Nonperturbative propagators and vertices from Dyson-Schwinger equations

Markus Q. Huber
arXiv:1808.05227
Institute of Theoretical Physics, Giessen University

JUSTUS-LIEBIG-
(1) GIESSEN

Excited QCD 2019
Schladming, Austria
February 2, 2019

Hadronic bound states

Bound state equations: E.g., meson

Ingredients:

- Interaction kernel K
- Quark propagator S

Hadronic bound states

Bound state equations: E.g., meson

Ingredients:

- Interaction kernel K

Approaches:

- Phenomenological (bottom-up):

Model interactions

- From first principles (top-down): Piecing together the elementary pieces
- Quark propagator S

\rightarrow Talks by Adrien, Miramóntes, Wallbott

Bottom-up vs. top-down

Bottom-up:

- Modeling to describe certain quantities, symmetries as guiding principles
- Example: Rainbow-ladder truncation with Maris-Tandy interaction:

1 function, 2 parameters

$$
\mathcal{G}\left(k^{2}\right)
$$

\rightarrow Good description of, e.g., pseudoscalars

Top-down:

- Parameters of QCD only
- 9 dressings for gluon propagator and quark-gluon vertex: $D\left(k^{2}\right), \Gamma_{i}^{A \bar{q} q}(p, q, r), i=1, \ldots, 8$
\rightarrow Technically complex
- Maximal flexibility \leftrightarrow consistency not easy to achieve

Bottom-up vs. top-down

Bottom-up:

- Modeling to describe certain quantities, symmetries as guiding principles
- Example: Rainbow-ladder truncation with Maris-Tandy interaction:

1 function, 2 parameters

$$
\mathcal{G}\left(k^{2}\right)
$$

\rightarrow Good description of, e.g., pseudoscalars

Top-down:

- Parameters of QCD only
- 9 dressings for gluon propagator and quark-gluon vertex: $D\left(k^{2}\right), \Gamma_{i}^{A \bar{q} q}(p, q, r), i=1, \ldots, 8$
\rightarrow Technically complex
- Maximal flexibility \leftrightarrow consistency not easy to achieve

In the past

Mostly bottom-up (hadron pheno) and top-down with bottom-up admixtures

The elementary pieces

The elementary pieces

Bottom-up:
Effective interaction via $g^{2} D_{\mu \nu}(p) \Gamma_{\mu}(p, q) \rightarrow Z_{2} \widetilde{Z}_{3} D_{\mu \nu}^{(0)}(p) \gamma_{\mu} \mathcal{G}\left((p+q)^{2}\right)$

The elementary pieces

Bottom-up:
Effective interaction via $g^{2} D_{\mu \nu}(p) \Gamma_{\mu}(p, q) \rightarrow Z_{2} \widetilde{Z}_{3} D_{\mu \nu}^{(0)}(p) \gamma_{\mu} \mathcal{G}\left((p+q)^{2}\right)$
Top-down:
Gluon propagator $D_{\mu \nu}\left(p^{2}\right)$:

Quark-gluon vertex $\Gamma_{\mu}(p, q)$:

\rightarrow Couple to infinity of equations.
\rightarrow Gluonic part is crucial. \Rightarrow Understand pure QCD (Yang-Mills theory) first.

Dyson-Schwinger equations

Truncations

- Influence of higher correlation functions?
qualitative? quantitative? negligible?

Truncations

- Influence of higher correlation functions? qualitative? quantitative? negligible?
- Hierarchy of diagrams/correlation functions? negligible diagrams? irrelevant correlation functions for specific questions?

Truncations

- Influence of higher correlation functions?
qualitative? quantitative? negligible?
- Hierarchy of diagrams/correlation functions?
negligible diagrams? irrelevant correlation functions for specific questions?
- Model dependence \leftrightarrow Self-contained truncation?
conflicting requirements for models? parameter-free solution?

Truncations

- Influence of higher correlation functions?
qualitative? quantitative? negligible?
- Hierarchy of diagrams/correlation functions?
negligible diagrams? irrelevant correlation functions for specific questions?
- Model dependence \leftrightarrow Self-contained truncation?
conflicting requirements for models? parameter-free solution?
- How to realize resummation?
higher loop contributions?

