A non-perturbative study of the correlation functions of three-dimensional Yang-Mills theory arXiv:1602.02038

Markus Q. Huber

Institute of Physics, University of Graz

53. Internationale Universitätswochen für Theoretische Physik, Schladming

Feb. 23, 2016

UN

Der Wissenschaftsfonds.

Markus Q. Huber

University of Graz

From Green functions to 'observables'

Basic building blocks of functional equations: n-point functions $\Gamma_{i_1...i_n}$

Effective action: generating functional of 1PI Green functions

$$\Gamma[\Phi] = \sum_{n=0}^{\infty} \frac{1}{n!} \Phi_1 \dots \Phi_n \Gamma_{i_1 \dots i_n}$$

The set of **all** Green functions describes the theory completely.

From Green functions to 'observables'

Basic building blocks of functional equations: n-point functions $\Gamma_{i_1...i_n}$

Effective action: generating functional of 1PI Green functions

$$\Gamma[\Phi] = \sum_{n=0}^{\infty} \frac{1}{n!} \Phi_1 \dots \Phi_n \Gamma_{i_1 \dots i_n}$$

The set of **all** Green functions describes the theory completely.

$$\begin{aligned} & \rightarrow \qquad \Gamma_{ij} = \left. \frac{\delta^2 \Gamma[\Phi]}{\delta \Phi_i \delta \Phi_j} \right|_{\Phi=0}, \\ & \Gamma_{ijk} = \left. \frac{\delta^3 \Gamma[\Phi]}{\delta \Phi_i \delta \Phi_j \delta \Phi_k} \right|_{\Phi=0}, \quad \dots \end{aligned}$$

Green functions \rightarrow 'observables'?

Examples:

- $\, \bullet \,$ Bound state equations $\, \to \,$ masses and properties of hadrons
- (Pseudo-)Order parameters \rightarrow Phases and transitions

DAAA

Landau gauge Yang-Mills theory

Gluonic sector of quantum chromodynamics: Yang-Mills theory

$$\begin{split} \mathcal{L} &= \frac{1}{2} F^2 + \mathcal{L}_{gf} + \mathcal{L}_{gh} \\ F_{\mu\nu} &= \partial_{\mu} \mathbf{A}_{\nu} - \partial_{\nu} \mathbf{A}_{\mu} + i g \left[\mathbf{A}_{\mu}, \mathbf{A}_{\nu} \right] \end{split}$$

Landau gauge

• simplest one for functional equations • $\partial_{\mu} \mathbf{A}_{\mu} = 0$: $\mathcal{L}_{gf} = \frac{1}{2\xi} (\partial_{\mu} \mathbf{A}_{\mu})^2$, $\xi \to 0$ • requires ghost fields: $\mathcal{L}_{gh} = \bar{\mathbf{c}} (-\Box + g \mathbf{A} \times) \mathbf{c}$ $\mathcal{L}_{gh} = \bar{\mathbf{c}} (-\Box + g \mathbf{A} \times) \mathbf{c}$

The tower of DSEs

The tower of DSEs

Infinitely many equations. In QCD, every *n*-point function depends on (n + 1)-and possibly (n + 2)-point functions.

Markus Q. Huber

University of Graz

Truncating the equations

Truncation

- Drop quantities (unimportant?)
- Model quantities (good models available? 'true' or 'effective'?)
- Use fits

Ideally: Find a truncation that has (I) no parameters and yields (II) quantitative results.

Truncating the equations

Truncation

- Drop quantities (unimportant?)
- Model quantities (good models available? 'true' or 'effective'?)
- Use fits

Ideally: Find a truncation that has (I) no parameters and yields (II) quantitative results.

Guides

- Perturbation theory
- Symmetries
- Lattice
- Analytic results

Practical obstacle: Manage the system of equations. → Automatization tools [Alkofer, MQH, Schwenzer '08; Braun, MQH '11; MQH, Mitter '11; http://tinyurl.com/dofun2; http://tinyurl.com/crasydse]

Neglect all non-primitively divergent Green functions.

