Glueballs from functional equations

Markus Q. Huber

Institute of Theoretical Physics Giessen University MQH, Phys.Rev.D 101, <u>arXiv:2003.13703</u> MQH, Fischer, Sanchis-Alepuz, Eur.Phys.J.C 80, <u>arXiv:2004.00415</u>

A Virtual Tribute to *Quark Confinement and the Hadron Spectrum* 2021, virtually in Stavanger, Norway, Aug. 6, 2021

QCD bound states

Bound states in QCD

Mesons

Baryons

QCD bound states

Bound states in QCD

Giessen Universit

Aug. 6, 2021

Glueball observations

Experimental candidates, but situation not conclusive.

Scalar glueball: 0^{++} , mixing with scalar isoscalar mesons

Candidate reaction: $J/\psi \rightarrow \gamma + 2g$

Glueball observations

Experimental candidates, but situation not conclusive.

Scalar glueball: 0^{++} , mixing with scalar isoscalar mesons

Candidate reaction: $J/\psi \rightarrow \gamma + 2g$

Recent analysis of BESIII data [Sarantsev, Denisenko, Thoma, Klempt '21]:

250

Glueballs

Glueball calculations

Yang-Mills theory

- "Isolated" problem: only gluons
- Clean picture: well-established lattice results

Glueballs

Glueball calculations

Yang-Mills theory

- "Isolated" problem: only gluons
- Clean picture: well-established lattice results

QCD glueballs: mixing with quarks

Glueball calculations

Yang-Mills theory

- "Isolated" problem: only gluons
- Clean picture: well-established lattice results

QCD glueballs: mixing with quarks

Unquenching on the lattice [Gregory et al. '12]:

- Much higher statistics required (poor signal-to-noise ratio)
- Continuum extrapolation and inclusion of fermionic operators still to be done
- Mixing with q
 q
 q
 challenging
- Tiny (e.g., 0^{++} , 2^{++}) to moderate unquenching effects (e.g., 0^{-+}) found
- $m_{\pi}=360\,\mathrm{MeV}$

Glueball calculations

Yang-Mills theory

- "Isolated" problem: only gluons
- Clean picture: well-established lattice results
- Functional methods: High quality input available for bound state equations

QCD glueballs: mixing with quarks

Unquenching on the lattice [Gregory et al. '12]:

- Much higher statistics required (poor signal-to-noise ratio)
- Continuum extrapolation and inclusion of fermionic operators still to be done
- Mixing with q
 q
 q
 challenging
- Tiny (e.g., 0^{++} , 2^{++}) to moderate unquenching effects (e.g., 0^{-+}) found
- $m_{\pi} = 360 \,\mathrm{MeV}$

Hadrons from bound state equations

Integral equation: $\Gamma(q, P) = \int dk \, \Gamma(k, P) \, S(k_{+}) \, S(k_{-}) \, K(k, q, P)$

Hadrons from bound state equations

Bound state equations

Glueball BSE

Need \ldots and solve for \rightarrow . \rightarrow Mass

Bound state equations

Glueball BSE

Need (000) and $(1, solve for) \rightarrow Mass$ Not quite...

Glueball BSE

Gluons couple to ghosts \rightarrow Include 'ghostball'-part. (First step: no quarks \rightarrow Yang-Mills theory)

Glueball BSE

Need $(\mathfrak{M}, \rightarrow)$ and $4\times$, solve for \rightarrow and \rightarrow . \rightarrow Mass

Construction of kernel

Consistency with input: Apply same construction principle.

Glueball BSE

Need $(\Omega, --$ and $4\times$, solve for \rightarrow and \rightarrow . \rightarrow Mass

Construction of kernel

Consistency with input: Apply same construction principle.

Previous BSE calculations for glueballs:

- [Meyers, Swanson '13]
- [Sanchis-Alepuz, Fischer, Kellermann, von Smekal '15]
- [Souza et al. '20]
- [Kaptari, Kämpfer '20]

⇒ Input is important for quantitative predictive power!

[MQH, Fischer, Sanchis-Alepuz '20]

Aug. 6, 2021

Bound state equations

Kernel construction

From 3PI effective action truncated to three-loops:

[Fukuda '87; McKay, Munczek '89; Sanchis-Alepuz, Williams '15; MQH, Fischer, Sanchis-Alepuz '20]

- Some diagrams vanish for certain quantum numbers.
- Full QCD: Same for quarks \rightarrow Mixing with mesons.

Equations

Equations of motion from 3-loop 3PI effective action

Gluon and ghost fields: Elementary fields of Yang-Mills theory in the Landau gauge

Self-contained system of equations with the scale as the only input.

Equations of motion from 3-loop 3PI effective action

Gluon and ghost fields: Elementary fields of Yang-Mills theory in the Landau gauge

Self-contained system of equations with the scale as the only input.

Equations of motion from 3-loop 3PI effective action

Gluon and ghost fields: Elementary fields of Yang-Mills theory in the Landau gauge

Self-contained system of equations with the scale as the only input.