Truncations

- Influence of higher correlation functions?
qualitative? quantitative? negligible?
- Hierarchy of diagrams/correlation functions?
negligible diagrams? irrelevant correlation functions for specific questions?
- Model dependence \leftrightarrow Self-contained truncation?
conflicting requirements for models? parameter-free solution?
- How to realize resummation?
higher loop contributions?
- Systematics and tests?
comparison to other methods, self-tests?

Example of a bottom-up calculation

Propagators and ghost-gluon vertex with three-gluon vertex model:
One-loop truncation of gluon propagator with an optimized effective model (contains zero crossing) [MQH, von Smekal '13; lattice: Sternbeck '06]:

Good quantitative agreement for ghost and gluon dressings.

Example of a bottom-up calculation

Propagators and ghost-gluon vertex with three-gluon vertex model:
One-loop truncation of gluon propagator with an optimized effective model (contains zero crossing) [MQH, von Smekal '13; lattice: Sternbeck '06]:

Good quantitative agreement for ghost and gluon dressings.
QCD is only this:

$$
\begin{aligned}
& \left.\mathcal{L}=-\frac{1}{2} T_{r}\left(F_{\mu r} F^{\mu \prime}\right)+\sum_{j} \bar{q}_{j}\left[\gamma \psi D_{\mu}-m_{j}\right] \varphi_{j}\right] \\
& \text { WOOEI } \quad F_{\omega \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}+i g\left[A_{\nu}, A_{V}\right] \\
& \text { WNO } D_{\mu}=\partial_{\mu}+i g A_{\nu}
\end{aligned}
$$

Can we do with only that?

A lesson from three dimensions?

Three-dimensional Yang-Mills theory is finite.
\rightarrow No renormalization
\rightarrow Leading pertubative contributions $\propto g^{2} / p$
\Rightarrow Testbed for functional calculations.

Various methods employed:

- Lattice: [Bornyakov, Cucchieri, Maas, Mendes, Mitrjushkin, Rogalyov, ...]
- Coupled propagator DSEs: [Maas, Wambach, Grüter, Alkofer '04]
- (R)GZ: [Dudal, Gracey, Sorella, Vandersickel, Verschelde '08]
- DSEs of PT-BFM: [Aguilar, Binosi, Papavassiliou '10]
- YM + mass term: [Tissier, Wschebor '10, '11]
- FRG: [Corell, Cyrol, Mitter, Pawlowski, Strodthoff '18]

A lesson from three dimensions?

Three-dimensional Yang-Mills theory is finite.
\rightarrow No renormalization
\rightarrow Leading pertubative contributions $\propto g^{2} / p$
\Rightarrow Testbed for functional calculations.

Various methods employed:

- Lattice: [Bornyakov, Cucchieri, Maas, Mendes, Mitrjushkin, Rogalyov, ...]
- Coupled propagator DSEs: [Maas, Wambach, Grüter, Alkofer '04]
- (R)GZ: [Dudal, Gracey, Sorella, Vandersickel, Verschelde '08]
- DSEs of PT-BFM: [Aguilar, Binosi, Papavassiliou '10]
- YM + mass term: [Tissier, Wschebor '10, '11]
- FRG: [Corell, Cyrol, Mitter, Pawlowski, Strodthoff '18]

Study effect of individual diagrams. . .

Cancellations in three-gluon vertex

[MQH '16; lattice: Cucchieri, Maas, Mendes '08]

- Close to tree-level above 1 GeV
- Good agreement with lattice data.
- Linear IR divergence [Pelaez, Tissier, Wschebor '13; Aguilar et al. '13]
- Similar results from FRG [Corell et al. '18]

Cancellations in three-gluon vertex

[MQH '16; lattice: Cucchieri, Maas, Mendes '08]

[MQH '16]

Cancellations in three-gluon vertex

[MQH '16; lattice: Cucchieri, Maas, Mendes '08]

[MQH '16]

A question of consistency?
 The UV behavior of the gluon propagator

Resummed one-loop order: anomalous dimension $\gamma=-13 / 22$

$$
\left(1+\frac{\alpha(s) 11 N_{c}}{12 \pi} \ln \frac{p^{2}}{s}\right)^{\gamma}
$$

A question of consistency?

The UV behavior of the gluon propagator

Resummed one-loop order: anomalous dimension $\gamma=-13 / 22$

$$
\left(1+\frac{\alpha(s) 11 N_{c}}{12 \pi} \ln \frac{p^{2}}{s}\right)^{\gamma}
$$

One-loop anomalous dimension

Origin in resummation of higher order diagrams.
However, one-loop truncation discards some terms.