Neglect all non-primitively divergent Green functions.

Full propagator equations (two-loop diagrams!):

Neglect all non-primitively divergent Green functions.

Full propagator equations (two-loop diagrams!):

Truncated three-point functions:

Truncated four-gluon vertex:

Neglect all non-primitively divergent Green functions.

Full propagator equations (two-loop diagrams!):

Truncated three-point functions:

Truncated four-gluon vertex:

Technical questions: spurious divergences in gluon propagator, RG resummation Markus Q. Huber University of Graz Feb. 23, 2016 6/

Yang-Mills theory in 3 dimensions

Yang-Mills theory in 3 dimensions

d = 3

Historically interesting because cheaper on the lattice \rightarrow easier to reach the IR, e.g., [Cucchieri '99; Cucchieri, Mendes, Taurines '03; Cucchieri, Maas, Mendes, '08; Maas '08, '14; Maas, Pawlowski, Spielmann, Sternbeck, von Smekal '09; Cucchieri, Dudal, Mendes, Vandersickel '11; Bornyakov, Mitrjushkin, Rogalyov '11, '13; Cucchieri, Dudal, Mendes, Vansersickel '16]

Continuum results:

- Coupled propagator DSEs: [Maas, Wambach, Grüter, Alkofer '04]
- (R)GZ: [Dudal, Gracey, Sorella, Vandersickel, Verschelde '08]
- YM + mass term: [Tissier, Wschebor '10, '11]
- DSEs of PT-BFM: [Aguilar, Binosi, Papavassiliou '10]

Markus Q. Huber

University of Graz

Yang-Mills theory in 3 dimensions: Why again?

NB: Numerically not cheaper for functional equations of 2- and 3-point functions.

Yang-Mills theory in 3 dimensions: Why again?

NB: Numerically not cheaper for functional equations of 2- and 3-point functions.

Advantages:

- UV finite: no renormalization, no anomalous running
- Spurious divergences easier to handle

 \Rightarrow Many complications from d = 4 absent!

Subtraction of divergences of gluon propagator (d=4)

- (1) Logarithmic divergences handled by subtraction at p_0 .
- ⁽²⁾ Quadratic divergences subtracted, coefficient $C_{\rm sub}$.

$$Z(p^2)^{-1} := Z_{\Lambda}(p^2)^{-1} - C_{sub}(\Lambda) \left(\frac{1}{p^2} - \frac{1}{p_0^2}\right)$$
calculated right-hand side

Subtraction of divergences of gluon propagator (d=4)

- (1) Logarithmic divergences handled by subtraction at p_0 .
- ² Quadratic divergences subtracted, coefficient $C_{\rm sub}$.

$$Z(p^2)^{-1} := Z_{\Lambda}(p^2)^{-1} - C_{sub}(\Lambda) \left(\frac{1}{p^2} - \frac{1}{p_0^2}\right)$$

$$\uparrow$$
calculated right-hand side

One-loop diagrams with model vertices: C_{sub} can be calculated anlytically, since it is a purely perturbative [MQH, von Smekal '14].

Dynamic vertices? Two-loop diagrams?

Markus Q. Huber

University of Graz

Subtraction of divergences of gluon propagator (d=3)

- Logarithmic divergences handled by subtraction at p₀.
- Quadratic Linear and logarithmic divergences subtracted.

$$Z(p^2)^{-1} := Z_{\Lambda}(p^2)^{-1} - C_{sub}(\Lambda) \left(\frac{1}{p^2} - \frac{1}{p_0^2}\right)$$

$$\uparrow$$
calculated right-hand side

One-loop diagrams with model vertices: C_{sub} can be calculated anlytically, since it is a purely perturbative [MQH, von Smekal '14].

Dynamic vertices? Two-loop diagrams?

Markus Q. Huber

University of Graz

Importance of spurious divergences

Simplification in d = 3:

$$C_{sub} = a \Lambda + b \ln \Lambda$$

 \rightarrow fit (works for numeric vertices and two-loop diagrams)

Importance of spurious divergences

Simplification in d = 3:

$$C_{sub} = a \Lambda + b \ln \Lambda$$

 \rightarrow fit (works for numeric vertices and two-loop diagrams)

Small deviations \rightarrow large effect.

