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How to investigate QCD

Asymptotic freedom (Nobel prize 2004):

QCD αs(Mz) = 0.1185 ± 0.0006

Z pole fit  
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Perturbative description at high energies.
Plenty of applications.

Perturbative series is not
convergent.

Non-perturbative phenomena?

E.g., no mass creation to every

order in perturbation theory.

⇒ Non-perturbative methods required.
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The family of functional equations

Coupled integro-di�erential/integral equations.

Dyson-Schwinger equations: eqs. of motion for correlation functions
[e.g. talks by Alkofer R., Hilger, posters by Blum, Vujinovic]

Functional renormalization group: �ow equations, RG scale k, regulator
[e.g. talks by Herbst, Mitter, Rennecke, Roscher, poster by Khan]

k ∂
∂k

= + 1
2

−1

N-PI e�ective action
[e.g. talk by Alkofer R.]
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The family of functional equations

Coupled integro-di�erential/integral equations.

Dyson-Schwinger equations: eqs. of motion for correlation functions
[e.g. talks by Alkofer R., Hilger, posters by Blum, Vujinovic]

Functional renormalization group: �ow equations, RG scale k, regulator
[e.g. talks by Herbst, Mitter, Rennecke, Roscher, poster by Khan]

k ∂
∂k

= + 1
2

−1

N-PI e�ective action
[e.g. talk by Alkofer R.]

Non-perturbative in the sense:

Exact equations.

No small coupling required.

In reality they cannot be solved exactly (with a few exceptions).
Self-consistence!
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From Green functions to 'observables'

Functional equations are expressed in terms of
Green functions/correlation functions/n-point functions Γi1...in .

The e�ective action is the generating
functional of 1PI Green functions.

Γ[Φ] =
∞∑
n=0

1

n!
Φ1 . . .ΦnΓi1...in

←→

The set of all Green functions
describes the theory completely.

Γij =
δ2Γ[Φ]

δΦiδΦj

,

Γijk =
δ3Γ[Φ]

δΦiδΦjδΦk

, . . .

Green functions → 'observables'?

Examples:

Bound state equations → masses and properties of hadrons

Analytic properties of Green functions → con�nement

(Pseudo-)Order parameters
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Dyson-Schwinger/Schwinger-Dyson-equations

1 Start from path integral: Integral of derivative vanishes.

0 =

∫
D[φ]

δ

δφ
e−S+

∫
dyφ(y)J(y)

2 Go to e�ective action Γ[φcl] (Legendre transform of W [J] = lnZ [J]).

3 Master equation:

δS

δφ(x)

∣∣∣∣∣
φ(x′)=φcl(x

′)+
∫
dz D(x′,z)J δ/δφcl(z)

=
δΓ[φcl]

δφcl(x)

4 DSEs for Green functions by di�erentiating wrt �elds.

Details and example of scalar theory:
http://tinyurl.com/dsenotes

Markus Q. Huber University of Graz March 1, 2015 5/15

http://tinyurl.com/dsenotes


Functional equations Dyson-Schwinger equations Results in the Yang-Mills sector

Dyson-Schwinger/Schwinger-Dyson-equations

1 Start from path integral: Integral of derivative vanishes.

0 =

∫
D[φ]

δ

δφ
e−S+

∫
dyφ(y)J(y)

2 Go to e�ective action Γ[φcl] (Legendre transform of W [J] = lnZ [J]).

3 Master equation:

δS

δφ(x)

∣∣∣∣∣
φ(x′)=φcl(x

′)+
∫
dz D(x′,z)J δ/δφcl(z)

=
δΓ[φcl]

δφcl(x)

4 DSEs for Green functions by di�erentiating wrt �elds.

Details and example of scalar theory:
http://tinyurl.com/dsenotes

Markus Q. Huber University of Graz March 1, 2015 5/15

http://tinyurl.com/dsenotes


Functional equations Dyson-Schwinger equations Results in the Yang-Mills sector

Dyson-Schwinger/Schwinger-Dyson-equations

1 Start from path integral: Integral of derivative vanishes.

0 =

∫
D[φ]

δ

δφ
e−S+

∫
dyφ(y)J(y)

2 Go to e�ective action Γ[φcl] (Legendre transform of W [J] = lnZ [J]).

3 Master equation:

δS

δφ(x)

∣∣∣∣∣
φ(x′)=φcl(x

′)+
∫
dz D(x′,z)J δ/δφcl(z)

=
δΓ[φcl]

δφcl(x)

4 DSEs for Green functions by di�erentiating wrt �elds.

Details and example of scalar theory:
http://tinyurl.com/dsenotes

Markus Q. Huber University of Graz March 1, 2015 5/15

http://tinyurl.com/dsenotes


Functional equations Dyson-Schwinger equations Results in the Yang-Mills sector

Dyson-Schwinger/Schwinger-Dyson-equations

1 Start from path integral: Integral of derivative vanishes.

0 =

∫
D[φ]

δ

δφ
e−S+

∫
dyφ(y)J(y)

2 Go to e�ective action Γ[φcl] (Legendre transform of W [J] = lnZ [J]).

3 Master equation:

δS

δφ(x)

∣∣∣∣∣
φ(x′)=φcl(x

′)+
∫
dz D(x′,z)J δ/δφcl(z)

=
δΓ[φcl]

δφcl(x)

