator:

»—.—«
R NS
Ghost propagator: —e——
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Landau Gauge: Four-Gluon Vertex
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DoDSE

= DoDSE [Alkofer, M.Q.H., Schwenzer, CPC 180 (2009)]

Given a structure of interactions, the DSEs are derived symbolically using
Mathematica.

Example (Landau gauge):

@ only input: interactions in Lagrangian (AA, AAA, AAAA, cc, Acc)
@ Which DSE do | want?

@ Step-by-step calculations possible.
@ Can handle mixed propagators (then there are really many
diagrams).

Upgrade: Symb2Alg produces algebraic from the symbolic expressions.
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Loop integrals for low external momenta

We want to know how a vertex function behaves, when the external
momenta approach 0 simultaneously: T'(p1, p2,...) for p; — 0

Generic propagator

kinematic divergences: D(p)
r(p1)p2)"') for P1 -0, L(},L‘v] . 2
P2, ... = const [Alkofer, Huber, P
Schwenzer, EPJC (2009)] assume power law behavior at low p
DR (p 2)6
Integrals are dominated by 1/(p — q)?> — use IR expressions for all IR exponent

quantities.
Vertices also assume power law behavior [Alkofer, Fischer, Llanes-Estrada, PLB

611 (2005) (skeleton expansion)].
In scaling solutions the qualitative behavior of the whole tower of
equations can be determined. NI
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Power counting

@ The ghost propagator DSE:

-1 -1 E\N\/\/i
,,,,,, P = . D N

@ Plug in power law ansitze for dressing functions in the IR (In
Landau gauge the ghost-gluon vertex has an IR constant dressing.):

—1
B . (p?)P NJ diq A-(g))* B-((p—q?)P
p? md " g2 (p—q)?
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Power counting

@ The ghost propagator DSE:

-1 _ -1
,,,,,, PO = [ Y,

@ Plug in power law ansitze for dressifg function

-1
B - (p?)8 NJ diq A-(g>)* B-((p—q)?)P
@md "7 g2 (p—q)?

@ Only one momentum scale
— simple power counting is possible — scaling relation:

d d
ol—p=sta—1+p—1+ +_ = -WP=a+ -2
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The maximally Abelian gauge (MAG)

Dual superconductor picture of confinement

(Mandelstam, 't Hooft)

Magnetic monopoles condense — squeeze electric flux into flux tubes.
Ezawa, Iwazaki, PRD 25 (1981): Hypothesis of Abelian dominance
(Abelian part should dominate the infrared part of the theory, since
monopoles live in Abelian part of algebra.)

Suzuki et al., 0907.0583

@ String tension is the same from non-Abelian, Abelian and monopole
part, if no gauge is fixed.
@ Colorelectric flux is squeezed into flux tubes.
@ = Confinement by monopoles.
String tensions of Abelian and monopole part agree more or less with the
string tension of the non-Abelian part, if MAG is employed. = MAG a
""cheap" way to obtain monopoles? e
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Diagonal and off-diagonal fields

Gauge field components:

Ap=AlT + LN —1, a=N,... N>—1

Abelian subalgebra: [T', T/] = 0, can be written as diagonal matrices
= Abelian/diagonal fields A, non-Abelian/off-diagonal fields

Eg. T'= %)é, T2 = %)\8 for SU(3).
[Tr) TS] — ifrst Tt
fik—o0, fi2=0, f*"+£0

SU(2): =0, SUN>2): f¥£0

SU(2): only 2 off-diagonal and 1 diagonal fields = only 1 possible set of
field combinations for three-point function
SU(N > 2): three off-diagonal fields can interact NI
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Gauge fixing condition of the MAG

Stress role of diagonal fields = minimize norm of off-diagonal field B:

[|Byll = deijij — minimize wrt. gauge transformations U
Dszﬁ = (0,60,—8 fab"A';l)Bﬁ =0 non-linear gauge fixing condition!

Remaining symmetry of diagonal part: U(1)V~!

Fix gauge of diag. gluon field A by Landau gauge condition: 9,A, = 0.
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Peculiarities of the maximally Abelian gauge for SU(2)

o Yang-Mills vertices split: ABB, AABB, BBEB.

@ Non-linear gauge fixing condition (depends on A) — Acc, AAcc,
BBcc.

