# Infrared Behavior of the Three-Gluon Vertex in d-Dimensional Yang-Mills Theory

#### Reinhard Alkofer, Markus Huber, Kai Schwenzer

Winter School on Theoretical Physics in Schladming

Feb. 27, 2007



# Motivation

Diploma thesis: IR-exponents of vertices in three dimensions

Why **d** space-time dimensions?

|                 | 4 dimensions                     | 3 dimensions            |
|-----------------|----------------------------------|-------------------------|
| Ordering scheme | skeleton expansion               |                         |
|                 | Alkofer, Fischer, Llanes-Estrada | ordering scheme?        |
| Lattice         | hardly feasible in IR            | Cucchieri, Maas, Mendes |

Later?:

- Three-dimensional Yang-Mills (YM) theory can be compared to the infinite-temperature limit of four-dimensional YM theory.
- A connection between 4d YM in Coulomb gauge and 3d YM in Landau gauge exists.

< □ > < 同 > < 回 > < 回 > < 回

# Available Lattice Data



(Universität Graz)

Feb. 27, 2007 3 / 17

# What is an infrared exponent?

Infrared exponent expresses the behavior of a Green function at small external momenta ( $\ll \Lambda_{QCD}$ ).

Green functions can have additional momentum dependence, e.g. ghost propagator:  $D(p^2) = -\frac{G(p^2)}{p^2}$ 

#### Prominent picture in QCD: Gribov-Zwanziger scenario

- gluon propagator dressing function vanishes in IR:  $Z(p^2) \propto (p^2)^{2\kappa}$
- ghost propagator dressing function is divergent in IR:  $G(p^2) \propto (p^2)^{-\kappa}$
- κ<sub>d=4</sub> = 0.595

イロト イポト イヨト イヨ





Starting point is transversal gluon propagator in Landau gauge:

$$k_{\mu}D_{\mu\nu}(k) = k_{\mu}\frac{Z(k)}{k^2}\left[\delta_{\mu\nu} - \frac{k_{\mu}k_{\nu}}{k^2}\right] = 0$$

 $(q-p)_{\mu}D_{\mu\nu}(q-p)=0 \Rightarrow q_{\mu}D_{\mu\nu}(q-p)=p_{\mu}D_{\mu\nu}(q-p)$ 

Starting point is transversal gluon propagator in Landau gauge:

$$k_{\mu}D_{\mu\nu}(k) = k_{\mu}\frac{Z(k)}{k^2}\left[\delta_{\mu\nu} - \frac{k_{\mu}k_{\nu}}{k^2}\right] = 0$$

$$(q-p)_{\mu}D_{\mu\nu}(q-p)=0 \Rightarrow q_{\mu}D_{\mu\nu}(q-p)=p_{\mu}D_{\mu\nu}(q-p)$$



loop momentum q and external momentum p

(Universität Graz)

IR-Exponents

Feb. 27, 2007 7 / 17

$$q_{\mu}D_{\mu\nu}(q-p)$$



loop momentum q and external momentum p

(Universität Graz)

IR-Exponents

Feb. 27, 2007 7 / 17

$$q_\mu D_{\mu
u}(q-p) 
ightarrow 0$$
 for  $p
ightarrow 0$ 



loop momentum q and external momentum p

(Universität Graz)

IR-Exponents

Feb. 27, 2007 7 / 17

$$q_\mu D_{\mu
u}(q-p) 
ightarrow 0$$
 for  $p
ightarrow 0$ 

- Consequence 1: Ghost-gluon vertex stays bare in the IR.
- Consequence 2: Its renormalization constant  $ilde{Z}_1$  can be set to 1.