A question of consistency?

The UV behavior of the gluon propagator

Resummed one-loop order: anomalous dimension $\gamma=-13 / 22$

$$
\left(1+\frac{\alpha(s) 11 N_{c}}{12 \pi} \ln \frac{p^{2}}{s}\right)^{\gamma}
$$

One-loop anomalous dimension

Origin in resummation of higher order diagrams.
However, one-loop truncation discards some terms.

\rightarrow Puts constraints on UV behavior of vertices if one wants a self-consistent solution [von Smekal, Hauck, Alkofer '97].

Fixing the UV behavior of the gluon propagator I

First possibility:
Modify the UV behavior of the integrand, e.g., replace the renormalization constant by a momentum dependent function [von Smekal, Hauck, Alkofer '97] ('RG improvement'), adapt employed models.

$$
\tilde{Z}_{1} \rightarrow f\left(p^{2}\right)
$$

Part of the modeling.

Fixing the UV behavior of the gluon propagator I

First possibility: Modify the UV behavior of the integrand, e.g., replace the renormalization constant by a momentum dependent function [von Smekal, Hauck, Alkofer '97] ('RG improvement'), adapt employed models.

$$
\tilde{Z}_{1} \rightarrow f\left(p^{2}\right)
$$

Part of the modeling.
Examples:

- Yang-Mills propagators, e.g., [von Smekal, Hauck, Alkofer '97; Fischer, Alkofer '02; MQH, von Smekal '12, '14]
- quark propagator: e.g., [Maris, Tandy '97]

Fixing the UV behavior of the gluon propagator I

First possibility: Modify the UV behavior of the integrand, e.g., replace the renormalization constant by a momentum dependent function [von Smekal, Hauck, Alkofer '97] ('RG improvement'), adapt employed models.

$$
\widetilde{Z}_{1} \rightarrow f\left(p^{2}\right)
$$

Part of the modeling.
Examples:

- Yang-Mills propagators, e.g., [von Smekal, Hauck, Alkofer '97; Fischer, Alkofer '02; MQH, von Smekal '12, '14]
- quark propagator: e.g., [Maris, Tandy '97]

IR completion has an effect on the gluon propagator [MQH, von Smekal '14]:

Fixing the UV behavior of the gluon propagator II

Second possibility:
Include higher perturbative terms.
Worked out analytically for ϕ^{3}-theory [MQH '18].

Fixing the UV behavior of the gluon propagator II

Second possibility:
Include higher perturbative terms.
Worked out analytically for ϕ^{3}-theory [MQH '18].
\rightarrow Two-loop diagrams

Fixing the UV behavior of the gluon propagator II

Second possibility: Include higher perturbative terms.
Worked out analytically for ϕ^{3}-theory [MQH '18].
\rightarrow Two-loop diagrams

\rightarrow Contributions also from renormalization constants in front of one-loop diagrams.

\Rightarrow All two-loop contributions in the gluon propagator are included.
And higher contributions...

Resummed behavior

Minimal requirements to obtain one-loop resummed behavior:

- Squint diagram (sunset has no $g^{4} \ln ^{2} p^{2}$)
- Correct anomalous dimensions of three-point functions
- Correct renormalization (constants)

Resummed behavior

Minimal requirements to obtain one-loop resummed behavior:

- Squint diagram (sunset has no $g^{4} \ln ^{2} p^{2}$)
- Correct anomalous dimensions of three-point functions
- Correct renormalization (constants)

Resummed behavior is recovered [MQH '17].

Extending truncations

Various ways to extend truncations.

Extension of the previous one:

- Vertex tensors beyond tree-level tensor
- Include neglected diagrams
- Include neglected correlation functions

Extensions also test the previous truncations!