@ Renormalizability requires an additional quartic ghost interaction —
cccc.

@ Ghosts also split into diagonal and off-diagonal parts, but diagonal
ghosts decouple (diagonal ghost equation).

e Two gauge fixing parameters: aqa = 0 (Landau gauge), as.

Note: For SU(N) there are more interactions (due to fabc): BBB, Bcc,
ABBB, ABcc— more DSEs with more terms.

This plethora of interactions makes the equations much more intricate
than in Landau gauge. To consider all possible solutions an improved
method is necessary. unI
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DSEs of the MAG

et 30 _Q o ——
feO— h—o—  —— b —
_%/&\+W/+W+A
e M 3O +_ O _O
_ O_f%_<>_ +_<>_,%_e_
e e e - S
N T v N T
CTNgT Ny Ny ON

Alkofer, Huber, Schwenzer July 27, 2009



Functional renormalization group equations

Functional equations similar to DSEs, but with decisive differences:

@ only 1-loop diagrams
o ALL quantities dressed

o (appearance of regulator)

Renormalization group equations (RGEs) are "differential DSEs".

Compare RGE and DSE of gluon propagator:

-O
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Deriving a scaling relation

DSE-FRG consistency condition by Fischer & Pawlowski
[Fischer, Pawlowski, PRD 75 (2005)]

o Investigated system of DSEs/RGEs in Landau gauge.

@ The ghost propagator DSE has only 1 loop diagram.
@ The ghost propagator RGE has 4 loop diagrams.
o

For consistent solutions of DSEs and RGEs you expect the same
scaling of the propagators = the DSE diagram has to match the
counting of the RGE diagrams.

@ Connection between DSEs and RGEs is the bare ghost-gluon vertex,
which is not IR enhanced.

We proof here in general:

Scaling relations are intimately connected to the appearance of bare

vertices in DSEs and not in RGEs. = Possible scaling relations can be

read off from the interactions. GRAz

c
z
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System of inequalities

@ For every diagram the IR can be written down.

o At least the IRE of one diagram must equal the IRE of the vertex
function on the |hs.

@ No diagram can be more IR divergent than the vertex function on
the lhs — O1hs <Orhs-

@ Not knowing which diagram is leading on the rhs, we can write
inequalities from all diagrams.

7551 =min( _0 )25gh+6ggy ég/ ,25g/+53g,35g/+54g‘45g/+253g)
~ e—m— o —— —,— —, , ——

bare prop. gl loop tadpole gh loop sunset squint

= ! lw*m I%Jr T 1% 1@% é/\
AVAY. AVAVEAVAVAVAV, Vi -3 W 8N TG —3
pts UE'
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Relevant inequalities

A closed form for all relevant inequalities can be derived
from DSEs and RGEs.

2 types:
type derived from #
dressed vertices Cl = Svertex + % Z d; >0 | RGEs infinite
legs j of
_ vertex
prim. div. vertices | Cj = % Z 5;>10 DSEs/RGEs | finite
legs j of
prim. div.
vertex

Some inqualities are contained within others.
E. g. in MAG: 65 > 0 and &, > 0 render 85 + &, > 0 useless.

NB: These inequalities explicitly show that the skeleton expansion used in
previous studies is a consistent expansion. However, the skeleton NI
expansion is now obsolete. milh
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Infrared exponent for an arbitrary diagram

Having so many diagrams, isn’t there a shorter way than writing all
expressions down explicitly?

Arbitrary Diagram v
Numbers of vertices and propagators related = possible to get a formula
for the IR exponent by pure combinatorics in terms of:

@ propagator IR exponents by, @ number of external legs m®:

@ number of vertices

5, = L m¢;5¢i -+

2 i

+ Z (# of dressed vertices),Ci + Z (# of bare vertices),C}

! 1
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Infrared exponent for an arbitrary diagram

Having so many diagrams, isn’t there a shorter way than writing all
expressions down explicitly?
Arbitrary Diagram v

Numbers of vertices and propagators related = possible to get a formula
for the IR exponent by pure combinatorics in terms of:

@ propagator IR exponents by, @ number of external legs m®:

