Landau gauge correlation functions from Dyson-Schwinger equations

Markus Q. Huber

Institute of Physics, University of Graz

Bound states in QCD and beyond II, St. Goar, Germany

Feb. 22, 2017

Markus Q. Huber

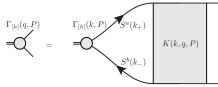
University of Graz

Feb. 22, 2017

Hadrons from bound state equations

Calculation of bound states from QCD correlation functions:

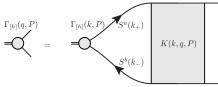
Meson BSE:



Hadrons from bound state equations

Calculation of bound states from QCD correlation functions:

Meson BSE:

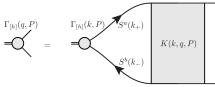


• Make an ansatz for the kernel K, e.g., ladder-type.

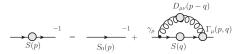
Hadrons from bound state equations

Calculation of bound states from QCD correlation functions:

Meson BSE:



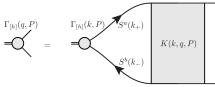
- Make an ansatz for the kernel K, e.g., ladder-type.
- Solve the quark gap equation.



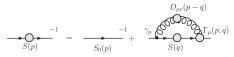
Hadrons from bound state equations

Calculation of bound states from QCD correlation functions:

Meson BSE:



- Make an ansatz for the kernel K, e.g., ladder-type.
- Solve the quark gap equation.

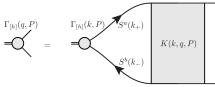


• Make ansatz for the gluon propagator $D_{\mu\nu}$ and the quark-gluon vertex Γ_{μ} , e.g., rainbow + effective interaction

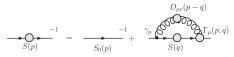
Hadrons from bound state equations

Calculation of bound states from QCD correlation functions:

Meson BSE:



- Make an ansatz for the kernel K, e.g., ladder-type.
- Solve the quark gap equation.



- Make ansatz for the gluon propagator $D_{\mu\nu}$ and the quark-gluon vertex Γ_{μ} , e.g., rainbow + effective interaction
- Constraints by chiral symmetry!

Markus Q. Huber

Correlation functions from first principles

Widely used truncation: Rainbow + ladder + variant of Maris-Tandy interaction

How to reduce model dependence

- Improve kernel K
- Use explicit gluon propagator + quark-gluon vertex

Correlation functions from first principles

Widely used truncation: Rainbow + ladder + variant of Maris-Tandy interaction

How to reduce model dependence

- Improve kernel K
- Use explicit gluon propagator + quark-gluon vertex

 \longrightarrow We need full control over the gluonic sector.

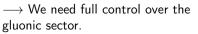
- Gluon propagator
- Three-gluon vertex
- ...?

Correlation functions from first principles

Widely used truncation: Rainbow + ladder + variant of Maris-Tandy interaction

How to reduce model dependence

- Improve kernel K
- Use explicit gluon propagator + quark-gluon vertex



- Gluon propagator
- Three-gluon vertex
- ...?

Side note: QCD phase diagram

d = 4

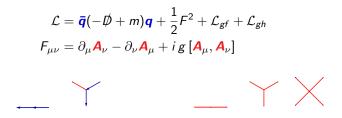
- No sign problem ©
- Truncation problem 🙂
- \rightarrow Ultimately, we need full control over the gluonic sector.

Markus Q. Huber

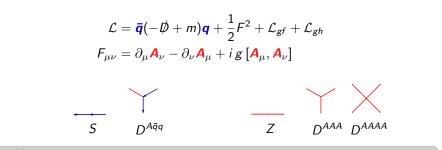
University of Graz

Feb. 22, 2017

Landau gauge QCD



Landau gauge QCD

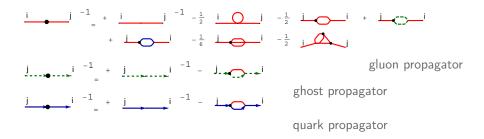


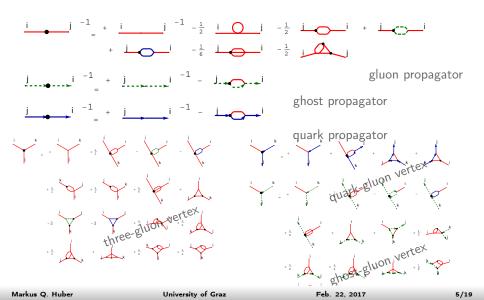
Landau gauge

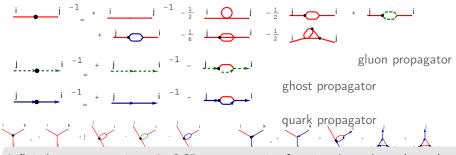
• simplest one for functional equations

•
$$\partial_{\mu} \mathbf{A}_{\mu} = 0$$
: $\mathcal{L}_{gf} = \frac{1}{2\xi} (\partial_{\mu} \mathbf{A}_{\mu})^2, \quad \xi \to 0$