Three-gluon vertex DSE

[Cucchieri, Maas, Mendes '08; Alkofer, MQH, Schwenzer '09; Pelaez, Tissier, Wschebor '13; Aguilar et al. '13; Blum, et al. '14; Eichmann, Alkofer, Vujinovic '14; Cyrol et al. '16; Williams, Fischer, Heupel '16; Sternbeck '16; Athenodorou et al. 16; Duarte et al. '16; Boucaud et al. '17]

Three-gluon vertex DSE

[Cucchieri, Maas, Mendes '08; Alkofer, MQH, Schwenzer '09; Pelaez, Tissier, Wschebor '13; Aguilar et al. '13; Blum, et al. '14; Eichmann, Alkofer, Vujinovic '14; Cyrol et al. '16; Williams, Fischer, Heupel '16; Sternbeck '16; Athenodorou et al. 16; Duarte et al. '16; Boucaud et al. '17]

Full DSE:

Three-gluon vertex DSE

[Cucchieri, Maas, Mendes '08; Alkofer, MQH, Schwenzer '09; Pelaez, Tissier, Wschebor '13; Aguilar et al. '13; Blum, et al. '14; Eichmann, Alkofer, Vujinovic '14; Cyrol et al. '16; Williams, Fischer, Heupel '16; Sternbeck '16; Athenodorou et al. 16; Duarte et al. '16; Boucaud et al. '17]

Full DSE:

Perturbative one-loop truncation [Blum, MQH, Mitter von Smekal '14; Eichmann, Alkofer, Vujinovic '14; Williams, Fischer, Heupel '16]:

Three-gluon vertex DSE

[Cucchieri, Maas, Mendes '08; Alkofer, MQH, Schwenzer '09; Pelaez, Tissier, Wschebor '13; Aguilar et al. '13; Blum, et al. '14; Eichmann, Alkofer, Vujinovic '14; Cyrol et al. '16; Williams, Fischer, Heupel '16; Sternbeck '16; Athenodorou et al. 16; Duarte et al. '16; Boucaud et al. '17]

Full DSE:

Non-perturbative one-loop truncation [MQH '17]:

Three-gluon vertex: Kinematic dependence

Influence of two-ghost-two-gluon vertex

Influence of two-ghost-two-gluon vertex

Coupled system of ghost-gluon, three-gluon and four-gluon vertices with and without two-ghost-two-gluon vertex [MQH '17]:

Influence of two-ghost-two-gluon vertex

Coupled system of ghost-gluon, three-gluon and four-gluon vertices with and without two-ghost-two-gluon vertex [MQH '17]:

- Small influence on ghost-gluon vertex ($<1.7 \%$)
- Negligible influence on three- and four-gluon vertices.

Three-gluon vertex results

Three-gluon vertex results

Three-gluon vertex results

Three-gluon vertex results

- Two-loop truncation: All diagrams except the one with a five-point function.
- One-momentum configuration approximation.

Three-gluon vertex results

- Difference between two-loop DSE and 3 PI smaller than lattice error.
- Zero crossing in agreement with other approaches, e.g., [Pelaez et al. '13; Aguilar et al. '13; Cyrol et al. '15; Athenodorou et al. '16; Duarte et al. '16; Sternbeck et al. '17]

The two-ghost-two-gluon vertex

Non-primitively divergent correlation function \rightarrow No guide from tree-level tensor. \rightarrow Use full basis.

The two-ghost-two-gluon vertex

Non-primitively divergent correlation function \rightarrow No guide from tree-level tensor. \rightarrow Use full basis.

Two-ghost-two-gluon vertex

$\Gamma_{\mu \nu}^{A A \bar{c} c, a b c d}(p, q ; r, s)=g^{4} \sum_{k=1}^{40} \rho_{\mu \nu}^{k, a b c d} D_{k(i, j)}^{A A \bar{c} c}(p, q ; r, s)$
with

$$
\rho_{\mu \nu}^{k, a b c d}=\sigma_{i}^{a b c d} \tau_{\mu \nu}^{j}, \quad k=k(i, j)=5(i-1)+j
$$

The two-ghost-two-gluon vertex DSE

2 DSEs, choose the one with the ghost leg attached to the bare vertex \rightarrow Truncation discards only one diagram.

The two-ghost-two-gluon vertex DSE

2 DSEs, choose the one with the ghost leg attached to the bare vertex \rightarrow Truncation discards only one diagram.

Results for the two-ghost-two-gluon vertex

Kinematic approximation: one-momentum configuration

- Dimensionless dressing functions \bar{D}_{k}.
- Each plot one Lorentz tensor.

\rightarrow Two classes of dressings: 13 very small, 12 not small
\rightarrow No nonzero solution for $\left\{\sigma_{6}, \sigma_{7}, \sigma_{8}\right\}$ found.

3PI system of primitively divergent correlation functions

Three-loop expansion of 3PI effective action [Berges '04]:

Results for fully coupled 3PI system

Results for fully coupled 3PI system

Results for fully coupled 3PI system

- Details of renormalization crucial!
- Other details also important.
- Very small angle dependence of three-gluon vertex.
- Slight bending down of gluon propagator in IR.