4 DSEs for Green functions by di�erentiating wrt �elds.

Details and example of scalar theory:
http://tinyurl.com/dsenotes

Markus Q. Huber University of Graz March 1, 2015 5/15

http://tinyurl.com/dsenotes


Functional equations Dyson-Schwinger equations Results in the Yang-Mills sector

Landau gauge Yang-Mills theory

Gluonic sector of quantum chromodynamics: Yang-Mills theory

L =
1

2
F 2 + Lgf + Lgh

Fµν = ∂µAν − ∂νAµ + i g [Aµ,Aν ]

Landau gauge

simplest one for functional equations

∂µAµ = 0: Lgf =
1

2ξ
(∂µAµ)2, ξ → 0

requires ghost �elds: Lgh = c̄ (−2 + g A×) c

+ i j
-1

+

i

j

k

+

i

j k

l

+ j k

-1

+

i

j

k
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The tower of DSEs

gluon propagator

ghost propagator
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In�nitely many equations. In QCD, every n-point function depends on (n + 1)-
and possibly (n + 2)-point functions.
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The tower of DSEs

gluon propagator
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Taming the equations

Keep most important parts!

Drop quantities

Model quantities
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=
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Most important parts

UV leading (perturbation theory)

IR leading (analytic, lattice)
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Propagators I

i j -1

=

+ i j
-1

-
1
2

ij + ij j i -1

=

+ j i
-1

- ij

Long-time standard truncation

No four-gluon vertex

Ghost-gluon vertex: bare

Three-gluon vertex: model
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G(p2)

[MQH, von Smekal '12; lattice; Sternbeck '06]

→ Role of three-gluon vertex? → Use as input in other calculations.
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The three-gluon vertex

[See also poster by Blum.]
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[Blum, MQH, Mitter, von Smekal '14; lattice: Cucchieri, Maas, Mendes '08]

→ Truncation reliable. Neglected terms, including two-loop, suppressed.

See also results by [Eichmann, Williams, Alkofer, Vujinovic '14], esp. other dressings,
and [Peláez, Tissier, Wschebor '13].
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Propagators II: Limits of one-loop truncation

0 2 4 6 8
p@GeVD1.0
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3.5

4.0

ZHp
2L
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[Blum, MQH, Mitter, von Smekal '13]

Use calculated three-gluon vertex.

Ghost almost una�ected.

Gap in midmomentum regime must be due to missing two-loop diagrams!

Explicit two-loop studies [Bloch '03; Mader, Alkofer '12; Meyers, Swanson '14]:
squint � sunset diagram
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Four-gluon vertex

6 external variables

4 integration variables

Cf. propagator: 1 ext., 2 int.
2 propagators → laptop
four-gluon vertex → > 100 cores on cluster
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p
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, config. C

D
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, config. C, fit

[Cyrol, MQH, von Smekal '14]

2-parameter �t:

D
4g, dec
model (p, q, r , s) =

(
a tanh

(
b/p̄2

)
+ 1
)
D

4g
RG(p, q, r , s)

Markus Q. Huber University of Graz March 1, 2015 12/15



Functional equations Dyson-Schwinger equations Results in the Yang-Mills sector

Four-gluon vertex

6 external variables

4 integration variables

Cf. propagator: 1 ext., 2 int.
2 propagators → laptop
four-gluon vertex → > 100 cores on cluster

10
-3

10
0

10
3

p
2
[GeV

2
]

0

0,5

1

1,5

2

2,5

3

D
4g

, config. A

D
4g

, config. B

D
4g

, config. C

D
4g

, config. C, fit

[Cyrol, MQH, von Smekal '14]

2-parameter �t:

D
4g, dec
model (p, q, r , s) =

(
a tanh

(
b/p̄2

)
+ 1
)
D

4g
RG(p, q, r , s)

Markus Q. Huber University of Graz March 1, 2015 12/15



Functional equations Dyson-Schwinger equations Results in the Yang-Mills sector

Beyond Landau gauge: Coulomb gauge

Why the Landau gauge is convenient

Minimum number of terms in DSEs.

Transversality → longitudinal part decouples.

Historically ghost-gluon vertex provided the entry point (special here).

[MQH, Campagnari, Reinhardt '14]

Three-gluon vertex:

Zero crossing

IR divergent like p−3

Ghost-gluon vertex:

Di�erent truncations quite similar

c@bare, cos(α)
-0.88

-0.53

0.41

A@bare, cos(α)
-0.88

-0.53

0.41

2 4 6 8 10
p1.0

1.1

1.2

1.3

1.4

1.5
DAc

_
c(p,p,α)
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Beyond Landau gauge: Linear covariant gauges

Gaussian distribution e−
1
2ξ (∂A)

2

around Landau gauge in path integral

Test of gauge (in)dependence of observables possible.

Well-known Landau gauge is endpoint: ξ = 0

Special choices convenient perturbatively, e.g., Feynman gauge ξ = 1;
non-pertubatively no advantage

ξ=0

ξ=0.001

ξ=0.01
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ξ=0.2

ξ=0.4

1 2 3 4 5
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G(p2)

[MQH '15]
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Beyond Landau gauge: Linear covariant gauges

Gaussian distribution e−
1
2ξ (∂A)

2

around Landau gauge in path integral

Test of gauge (in)dependence of observables possible.

Well-known Landau gauge is endpoint: ξ = 0
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Summary

Examples for applications of functional methods:

Description of hadron properties from �rst principles

QCD phase diagram: explore non-zero density

Testing gauge dependence in various gauges: Coulomb, linear covariant

Technical challenges!

Truncation:

2-, 3- and 4-point functions calculated

Truncation e�ects understood (after more than 30 years!)

Two-loop terms important in 2- but not in higher n-point functions

System of DSEs closes with this truncation
→ self-contained, quantitative description.

Thank you for your attention.
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