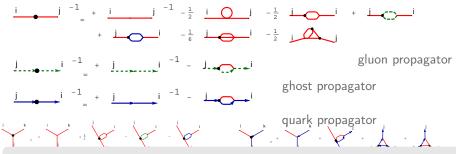
• requires ghost fields: $\mathcal{L}_{gh} = \bar{c} \left(-\Box + g \mathbf{A} \times \right) c$







Infinitely many equations. In QCD, every *n*-point function depends on (n + 1)-and possibly (n + 2)-point functions.

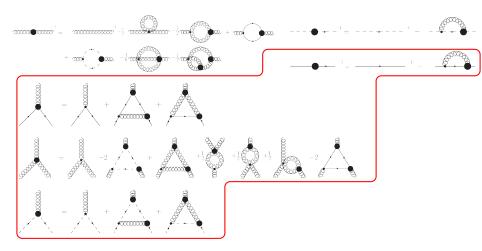


Infinitely many equations. In QCD, every *n*-point function depends on (n + 1)-and possibly (n + 2)-point functions.

Is it possible to find and solve a truncation with all relevant contributions?

Introduction

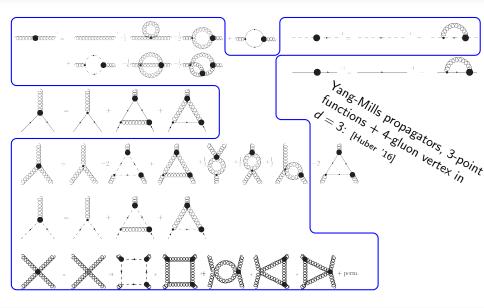
Dyson-Schwinger equations: Truncations



quark propagator + 3-point functions: [Williams, Fischer, Heupel '15]

Introduction

Dyson-Schwinger equations: Truncations



Yang-Mills theory

Truncations: From qualitative to quantitative level. → Testing required.
Glueballs!

Yang-Mills theory

Truncations: From qualitative to quantitative level. → Testing required.
Glueballs!

Solving the gluon propagator DSE:

- Requires ghost propagator and three- and four-point functions
- Some hidden obstacles: correct UV behavior, spurious divergences

d = 3 Yang-Mills theory as testing ground

Advantages:

- UV finite: no renormalization, no anomalous running
- Spurious divergences easier to handle
- UV behavior 'easier'

 \Rightarrow Many complications from d = 4 absent. \rightarrow Focus on truncation effects.

d = 3 Yang-Mills theory as testing ground

Advantages:

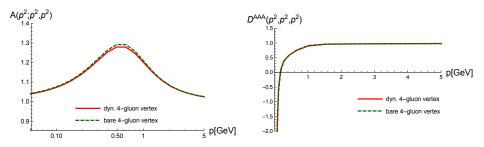
- UV finite: no renormalization, no anomalous running
- Spurious divergences easier to handle
- UV behavior 'easier'

 \Rightarrow Many complications from d = 4 absent. \rightarrow Focus on truncation effects.

Historically interesting because cheaper on the lattice \rightarrow easier to reach the IR.

However: Numerically not cheaper for functional equations of 2- and 3-point functions.

Three-point functions



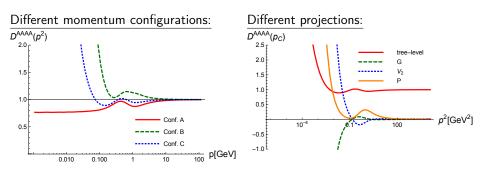
Ghost-gluon vertex:

 Deviation from tree-level in midmomentum 'small'

Three-gluon vertex:

- ${\scriptstyle \bullet }$ Close to tree-level above 1 GeV
- Non-tree-level dressings negligible
 - [d=4: Eichmann, Williams, Alkofer, Vujinovic '14]

Four-gluon vertex

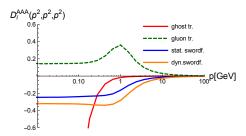


Four-gluon vertex:

- Close to tree-level down to 1 GeV
- \rightarrow Corrections small individually?