[lattice: Cucchieri,
Maas, Mendes '08]

Open checks

- Effects of larger tensor bases, in particular of the three-gluon vertex
- Renormalization

What tests can be done?

Couplings

Couplings can be defined from every vertex, e.g., [Allés et al. '96; Alkofer et al., '05; Eichmann et al. '14]:

$$
\begin{aligned}
\alpha_{\text {ghg }}\left(p^{2}\right) & =\alpha\left(\mu^{2}\right)\left(D^{A \bar{c} c}\left(p^{2}\right)\right)^{2} G^{2}\left(p^{2}\right) Z\left(p^{2}\right) \\
\alpha_{3 \mathrm{~g}}\left(p^{2}\right) & =\alpha\left(\mu^{2}\right)\left(C^{A A A}\left(p^{2}\right)\right)^{2} Z^{3}\left(p^{2}\right) \\
\alpha_{4 \mathrm{~g}}\left(p^{2}\right) & =\alpha\left(\mu^{2}\right) F^{A A A A}\left(p^{2}\right) Z^{2}\left(p^{2}\right)
\end{aligned}
$$

They must agree perturbatively (STIs).
This agreement is important also in coupled systems of functional equations and constitutes a highly non-trivial check of a truncation [Mitter, Pawlowski, Strodthoff '14].

Couplings

Couplings can be defined from every vertex, e.g., [Allés et al. '96; Alkofer et al., '05; Eichmann et al. '14]:

$$
\begin{aligned}
\alpha_{\text {ghg }}\left(p^{2}\right) & =\alpha\left(\mu^{2}\right)\left(D^{A \bar{c} c}\left(p^{2}\right)\right)^{2} G^{2}\left(p^{2}\right) Z\left(p^{2}\right) \\
\alpha_{3 \mathrm{~g}}\left(p^{2}\right) & =\alpha\left(\mu^{2}\right)\left(C^{A A A}\left(p^{2}\right)\right)^{2} Z^{3}\left(p^{2}\right) \\
\alpha_{4 \mathrm{~g}}\left(p^{2}\right) & =\alpha\left(\mu^{2}\right) F^{A A A A}\left(p^{2}\right) Z^{2}\left(p^{2}\right)
\end{aligned}
$$

They must agree perturbatively (STIs). This agreement is important also in coupled systems of functional equations and constitutes a highly non-trivial check of a truncation [Mitter, Pawlowski, Strodthoff '14].

Ghost-gluon vs. other couplings: Further checks required.

Renormalization with a hard UV cutoff

Introduces quadratic divergences.
Note: Appears already perturbatively!

Renormalization with a hard UV cutoff

Introduces quadratic divergences.
Note: Appears already perturbatively!

The breaking of gauge covariance by the UV regularization leads to spurious (quadratic) divergences.

Due to the anomalous running, this behaves as (at one-loop resummed level)

$$
\frac{\Lambda_{\mathrm{QCD}}^{2}}{p^{2}}(-1)^{2 \delta} \Gamma\left(1+2 \delta,-\ln \left(\Lambda^{2} / \Lambda_{\mathrm{QCD}}^{2}\right)\right)
$$

Many ways to deal with them, e.g., Brown-Pennington projector, modifications of integrands/vertices, fitting, seagull identities, ... [MQH, von Smekal '14].

Examples for renormalization with a hard UV cutoff

Here: Second renormalization condition
Breaking of gauge covariance \rightarrow mass counter term [Collins '84]
Renormalization condition: $D(0)=c$ [Meyers, Swanson '14]

Examples for renormalization with a hard UV cutoff

Here: Second renormalization condition

Breaking of gauge covariance \rightarrow mass counter term [Collins '84]
Renormalization condition: $D(0)=c$ [Meyers, Swanson '14]

Extreme example: One-loop truncation with bare vertices in three dimensions [MQH '16].

Better example: Full system with one-momentum configuration approximation.

Results for fully coupled 3PI system revisited

Vary the renormalization condition $D(0)$:

Results for fully coupled 3PI system revisited

Vary the renormalization condition $D(0)$:

\rightarrow Two solutions on top of each other. $D(0)$ is not a parameter of the system.
\rightarrow Provides a self-test of a truncation.

Summary and conclusions

Towards a systematic understanding of truncations of functional equations to access their full potential.

