Landau gauge propagators of two-dimensional Yang-Mills theory

Markus Q. Huber

in collaboration with Axel Maas, Lorenz von Smekal

Institute of Nuclear Physics, Technical University Darmstadt

Feb. 26, 2012

50. Internationale Universitätswochen für Theoretische Physik

Unterstützt von / Supported by

Alexander von Humboldt Stiftung/Foundation

Landau gauge Green functions

Green functions are useful quantities for

- investigations of phase diagrams
 - ightarrow see, e.g. (this school), Bonnet, Herbst, Luecker, Mitter, ...
- calculations of bound states
 - \rightarrow see, e.g., Eichmann, Heupel, Sanchis Alepuz, ...
- understanding non-perturbative phenomena like confinement, dynamical creation of mass
 - \rightarrow see, e.g., Alkofer, Hopfer, Mader, Mufti, Schröck, Windisch, ...

Non-perturbatively calculated, e.g., by Monte-Carlo simulations (finite lattice \rightarrow momentum cutoffs) or functional methods (continuum approach).

Propagators of four-dimensional Yang-Mills theory

	ghost dressing	gluon dressing	Scaling relation:
scaling	$\sim (p^2)^{-\kappa}$	$\sim (p^2)^{2\kappa}$	$2\delta_c + \delta_A = 0$
decoupling	$\sim (p^2)^0$	$\sim (p^2)^1$	

Why d < 4?

- Lattice calculations: low momenta require large lattices.
- Lattice points (*n* points in every direction): *n^d*
- ullet \Rightarrow lower dimensions require (much) less computer power
- d = 2 allows really large lattices, e.g., 2560^2 ($L \approx 460$ fm) [Cucchieri, Mendes, AIP CP 1343, 185].
- Cf. d=4: e.g., $128^4~(L\approx 27\,fm)$ [Cucchieri, Mendes, Pos LAT2007, 297]

No transverse directions \rightarrow gluons have no degrees of freedom,

but one can investigate Gribov copies, finite size effects, existence of solutions, \ldots

Lattice results for d = 2

Lattice calculations find only the decoupling type of solution for d = 3, 4.

d = 2 seems different: Only the scaling type solution is found.

What to expect for d = 2

Scaling type solution:

• IR analysis allows two sets of IR exponents $\{\delta_c, \delta_A\}$ [Zwanziger, PRD65]:

 $\{0,1\} \text{ and } \{-0.2,1.4\}\text{,}$

always $2\delta_c+\delta_{\pmb{A}}=-(d-4)/2=1$

• Qualitative behavior of all Green functions known [Huber, Alkofer, Fischer, Schwenzer, PLB659].

Decoupling type solutions:

- finite ghost dressing, finite gluon propagator
- until recently existence unclear

Note: Set 1 looks like a decoupling type (peculiar to d = 2).

Calculation of DSEs

DoFun: <u>D</u>erivation <u>of</u> <u>fun</u>ctional equations [Huber, Braun, CPC, tbp]:

- Mathematica application to derive flow equations and DSEs
- Derivation of large and/or complicated systems of DSEs, e.g., maximally Abelian gauge, Gribov-Zwanziger action, alleviated.

CrasyDSE: Computation of rather large systems of DSEs

[Huber, Mitter, 1112.5622]:

- Combination of *Mathematica* application and *C++* code to handle DSEs
- *CrasyDSE* provides structures for DSEs and modules for handling dressing functions and integrating and solving DSEs.

 \Rightarrow Useful tools for systems with many dressing functions and/or complicated kernels.

Ghost equation

input: various gluon propagator ansätze, trivial ghost-gluon vertex

Ghost equation

input: various gluon propagator ansätze, trivial ghost-gluon vertex

- \rightarrow IR cutoff dependence for decoupling type solutions
- \Rightarrow no decoupling solution (cf. [Cucchieri, Dudal, Vandersickel, 1202.1912])

$\kappa = 0$ revisited

IR exponents can be determined analytically from the IR dominant diagrams:

Value of $\boldsymbol{\kappa}$ is determined from the equation

$$\frac{\sin(\pi\kappa)\Gamma(d/2-\kappa)\Gamma(\kappa)\Gamma(1+d/2+\kappa)}{2(d-1)\sin(\pi(d/2-2\kappa))\Gamma(d-2\kappa)\Gamma(2\kappa)\Gamma(1+\kappa)} = 1$$

There is no solution $d \rightarrow 2$, $\kappa = 0$.

To obtain $\kappa = 0$ an additional prescription is required.

 \rightarrow Existence of decoupling solution is scheme dependent.

Ghost and gluon DSEs

trivial ghost-gluon vertex, ansatz for three-gluon vertex

Coupled system of equations:

Ghost and gluon DSEs

trivial ghost-gluon vertex, ansatz for three-gluon vertex

Coupled system of equations:

 \Rightarrow Ghost does not approach 1 in the UV.

From dim. arguments:

$$G(p^2) \xrightarrow{p^2 \to \infty} \frac{1}{1 + c/p^2}$$

Preliminary results!

Mid-momentum regime and UV behavior

What is the source of this deviation of the ghost propagator in the UV?

Mid-momentum regime and UV behavior

What is the source of this deviation of the ghost propagator in the UV?

Return to ghost equation: Use gluon ansätze which differ in mid-momentum regime.

Mid-momentum regime and UV behavior

What is the source of this deviation of the ghost propagator in the UV?

Return to ghost equation: Use gluon ansätze which differ in mid-momentum regime.

 \Rightarrow Mid-momentum regime has (for d = 2) a direct influence on the UV behavior.

Ghost-gluon vertex DSE

(Truncated) ghost-gluon vertex DSE:

Three-point function depends on 3 variables. Here: 2 ghost momenta p^2 and q^2 , angle φ between them.

Ghost-gluon vertex

Calculated from fully iterated propagators (bare ghost-gluon vertex used):

Fixed momentum:

Fixed angle:

- \rightarrow Almost no dependence on angle.
- \rightarrow IR constant.

Preliminary results!

Summary

- No decoupling type solution exists in d = 2. (Also not seen on the lattice.)
- Trivial ghost-gluon vertex insufficient

to obtain correct UV limit of ghost propagator.

- Ghost-gluon vertex influences UV value of the ghost.
- Also three-gluon vertex

has a more direct influence as in higher dimensions.

Heading towards

dynamical inclusion of three-point functions in Yang-Mills theory.

The end

Thank you very much for your attention.