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Abstract
A toy model which mimics the effects of the Gribov horizon and of the BRST soft symmetry breaking is constructed in order
to investigate a possible mechanism for confinement. We show that the Gribov horizon and the BRST breaking combine in
a nice fashion, in such a way that a class of composite operators whose correlation functions exhibit physical cuts only can
be obtained as cohomology classes of the BRST operator.

Introduction and Motivation
• The problem of confinement in quantum field theory may be defined by the property that the fundamental fields

appearing in the Lagrangian defining the theory do not describe the physical excitations of the theory.

• The prime example where this happens is QCD at low energy scales. Since even without quarks the theory is confin-
ing, we can focus only on the pure Yang-Mills theory.

• To properly quantize a gauge theory we must take care of the redundancy introduced by the gauge variables. In a
path integral quantization this is usually done by the introduction of Faddeev-Popov ghosts fixing the gauge in a
consistent way.

• Gauge symmetry turns out to be replaced by a global symmetry involving anticommuting variables known as BRST
symmetry. This symmetry has a very important role in defining the physical states of the theory which are identi-
fied as the cohomology classes of the BRST generator (physical states |Phys〉 are the ones annihilated by the BRST
generator Q and which are not of the form Q|something〉, that is, are BRST closed but not exact).

• Unfortunately the Faddeev-Popov procedure does not work properly outside the perturbative domain as pointed out
by Gribov [1]. There still remain gauge copies after the introduction of the ghosts. Gribov suggested a way out by
restricting the configuration space of integration to what became known as the Gribov region. Later Zwanziger [2] was
able to implement analytically this restriction in the path integral formulation defining the so called Gribov-Zwanziger
action.

• The Gribov-Zwanziger action is renormalizable but softly breaks the BRST symmetry. The breaking has its origin
in the restriction to the Gribov region implemented in the action by the so called horizon function. This means that
there is no straightforward way of defining the physical states of the theory and in particular these states cannot be
identified with the fundamental fields anymore. This is exactly what we expect for a confining phase.

• In this work we discuss a toy model which displays the essential elements of this picture. The toy model has many
similarities with the Gribov-Zwanziger theory and allows for a more accessible investigation of its physical properties
and to get a glimpse of the possible mechanism responsible for the establishment of the confining phase.

Gribov-Zwanziger
The Gribov-Zwanziger formulation is a proposal to de-
scribe the quantum theory of the Yang-Mills system at low
energies. The usual gauge fixed Yang-Mills action

SYM =

∫
dx

(
1

4
FaµνF

a
µν + i ba∂µA

a
µ − c̄aMabcb

)
, (1)

with (Landau gauge)

Mab = −Dabµ ∂µ = −(δab� + g fabcAcµ∂µ), (2)

is modified in order to take into account the restriction of
the integration in configuration space to the Gribov region
by the introduction the so-called horizon function h(x)

h(x) = g2faceAaµ(M−1)cdfbdeAbµ. (3)

The Gribov-Zwanziger action is given by

SGZ = SYM + γ4

∫
dxh(x). (4)

The mass parameter γ is not free but determined by

〈h(x)〉 = d(N2 − 1), (5)

where N is the number of colors and d the space-time di-
mension.
The added horizon function term softly breaks the BRST
symmetry of the model and as a result the gluon propaga-
tor

〈Aµ(p)Aν(−p)〉 =
p2

p4 + γ4

(
δµν −

pµpν

p2

)
. (6)

does not have a particle interpretation since the poles are
not real and it also does not satisfy the Källén-Lehmann
representation with a positive spectral density.