Summary and conclusions

Towards a systematic understanding of truncations of functional equations to access their full potential.

Infinite set of equations with no evident hierarchy. . . Is there hope?

Summary and conclusions

Towards a systematic understanding of truncations of functional equations to access their full potential.

Infinite set of equations with no evident hierarchy. . . Is there hope?

- After some work ($\gtrsim 35$ years) \rightarrow Hierarchy of correlation functions exists.

Summary and conclusions

Towards a systematic understanding of truncations of functional equations to access their full potential.

Infinite set of equations with no evident hierarchy. . . Is there hope?

- After some work ($\gtrsim 35$ years) \rightarrow Hierarchy of correlation functions exists. Is it feasible?

Summary and conclusions

Towards a systematic understanding of truncations of functional equations to access their full potential.

Infinite set of equations with no evident hierarchy. . . Is there hope?

- After some work ($\gtrsim 35$ years) \rightarrow Hierarchy of correlation functions exists. Is it feasible?
- Negligible diagrams identified.
- Maybe even negligible correlation functions.
- Sensible kinematic approximations in some cases.

Summary and conclusions

Towards a systematic understanding of truncations of functional equations to access their full potential.

Infinite set of equations with no evident hierarchy. . . Is there hope?

- After some work ($\gtrsim 35$ years) \rightarrow Hierarchy of correlation functions exists.

Is it feasible?

- Negligible diagrams identified.
- Maybe even negligible correlation functions.
- Sensible kinematic approximations in some cases.

Is it reliable?

Summary and conclusions

Towards a systematic understanding of truncations of functional equations to access their full potential.

Infinite set of equations with no evident hierarchy. . . Is there hope?

- After some work ($\gtrsim 35$ years) \rightarrow Hierarchy of correlation functions exists.

Is it feasible?

- Negligible diagrams identified.
- Maybe even negligible correlation functions.
- Sensible kinematic approximations in some cases.

Is it reliable?

- Self-tests are possible.

Summary and conclusions

Towards a systematic understanding of truncations of functional equations to access their full potential.

Infinite set of equations with no evident hierarchy. . . Is there hope?

- After some work ($\gtrsim 35$ years) \rightarrow Hierarchy of correlation functions exists. Is it feasible?
- Negligible diagrams identified.
- Maybe even negligible correlation functions.
- Sensible kinematic approximations in some cases.

Is it reliable?

- Self-tests are possible.

Outlook and possibilities:

- Non-classical tensors in gluonic vertices
- Add quarks
- Finite temperature

Summary and conclusions

Towards a systematic understanding of truncations of functional equations to access their full potential.

Infinite set of equations with no evident hierarchy. . . Is there hope?

- After some work ($\gtrsim 35$ years) \rightarrow Hierarchy of correlation functions exists. Is it feasible?
- Negligible diagrams identified.
- Maybe even negligible correlation functions.
- Sensible kinematic approximations in some cases.

Is it reliable?

- Self-tests are possible.

Outlook and possibilities:

- Non-classical tensors in gluonic vertices
- Add quarks
- Bound states
- Finite temperature

Four-gluon vertex

Four-point functions have 6 kinematic variables.
Organize via S_{4} permutation group [Eichmann, Fischer, Heupel '15] and restrict to singlet and doublet. \rightarrow Three variables.

Four-gluon vertex

Four-point functions have 6 kinematic variables.
Organize via S_{4} permutation group [Eichmann, Fischer, Heupel '15] and restrict to singlet and doublet. \rightarrow Three variables.

Deviations from leading perturbative behavior small, but larger angle dependence than three-gluon vertex.

Results for the four-ghost vertex

Kinematic approximation: one-momentum configuration

Four-ghost vertex

$$
\Gamma^{\bar{c} \bar{c} c c, a b c d}(p, q, r, s)=g^{4} \sum_{k=1}^{8} \sigma^{k, a b c d} E_{k}^{\bar{c} \bar{c} c c}(p, q, r, s) .
$$

Results for the four-ghost vertex

Kinematic approximation: one-momentum configuration

Four-ghost vertex

$$
\Gamma^{\bar{c} \bar{c} c c, a b c d}(p, q, r, s)=g^{4} \sum_{k=1}^{8} \sigma^{k, a b c d} E_{k}^{\bar{c} \bar{c} c c}(p, q, r, s) .
$$

\rightarrow All dressings very small.