Truncation \rightarrow 3-loop expansion of 3PI effective action [Berges '04]

Equations of motion from 3-loop 3PI effective action

Gluon and ghost fields: Elementary fields of Yang-Mills theory in the Landau gauge

Self-contained system of equations with the scale as the only input.

Truncation \rightarrow 3-loop expansion of 3PI effective action [Berges '04]

- 4 coupled integral equations with full kinematic dependence.
- Sufficient numerical accuracy required for renormalization.
- One- and two-loop diagrams [Meyers, Swanson '14; MQH '17; Eichmann, Pawlowski, Silva '21].

Results

Landau gauge propagators

Gluon dressing function:

- Family of solutions: Nonperturbative completions of Landau gauge [Maas '10]?
- Realized by condition on G(0) [Fischer, Maas, Pawlowski '08; Alkofer, MQH, Schwenzer '08]
- Results here independent of G(0)

Gluon propagator:

Ghost dressing function:

Aug. 6, 2021

Results

Concurrence of functional methods

Exemplified with three-gluon vertex.

3PI vs. 2-loop DSE:

[Cucchieri, Maas, Mendes '08; Sternbeck et al. '17; MQH '20]

Concurrence of functional methods

Exemplified with three-gluon vertex.

3PI vs. 2-loop DSE:

[Cucchieri, Maas, Mendes '08; Sternbeck et al. '17; MQH '20]

DSE vs. FRG:

[Cucchieri, Maas, Mendes '08; Sternbeck et al. '17; Cyrol et al. '16; MQH '20]

Aug. 6, 2021

DSF vs. FRG:

Concurrence of functional methods

Exemplified with three-gluon vertex.

3PI vs. 2-loop DSE:

Beyond this truncation

- Further dressings of three-gluon vertex [Eichmann, Williams, Alkofer, Vujinovic '14]
- Effects of four-point functions [MQH '16, MQH '17, Corell et al. '18, MQH '18]

Jeballs

BSE

Solving a BSE

ueballs

BSE

Solving a BSE

Consider the eigenvalue problem (Γ is the BSE amplitude)

 $\mathcal{K} \cdot \Gamma(\mathcal{P}) = \lambda(\mathcal{P}) \Gamma(\mathcal{P}).$

 $\lambda(P^2) = 1$ is a solution to the BSE \Rightarrow Glueball mass $P^2 = -M^2$

ueballs

BSE

Solving a BSE

Consider the eigenvalue problem (Γ is the BSE amplitude)

 $\mathcal{K} \cdot \Gamma(\mathcal{P}) = \lambda(\mathcal{P}) \Gamma(\mathcal{P}).$

 $\lambda(P^2) = 1$ is a solution to the BSE \Rightarrow Glueball mass $P^2 = -M^2$

Calculation requires quantities for

$$k_{\pm}^2 = P^2 + k^2 \pm 2\sqrt{P^2 k^2} \cos \theta = -M^2 + k^2 \pm 2 i M \sqrt{k^2} \cos \theta.$$

 \Rightarrow Complex momentum arguments.

Direct calculation from functional methods possible, e.g., [Fischer, MQH '20].

 \rightarrow talk by Windisch

Alternative

Extrapolate λ from $P^2 > 0$.

Markus Q. Huber

Giessen Universit

```
Extrapolation of \lambda(P^2)
```

Extrapolation method

- Extrapolation to time-like P² using Schlessinger's continued fraction method (proven superior to default Padé approximants) [Schlessinger '68]
- Average over extrapolations using subsets of points for error estimate

Extrapolation of
$$\lambda(P^2)$$

Extrapolation method

- Extrapolation to time-like P² using Schlessinger's continued fraction method (proven superior to default Padé approximants) [Schlessinger '68]
- Average over extrapolations using subsets of points for error estimate

Coefficients a_i can determined such that f(x) exact at x_i .

Extrapolation of
$$\lambda(P^2)$$

Extrapolation method

- Extrapolation to time-like P² using Schlessinger's continued fraction method (proven superior to default Padé approximants) [Schlessinger '68]
- Average over extrapolations using subsets of points for error estimate

Test extrapolation for solvable system: Heavy meson [MQH, Sanchis-Alepuz, Fischer '20]

Giessen Universi

Aug. 6, 2021

ilueballs

Method

Extrapolation of $\lambda(P^2)$ for glueballs

Higher eigenvalues: Excited states.

lueballs

Method

Extrapolation of $\lambda(P^2)$ for glueballs

Higher eigenvalues: Excited states.

Physical solutions for $\lambda(P^2) = 1$.

Glueballs

Results

Glueballs masses for $0^{\pm+}$

All results for $r_0 = 1/418(5)$ MeV.

[MQH, Fischer, Sanchis-Alepuz '20]

Glueballs

Results

Glueballs masses for $0^{\pm+}$

All results for $r_0 = 1/418(5)$ MeV.

