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Hadrons from bound state equations

Calculation of bound states from QCD correlation functions:

Meson BSE:

Make an ansatz for the kernel K , e.g., ladder-type.
Solve the quark gap equation.

Make ansatz for the gluon propagator Dµν and the quark-gluon vertex Γµ,
e.g., rainbow + effective interaction

Constraints by chiral symmetry!
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Correlation functions from first principles

Widely used truncation: Rainbow + ladder + variant of Maris-Tandy interaction

How to reduce model dependence
Improve kernel K
Use explicit gluon propagator + quark-gluon vertex

−→ We need full control over the
gluonic sector.

Gluon propagator
Three-gluon vertex
. . . ?

Side note: QCD phase diagram
No sign problem ,

Truncation problem /

→ Ultimately, we need full
control over the gluonic sector.
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Landau gauge QCD

L = q̄(− /D +m)q +
1
2
F 2 + Lgf + Lgh
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The tower of DSEs

gluon propagator

ghost propagator

quark propagator
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Infinitely many equations. In QCD, every n-point function depends on (n + 1)-
and possibly (n + 2)-point functions.

Is it possible to find and solve a truncation with all relevant contributions?
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Dyson-Schwinger equations: Truncations

quark propagator + 3-point functions: [Williams, Fischer, Heupel ’15]
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Dyson-Schwinger equations: Truncations

= −2 + +1
2 + + + perm.

Yang-Mills propagators, 3-point

functions + 4-gluon vertex in

d = 3: [Huber ’16]
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Yang-Mills theory

Truncations: From qualitative to quantitative level. → Testing required.
Glueballs!

Solving the gluon propagator DSE:

Requires ghost propagator and three- and four-point functions
Some hidden obstacles: correct UV behavior, spurious divergences
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d = 3 Yang-Mills theory as testing ground

Advantages:
UV finite: no renormalization, no anomalous running
Spurious divergences easier to handle
UV behavior ’easier’

⇒ Many complications from d = 4 absent. → Focus on truncation effects.

Historically interesting because cheaper on the lattice → easier to reach the IR.

However: Numerically not cheaper for functional equations of 2- and 3-point
functions.
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Three-point functions

dyn. 4-gluon vertex

bare 4-gluon vertex
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A(p2;p2,p2)

dyn. 4-gluon vertex

bare 4-gluon vertex
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DAAA(p2,p2,p2)

Ghost-gluon vertex:
Deviation from tree-level in
midmomentum ’small’

Three-gluon vertex:
Close to tree-level above 1GeV
Non-tree-level dressings negligible
[d=4: Eichmann, Williams, Alkofer, Vujinovic ’14]
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Four-gluon vertex

Different momentum configurations:

Conf. A

Conf. B

Conf. C

0.010 0.100 1 10 100
p[GeV]
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DAAAA(p2)

Different projections:

tree-level

G
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Four-gluon vertex:
Close to tree-level down to 1GeV

→ Corrections small individually?
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Cancellations in gluonic vertices

Three-gluon vertex:

ghost tr.

gluon tr.

stat. swordf.

dyn.swordf.

0.10 1 10 100
p[GeV]

-0.6

-0.4

-0.2
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0.6
Di
AAA(p2,p2,p2)

Four-gluon vertex:

ghost box

gluon box

static triangle

swordfish

dynamic triangle

0.010 0.100 1 10 100
p[GeV]

-1.0

-0.5

0.5

1.0
DAAAA(pC)

Individual contributions large.
Sum is small!

⇓

Higher contributions:
Higher vertices close to ’tree-level’?
→ Small.
If pattern changes (higher vertices
large): cancellations required.
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Gluon propagator: Single diagrams
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sunset × p2

Squint important in midmomentum
regime.
Sunset contribution small.
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Solution from the 3PI effective action

Different set of functional equations:
equations of motion from 3PI effective action (at three-loop level)

c-DSE

3PI

1 2 3 4 5
p[GeV]
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1.0

1.5

Z(p2)

c-DSE

3PI

1 2 3 4 5
p[GeV]
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-1.5

-1.0

-0.5
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1.5
DAAA(p2,p2,p2)

→ Very similar results. [MQH ’16]
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UV behavior of the gluon propagator

Resummed one-loop order: anomalous dimension γ = −13/22
One-loop truncation:

Self-consistent solution puts constraints on UV behavior of vertices [von Smekal,

Hauck, Alkofer ’97]:
Ghost-gluon vertex: ∼ const. → X

Three-gluon vertex: ∝ (log p)17/22

Anomalous dimension γ3g = 17/44 → /
Solutions: Z1 → Z1(p

2) ↔ modified three-gluon vertex model [von Smekal,

Hauck, Alkofer ’97; Fischer, Alkofer ’02]

Truncation artifact!

Z1 Z̃1
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Resummed behavior

Resolving the UV behavior within this truncation leads to an additional
parameter dependence → part of the model
Extreme example:

0 1 2 3 4 5 6 7
p[GeV]0

1

2

3

4

5

6

Z(p2)

Study for three-gluon vertex: [Eichmann, Williams, Alkofer, Vujinovic ’14]

However, correct UV behavior is minimal demand on truncation and also
required for self-consistency.

One-loop anomalous dimension
Origin in resummation of higher order diagrams.

Some are included in truncation.
Some are missing, e.g., squint diagram.
Sunset does not contribute at O(g4).
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Resummed behavior

Minimal requirements to obtain one-loop resummed behavior:
Squint diagram
Proper models for three-point functions (with correct anom. dimensions)
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[propagator eqs. full, 3-point models, bare 4-gluon vertex]

Resummed behavior is recovered.
Coupling: Consistent with results for Nf = 0 from lattice: [Sternbeck, Maltman,

Müller-Preussker, on Smekal ’12]
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Four-gluon vertex

Full calculation with fixed input:
[Cyrol, MQH, von Smekal ’14]

Computationally expensive!
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For dynamic inclusion: Resort to a
one-momentum approximation
(symmetric point).
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Effect of four-gluon vertex

Three-gluon vertex: Important for convergence within current truncations in
d = 4 [Blum, MQH, Mitter, von Smekal ’14; Eichmann, Williams, Alkofer, Vujinovic ’14]

In gluon propagator: Via sunset diagram, small contribution of tree-level
dressing
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[propagator eqs. full, 3-gluon model, ghost-gluon dyn., 4-gluon fixed]
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Summary and conclusions

Test truncation effects in d = 3, where spurious divergences and RG
resummation are understood [Huber ’16]:

Truncation stable under all tested variations:
comparison with 3PI
changing the four-gluon vertex
different DSEs for the ghost-gluon vertex

Hierarchy of diagrams identified.

Extension to d = 4:
Renormalization: Anomalous running
Two-loop diagrams: Required quantitatively and for self-consistency
Ghost-gluon vertex, four-gluon vertex included

Outlook:
Include three-gluon vertex dynamically
Unquenching

Thank you for your attention!
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Family of solutions

Cf. FRG results: Bare mass parameter from modified STIs [Cyrol, Fister, Mitter,

Pawlowski, Strodthoff ’16].

DSEs: Enforce family of solutions by fixing the gluon propagator at p2 = 0.

Simple toy system with bare vertices [MQH, 1606.02068]:
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⇒ Possibility of family of solutions.

NB: Effect overestimated here since vertices are fixed.
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