Definition of renormalization constant:

$$G_{\mu}(q,p)|_{p_1^2=p_2^2=p_3^2=0}=\tilde{Z}_1G_{\mu}^{(bare)}(q,p).$$

(Universität Graz)



# The Propagators

Power law ansatz for dressing functions:



Comparison of IR exponent of lhs and rhs:

$$1 - \beta = \frac{d}{2} + \alpha - 1 + \beta - 1 + \frac{1}{2} + \frac{1}{2}$$
$$\alpha = -2\beta + 2 - \frac{d}{2}$$

Set  $\beta = -\kappa$ :  $\rho_{2,1} = 0$ ,  $\rho_{2,0} = -\kappa$ ,  $\rho_{0,2} = 2\kappa + 2 - \frac{d}{2}$ 

イロト イポト イヨト イヨ



# n-Ghost-n-Antighost-m-Gluon Vertex

- / number of loops
- mi number of internal gluons
- $n_i$  number of internal ghosts
- $v_{0,3}$  number of dressed three-gluon vertices
- $v_{0,3}^{b}$  number of bare three-gluon vertices
- $v_{2,1}$  number of ghost-gluon vertices, dressed or bare
- $v_{0,4}^{b}$  number of bare four-gluon vertices
  - $\nu$  momentum dimension of the bare n-point function itself, e.g. three-gluon vertex:  $\frac{1}{2}$

$$\rho_{v} = (l - m_{i} + v_{0,3})\frac{d}{2} + (2m_{i} - n_{i} - 3v_{0,3})\kappa + \frac{1}{2}(2m_{i} - 2n_{i} - 3v_{0,3} + v_{0,3}^{b} + v_{2,1} - 2v)$$

12 / 17



# Higher Orders and Other Diagrams

The general formula still contains bare vertices:

$$\rho_{n,m} = (-n + 1 - v_{0,4}^b - v_{0,3}^b)\frac{d}{2} + (4v_{0,4}^b + 3v_{0,3}^b - m + n)\kappa + (2v_{0,4}^b + 2v_{0,3}^b + 2n - 2)$$

Contributions of these,



are always positive  $\Rightarrow$  diagrams not dominant

$$\rho_{n,m}=(n-m)\kappa+(1-n)(\frac{d}{2}-2)$$

d=4: Alkofer et al., Phys. Lett. B611, 2005 Fischer 2006, unpublished

# Differences Between the Dimensions

IR exponent:

$$\rho_{n,m} = (-m+n)\kappa + (1-n)(\frac{d}{2}-2)$$

The full scaling:

| Dimension | d                                  | 4    | 3                    | 2                  |
|-----------|------------------------------------|------|----------------------|--------------------|
| κ         |                                    | 0.61 | 0.4/0.5 <sup>2</sup> | 0.2/0 <sup>2</sup> |
| Ghost     | $-\kappa - 1$                      | -1.6 | -1.4/1.5             | -1.2/1             |
| Gluon     | $2\kappa + 1 - rac{d}{2}$         | 0.2  | 0.3/0.5              | 0.4/0              |
| 3-gluon   | $-3\kappa+\frac{d}{2}-\frac{3}{2}$ | -1.3 | -1.2/1.5             | -1.1/0.5           |
| 4-gluon   | $-4\kappa + \frac{d}{2} - 2$       | -2.4 | -2.1/2.5             | -1.8/1             |

 $\Longrightarrow$  Qualitative behavior is the same in two, three and four dimensions.

| <sup>1</sup> Lerche 2001; Zwanziger, | Phys. Rev. D6, 2002            |                   |   |         |
|--------------------------------------|--------------------------------|-------------------|---|---------|
| <sup>2</sup> Maas et al., Eur. Phys. | J. C37, 2004; Zwanziger, Phys. | Rev. D6, 2002 ≡ ト | æ | ৩০০     |
| (Universität Graz)                   | IR-Exponents                   | Feb. 27, 2007     |   | 15 / 17 |

# Conclusions

- The sekeleton expansion is valid in all dimensions.
- The qualitative behavior in the infrared is the same in two, three and four dimensions, namely dominated by ghost contributions.