Toy Model
In order to define the toy model, we start with the free the-
ory

L0 =
1

2
∂µψ

a∂µψ
a + ∂µϕ̄

a∂µϕ
a − ∂µω̄a∂µωa, (7)

where the real field ψ is in the adjoint representation of
SU(N). The BRST quartet ϕa, ϕ̄a, ωa and ω̄a, which
are also in the adjoint representation, does not change the
physical content of the theory since the last two terms are
BRST exact.
This lagrangian is invariant under the BRST transformation
(c is a constant ghost field)

sψa = fabccbψc; s ca =
1

2
fabccbcc (8)

s ω̄a = ϕ̄a + fabccbω̄c; sϕa = ωa + fabccbϕc, (9)

s ϕ̄a = fabccbϕ̄c; s ωa = fabccbωc, (10)

We now turn this model into a non-trivial theory by adding
a term that explicitly breaks the BRST symmetry

L0 → L0 + Lϑ, (11)

Lϑ = ϑ2ψa(ϕa − ϕ̄a), sLϑ = ϑ2ψaωa 6= 0. (12)

The added term is the analog of the horizon function of the
Gribov-Zwanziger formulation. Here ϑ, a mass dimension
parameter, plays the same role as the Gribov parameter γ.
Whereas we introduced the breaking of the BRST symme-
try here by hand, it appears naturally in the Yang-Mills the-
ory due to the Gribov problem.

Search for the physical spectrum
The theory is now drastically modified and in particular the
ψ field propagator assumes the form

〈ψa(p)ψb(−p)〉 = δab
p2

p4 + 2ϑ4
. (13)

This has the same structure as the gluon propagator of the
Gribov-Zwanziger formulation. The poles of the propaga-
tor are purely imaginary at ±i

√
2ϑ2. Thus the propagator

does not describe a physical particle.
We expect that the physical excitations take the form of
bound states. This would mimic the behavior of Yang-Mills
theory where the physical particles are the glueballs only,
the gluons being confined. We are thus searching for com-
posite operator with physical cuts.
The Yang-Mills case was investigated by Zwanziger [2]
in terms of the correlation function of two Wilson loops,
〈F 2(x)F 2(y)〉. He found the interesting result that this
quantity has the following structure:

〈F 2(p)F 2(−p)〉 = Gun(p) +Gph(p). (14)

The first part possess imaginary cuts and is thus unphysi-
cal, whereas the second part has a cut at the real axis with
a positive spectral density. Therefore it may describe the
physical excitation of a glueball. How to get rid of the
unphysical part so that the complete correlation function
becomes physical was an unsolved problem. Within the
present toy model setting, however, we are able to circum-
vent this problem and identify a physical operator whose
correlation function has no unphysical part.

Physical Operators
The idea is to exploit the breaking of BRST symmetry.
When a theory is BRST invariant, one can add to any op-
erator another operator that is BRST exact without altering
the result. However, if BRST symmetry is broken, this state-
ment is no longer true. The goal is to choose the additional
parts such that they cancel the unphysical part of the origi-
nal operator correlation functions. There is a whole class of
operators that can be parameterized by coefficients multi-
plying the BRST exact terms. In general, an operator O(x)
can be modified as

O(x)→ O(x) +
∑
i

cis(Yi), (15)

whereYi are functions of the fields and ci some coefficients
to be chosen to cancel the unphysical part of the correlators.
We studied an explicit example:

O2(x) =
1

2
∂µψ

a∂µψ
a − s(∂µϕ̄a∂µωa), (16)

and we found that the last term indeed gives the non-trivial
required contribution in order to cancel the unphysical part
of the correlator 〈O2(p)O2(−p)〉. We found that this corre-
lator can be written in the Källén-Lehmann representation

〈O2(p)O2(−p)〉 =

∫ ∞
2
√

2ϑ2
dτ

ρ(τ)

p2 + τ
, (17)

with the spectral function ρ a positive function. For in-
stance, in 4 dimensions it is given by

ρd=4(τ) =
τ2

(8π)2

√
1−

8ϑ4

τ2
, (18)

Thus we conclude that a physical spectrum can be unrav-
eled if we explore the BRST symmetry breaking in the con-
struction of physical operators. The hope is that this proce-
dure can be applied to the more involved Yang-Mills sys-
tem in order to identify glueballs.
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