Markus Q. Huber

Results: Propagators

Results: Three-point functions

Results: Three-point functions

Cancellations in gluonic vertices

Three-gluon vertex:

- Individual contributions large.
- Sum is small.

Four-gluon vertex:

Markus Q. Huber

University of Graz

Cancellations in gluonic vertices

Three-gluon vertex:

- Individual contributions large.
- Sum is small.

 \Downarrow

Four-gluon vertex:

Higher contributions:

- Small each or
- 2 cancellations again?

Markus Q. Huber

University of Graz

Non-perturbative gauge fixing

Gribov copies: Gauge equivalent configurations that fulfill the Landau gauge condition $\partial A = 0$.

Up to here the minimal Landau gauge was shown for lattice data.

Non-perturbative gauge fixing

Gribov copies: Gauge equivalent configurations that fulfill the Landau gauge condition $\partial A = 0$.

Up to here the minimal Landau gauge was shown for lattice data.

Another possibility: Absolute Landau gauge (global minimum of gauge fixing functional)

ightarrow Different solutions on the lattice,

e.g. [Maas '09, '11; Cucchieri '97; Bogolubsky et al. '05; Sternbeck, Müller-Preussker '12].

NB: Different solutions also from functional equations [Fischer, Maas, Pawlowski '08].

University of Graz

Feb. 23, 2016

14/17

Non-perturbative gauge fixing

Gribov copies: Gauge equivalent configurations that fulfill the Landau gauge condition $\partial A = 0$.

Up to here the minimal Landau gauge was shown for lattice data.

Another possibility: Absolute Landau gauge (global minimum of gauge fixing functional)

 \rightarrow Different solutions on the lattice,

e.g. [Maas '09, '11; Cucchieri '97; Bogolubsky et al. '05; Sternbeck, Müller-Preussker '12].

NB: Different solutions also from functional equations [Fischer, Maas, Pawlowski '08].

Solution from the 3PI effective action

Different set of functional equations: equations of motion from 3PI effective action (at three-loop level)

Solution from the 3PI effective action

Different set of functional equations: equations of motion from 3PI effective action (at three-loop level)

 \rightarrow Very similar results.

For yet another set of functional equations (functional RG for d = 4), see talk by Mitter and poster by Cyrol.

Comparison d = 3 and d = 4

• Two-loop diagrams important in propagators.

[Blum, MQH, Mitter, von Smekal '14; Meyers, Swanson '14]

- Two-loop diagrams not important in three-gluon vertex.
 [Blum, MQH, Mitter, von Smekal '14; Eichmann, Williams, Alkofer, Vujinovic '14]
- Vertices deviate only mildly from tree-level above 1 GeV.

[Blum, MQH, Mitter, von Smekal '14; Eichmann, Williams, Alkofer, Vujinovic '14; Binosi, Ibanez, Papavassiliou '14; Cyrol, MQH, von Smekal '14]

• RG improvement irrelevant in d = 3. Role in d = 4?

[Eichmann, Williams, Alkofer, Vujinovic '14]

Summary and conclusions

Test truncation effects in d = 3, where spurious divergences and RG resummation are understood:

- Used a self-contained truncation \rightarrow no model parameters.
- Truncation stable under all tested variations:
 - comparison with 3PI
 - changing the four-gluon vertex
 - different DSEs for the ghost-gluon vertex
- Direct relation between different solutions in continuum and on the lattice to be understood.

Summary and conclusions

Test truncation effects in d = 3, where spurious divergences and RG resummation are understood:

- Used a self-contained truncation \rightarrow no model parameters.
- Truncation stable under all tested variations:
 - comparison with 3PI
 - changing the four-gluon vertex
 - different DSEs for the ghost-gluon vertex
- Direct relation between different solutions in continuum and on the lattice to be understood.

Thank you for your attention.