Cancellations in gluonic vertices

Three-gluon vertex:

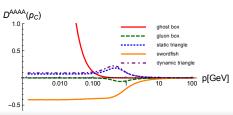


Individual contributions large.

d = 4

• Sum is small!

Four-gluon vertex:

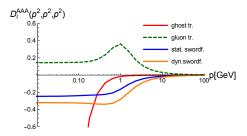


Markus Q. Huber

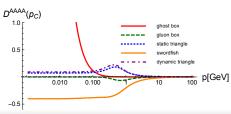
University of Graz

Cancellations in gluonic vertices

Three-gluon vertex:



Four-gluon vertex:



• Individual contributions large.

d = 4

• Sum is small!

∜

Higher contributions:

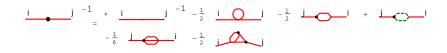
- Higher vertices close to 'tree-level'? \rightarrow Small.
- If pattern changes (higher vertices large): cancellations required.

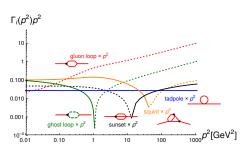
Markus Q. Huber

University of Graz

Feb. 22, 2017

Gluon propagator: Single diagrams





- Squint important in midmomentum regime.
- Sunset contribution small.

d = 4

Solution from the 3PI effective action

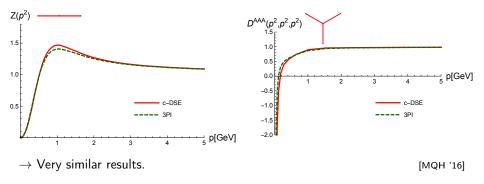
Different set of functional equations:

equations of motion from 3PI effective action (at three-loop level)

Solution from the 3PI effective action

Different set of functional equations:

equations of motion from 3PI effective action (at three-loop level)



UV behavior of the gluon propagator

Resummed one-loop order: anomalous dimension $\gamma = -13/22$ One-loop truncation:

UV behavior of the gluon propagator

Resummed one-loop order: anomalous dimension $\gamma = -13/22$ One-loop truncation:

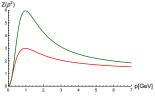
Self-consistent solution puts constraints on UV behavior of vertices [von Smekal, Hauck, Alkofer '97]:

- Ghost-gluon vertex: $\sim const. \rightarrow \checkmark$
- Three-gluon vertex: $\propto (\log p)^{17/22}$ Anomalous dimension $\gamma_{3g} = 17/44 \rightarrow \odot$ Solutions: $Z_1 \rightarrow Z_1(p^2) \leftrightarrow$ modified three-gluon vertex model [von Smekal, Hauck, Alkofer '97; Fischer, Alkofer '02]

Truncation artifact!

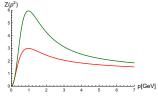
Markus Q. Huber

• Resolving the UV behavior within this truncation leads to an additional parameter dependence \rightarrow part of the model Extreme example: $z_{(p^2)}$



- Study for three-gluon vertex: [Eichmann, Williams, Alkofer, Vujinovic '14]
- However, correct UV behavior is minimal demand on truncation and also required for self-consistency.

• Resolving the UV behavior within this truncation leads to an additional parameter dependence \rightarrow part of the model Extreme example: $z_{(p^2)}$



- Study for three-gluon vertex: [Eichmann, Williams, Alkofer, Vujinovic '14]
- However, correct UV behavior is minimal demand on truncation and also required for self-consistency.

One-loop anomalous dimension

Origin in resummation of higher order diagrams.

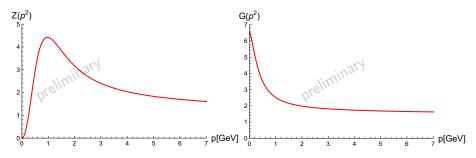
- Some are included in truncation.
- Some are missing, e.g., squint diagram.
- Sunset does not contribute at $O(g^4)$.