@ number of vertices

/\Jower bound on IRE
5, = 7% Zi m¢i5¢’_ +

+ Z (# of dressed vertices),Ci + Z (# of bare vertices),C}

! 1

Only depends on the external legs — equal for all diagrams in a
DSE/RGE [M.Q.H., Schwenzer, Alkofer, arXiv:0904.1873].
[Similar formula with slightly different arguments: Fischer, Pawlowski, arXiv:0903.2193]

Alkofer, Huber, Schwenzer KFU Graz July 27, 2009 22/34



Scaling relations

General analysis of propagator DSEs

At least one inequality from a prim. divergent vertex has to be saturated,

i. e. | Ci =0 for at least one i |

Necessary condition for a scaling solution.
Related to bare vertices in DSEs: Fischer-Pawlowski consistency
condition DSEs <5 RGEs [Fischer, Pawlowski, PRD 75 (2007)].

= One primitively divergent vertex is not IR enhanced.

This does not necessarily mean that it is bare:

@ Dependence on momentum configuration.

o Consider different dressing functions: Vanishing or constant.
The non-enhanced vertex is also called the leading vertex, because it
determines the leading diagram in a DSE.

The non-enhancement of at least one primitively divergent vertex
is now established for all scaling type solutions. [Huber, Schwenzer, Alkofer,
arXiv:0804.1873]
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How to obtain a scaling relation: Landau gauge

@ Look at all inequalities for primitively divergent vertices, i. e. at C2".
© Try all possibilities of Ci = 0.
© Choose the non-trivial solutions.
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How to obtain a scaling relation: Landau gauge

@ Look at all inequalities for primitively divergent vertices, i. e. at C2".
© Try all possibilities of Ci = 0.
© Choose the non-trivial solutions.
Application to Landau gauge:
Q 05 >0,0g+20,4>0
Q@ a 6yg=0
b Sg + 25z =0

QO a3 Ju=%75=0
b 6g/-|—25gh:0

1
Scaling relation of the Landau gauge: §6gl = —0gh = KiG
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From scaling relation to vertices

How to get the IRE of an arbitrary vertex?

© Start with an appropriate propagator DSE.
© Add successively the leading vertex until you get the desired vertex.

A general formula for m gluon and 2n ghost legs in d dimensions can be

determined [Alkofer, Fischer, Llanes-Estrada, PLB 611 (2005); Huber, Alkofer, Fischer,
Schwenzer, PLB659 (2008)]:

5mam = (n— m) Kie + (1— ) (‘;’ 2)
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How to obtain a scaling relation: MAG

Many interactions = many inqualities, but some of them are contained
within others = reduces number of possibilities.

@ Look at all inequalities for primitively divergent vertices, i. e. at C2".
© Try all possibilities of Cj = 0.
© Choose the non-trivial solutions.
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How to obtain a scaling relation: MAG

Many interactions = many inqualities, but some of them are contained
within others = reduces number of possibilities.

@ Look at all inequalities for primitively divergent vertices, i. e. at C2".
© Try all possibilities of Cj = 0.
© Choose the non-trivial solutions.
Application to the MAG:
Q065>0,0,>004+065>0,0a+08:2>0

9 a 5320
b c=0
C da+06=0
d 6a+06=0

° a 6A: = c:0
b M/:m
c ba+dp=0
d 0a+06=0

Scaling relation of the MAG:

532502*6A=KMA(;‘ .'%’ﬁll
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The MAG in SU(3)

In general SU(N) there are more interactions than included above.
— Different solution for "physical system", i. e. SU(3)?

4 additional vertices: , Bcc, A , ABcc
Constraints:
3 1
— > - >
263_0, 253+6C_0,
1 3 1 1
= 5 > = = >
25A+253_0, 25A+263+5C_0

Solution for SU(N > 2) = solution for SU(2)

o Constraints already contained in "old" system — nothing new,
solution still valid.

@ No new solutions possible — unique solution.
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IR Scaling solutions for other gauges

The analysis can be used also for other gauges. Beware: This
corresponds to a naive application!