Minimal requirements to obtain one-loop resummed behavior:

- Squint diagram
- Proper models for three-point functions (with correct anom. dimensions)

Minimal requirements to obtain one-loop resummed behavior:

- Squint diagram
- Proper models for three-point functions (with correct anom. dimensions)



[propagator eqs. full, 3-point models, bare 4-gluon vertex]

- Resummed behavior is recovered.
- Coupling: Consistent with results for $N_f = 0$ from lattice: [Sternbeck, Maltman, Müller-Preussker, on Smekal '12]

Markus Q. Huber

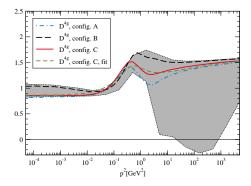
University of Graz

Feb. 22, 2017

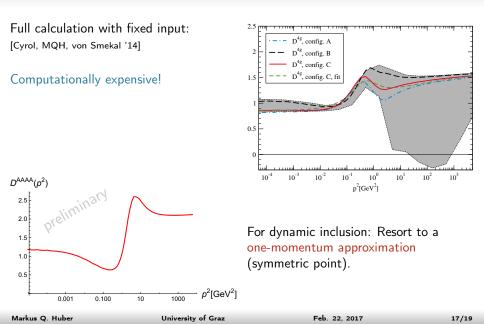
Four-gluon vertex

Full calculation with fixed input: [Cyrol, MQH, von Smekal '14]

Computationally expensive!



Four-gluon vertex



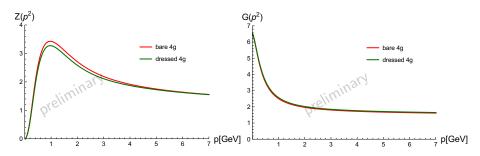
Effect of four-gluon vertex

Three-gluon vertex: Important for convergence within current truncations in d = 4 [Blum, MQH, Mitter, von Smekal '14; Eichmann, Williams, Alkofer, Vujinovic '14]

Effect of four-gluon vertex

Three-gluon vertex: Important for convergence within current truncations in d = 4 [Blum, MQH, Mitter, von Smekal '14; Eichmann, Williams, Alkofer, Vujinovic '14]

In gluon propagator: Via sunset diagram, small contribution of tree-level dressing



[propagator eqs. full, 3-gluon model, ghost-gluon dyn., 4-gluon fixed]

Markus Q. Huber

University of Graz

Feb. 22, 2017

Summary and conclusions

Test truncation effects in d = 3, where spurious divergences and RG resummation are understood [Huber '16]:

- Truncation stable under all tested variations:
 - comparison with 3PI
 - changing the four-gluon vertex
 - different DSEs for the ghost-gluon vertex
- Hierarchy of diagrams identified.

Summary and conclusions

Test truncation effects in d = 3, where spurious divergences and RG resummation are understood [Huber '16]:

- Truncation stable under all tested variations:
 - comparison with 3PI
 - changing the four-gluon vertex
 - different DSEs for the ghost-gluon vertex
- Hierarchy of diagrams identified.

Extension to d = 4:

- Renormalization: Anomalous running
- Two-loop diagrams: Required quantitatively and for self-consistency
- Ghost-gluon vertex, four-gluon vertex included

Outlook:

- Include three-gluon vertex dynamically
- Unquenching

Summary and conclusions

Test truncation effects in d = 3, where spurious divergences and RG resummation are understood [Huber '16]:

- Truncation stable under all tested variations:
 - comparison with 3PI
 - changing the four-gluon vertex
 - different DSEs for the ghost-gluon vertex
- Hierarchy of diagrams identified.

Extension to d = 4:

- Renormalization: Anomalous running
- Two-loop diagrams: Required quantitatively and for self-consistency
- Ghost-gluon vertex, four-gluon vertex included

Outlook:

- Include three-gluon vertex dynamically
- Unquenching

Thank you for your attention!

Markus Q. Huber

University of Graz

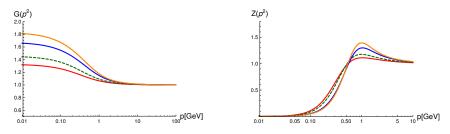
Feb. 22, 2017

Family of solutions

Cf. FRG results: Bare mass parameter from modified STIs [Cyrol, Fister, Mitter, Pawlowski, Strodthoff '16].

DSEs: Enforce family of solutions by fixing the gluon propagator at $p^2 = 0$.

Simple toy system with bare vertices [MQH, 1606.02068]:



 \Rightarrow Possibility of family of solutions.

NB: Effect overestimated here since vertices are fixed.

Markus Q. Huber

University of Graz

Feb. 22, 2017