Linear covariant gauges Ghost-antighost symmetric gauges

scaling solution only, if the longitudinal | quartic ghost interaction — 8z, > 0
part of the gluon propagator gets — with non-negative IREs only the
dressed (STI?) trivial solution can be realized

This is valid for all possible dressings and agrees with the results from
[Alkofer, Fischer, Reinhardt, v. Smekal, PRD 68 (2003)], where only certain dressings
were considered,.

o Either the existence of a
= scaling solution is something special (?) or

@ a more refined analysis is needed in these cases. uN

Alkofer, Huber, Schwenzer KFU Graz July 27, 2009 28/34



IR propagators of the MAG

—5A:65:6CZ:K20

@ Diagonal gluon propagator is IR enhanced (64 < 0). = Supports
hypothesis of Abelian dominance.

o Off-diagonal propagators are IR suppressed.
@ Two-loop terms are leading.

The scaling solution for the MAG differs in several qualitative and
technical aspects from the Landau gauge solution:
o Different qualitative behavior of ghosts.

o Different structure of IR leading terms — new method for numerical
solutions required.

o Different DSEs for SU(2) and SU(3) — different solutions? =
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Higher vertex functions in the MAG

Leading diagrams are determined by bare AABB or AAcc vertices:

sunset ‘ squint ‘-

leading | possibly leading

n-point functions (n even): Successively add pairs of fields:

n odd: At least one vertex with an odd number of legs, cannot be
determined uniquely (leading vertex is even; how to construct an odd N

vertex?)
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Higher vertex functions in the MAG

Leading diagrams are determined by bare AABB or AAcc vertices:

sunset ‘ squint ‘-

leading | possibly leading
n-point functions (n even): Successively add pairs of fields:
B By, ¢

ne=1 Lo

n odd: At least one vertex with an odd number of legs, cannot be
determined uniquely (leading vertex is even; how to construct an odd N

vertex?)
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Numerical solution

In Landau gauge truncation "straightforward": keep one-loop terms
(consistent UV behavior, contain IR leading term)

VVAVVV VAVVAVV Rl + v ‘\/\ﬁ -2
=12 % -3t M/%WZ wAi::%vw
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Numerical solution

In Landau gauge truncation "straightforward": keep one-loop terms
(consistent UV behavior, contain IR leading term)

-1 -1 VR
ANANBANNANS = + e o\ -12 %

Alkofer, Huber, Schwenzer KFU Graz July 27, 2009 31/34



Numerical solution

In Landau gauge truncation "straightforward": keep one-loop terms
(consistent UV behavior, contain IR leading term)

-1 -1 VR
ANANBANNANS = + e o\ -12 %

In MAG: two-loop terms leading — for consistent UV behavior keep ALL
two-loop terms = no truncation
Q f% @ - O

-1 - %
_1 O O 1 e
2 2

e
WJ/A\Y?/
O r Ny N
~ O
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Complete solution for the MAG

@ Truncation?
o Odd vertices?

@ The IR part has to connect to the mid-momentum and UV-part
found by a numerical calculation.

@ Due to the involved structure of the terms there is ample space for
delicate cancelations (cf. propagator DSEs in Landau gauge: 1
diagram IR leading).

o Considerable more construction work for the tensors of the leading
vertices (four-point functions: color x Lorentz = 3 x 10 and 3 X
138) is necessary than in Landau gauge (ghost-gluon vertex: 2).
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@ It was shown for general systems of functional equations how the
Fischer-Pawlowski consistency condition can lead to a scaling
solution.

As expected (at least) one vertex does not get IR enhanced.
Qualitative solution for whole tower of functional equations.
Skeleton expansion, as used earlier, obsolete.

High number of interactions can be handled, because it is not
necessary to write down all equations explicitly.

@ Derivation of method technical, but it allows a straightforward
application based only on the type of interactions in the Lagrangian.

@ Method allows a first assessment what a scaling solution might look
like. — Input for a complete numeric calculation.
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Conclusions on MAG

@ The MAG may possess an IR scaling solution.

@ This solution is in support of the hypothesis of Abelian dominance,
because the diagonal gluon propagator is IR enhanced and thereby
the dynamics in the IR are dominated by the diagonal gluon.

@ Relation to monopole condensation has to be clarified.
@ Although the DSEs are more complicated for general SU(N > 2),
the qualitative behavior is the same as in SU(2).

The existence of the IR scaling solution in the MAG has to be verified by
a numerical solution of the DSEs, which is more involved than in Landau
gauge. — Task for the future.
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