[MQH, Fischer, Sanchis-Alepuz '20]

alueballs Results

Two-loop diagrams

Results from [MQH, Fischer, Sanchis-Alepuz '20] were from one-loop terms only:

Fully self-consistent DSE/BSE truncation

 \rightarrow two-loop terms (complete 3-loop truncated 3PI effective action)

lueballs Results

Two-loop diagrams

Results from [MQH, Fischer, Sanchis-Alepuz '20] were from one-loop terms only:

Fully self-consistent DSE/BSE truncation

 \rightarrow two-loop terms (complete 3-loop truncated 3PI effective action)

Drastic increase in computational resources, hence lower precision used.

Preliminary result for 0^{++} , 0^{-+} : No effect on mass.

ilueballs R

Results

Glueball masses for $J^{\pm+}$

For higher spin, larger tensor bases: more tensors, more indices

Glueballs Re

Results

Glueball masses for $J^{\pm +}$

For higher spin, larger tensor bases: more tensors, more indices

[MQH, Fischer, Sanchis-Alepuz, in preparation]

Markus Q. Huber

• Quantitatively reliable correlation functions (Euclidean) from functional equations

- Quantitatively reliable correlation functions (Euclidean) from functional equations
 - Comparison with lattice results

- Quantitatively reliable correlation functions (Euclidean) from functional equations
 - Comparison with lattice results
 - Concurrence of different functional methods

- Quantitatively reliable correlation functions (Euclidean) from functional equations
 - Comparison with lattice results
 - Concurrence of different functional methods
- Connection to observables: Glueballs

- Quantitatively reliable correlation functions (Euclidean) from functional equations
 - Comparison with lattice results
 - Concurrence of different functional methods
- Connection to observables: Glueballs
- Systematic improvements (now) possible

- Quantitatively reliable correlation functions (Euclidean) from functional equations
 - Comparison with lattice results
 - Concurrence of different functional methods
- Connection to observables: Glueballs
- Systematic improvements (now) possible

Thank you for your attention.

More details...

Glueballs as bound states

Hadron masses from correlation functions of color singlet operators.

Glueballs as bound states

Hadron masses from correlation functions of color singlet operators. Example: For $J^{PC} = 0^{++}$ glueball take $O(x) = F_{\mu\nu}(x)F^{\mu\nu}(x)$:

 $D(x - y) = \langle O(x)O(y) \rangle$

- $\bullet \rightarrow$ Lattice: Mass from this correlator by exponential Euclidean time decay.
- Complicated object in a diagrammatic language: 2-, 3- and 4-gluon contributions

Glueballs as bound states

Hadron masses from correlation functions of color singlet operators.

Example: For $J^{PC} = 0^{++}$ glueball take $O(x) = F_{\mu\nu}(x)F^{\mu\nu}(x)$:

 $D(x - y) = \langle O(x)O(y) \rangle$

- $\bullet \rightarrow$ Lattice: Mass from this correlator by exponential Euclidean time decay.
- Complicated object in a diagrammatic language: 2-, 3- and 4-gluon contributions

Put total momentum on-shell and consider individual 2-, 3- and 4-gluon contributions. \rightarrow Each can have a pole at the glueball mass.

 A^4 -part of D(x - y), total momentum on-shell:

More details...

Charge parity

Transformation of gluon field under charge conjugation:

$$A^a_\mu
ightarrow -\eta(a) A^a_\mu$$

where

$$\eta(a) = \begin{cases} +1 & a = 1, 3, 4, 6, 8\\ -1 & a = 2, 5, 7 \end{cases}$$

Color neutral operator with two gluon fields:

$$A^a_\mu A^a_
u o \eta(a)^2 A^a_\mu A^a_
u = A^a_\mu A^a_
u.$$

 $\Rightarrow C = +1$

Negative charge parity, e.g.:

$$egin{aligned} d^{abc} A^a_\mu A^b_
u A^c_
ho &
ightarrow - d^{abc} \eta(a) \eta(b) \eta(c) A^a_\mu A^b_
u A^c_
ho &= \ - d^{abc} A^a_\mu A^b_
u A^c_
ho. \end{aligned}$$

Only nonvanishing elements of the symmetric structure constant d^{abc}: zero or two indices equal to 2, 5 or 7.

More details...

Landau gauge propagators in the complex plane

Simpler truncation:

More details..

Landau gauge propagators in the complex plane

Simpler truncation:

 \rightarrow Opening at $q^2 = p^2$.

More details..

Landau gauge propagators in the complex plane

Appearance of branch cuts for complex momenta forbids integration directly to cutoff.

Deformation of integration contour necessary [Maris '95]. Recent resurgence: [Alkofer et al. '04; Windisch, MQH, Alkofer, '13; Williams '19; Miramontes, Sanchis-Alepuz '19; Eichmann et al. '19, ...]

More details.

Landau gauge propagators in the complex plane

Ray technique for self-consistent solution of a DSE:

- Current truncation leads to a pole-like structure in the gluon propagator.
- Analyticity up to 'pole' confirmed by various tests (Cauchy-Riemann, Schlessinger, reconstruction)
- No proof of existence of complex conjugate poles due to simple truncation.

[Fischer, MQH '20]

More details. .

Landau gauge vertices

- Nontrivial kinematic dependence of ghost-gluon vertex
- Simple kinematic dependence of three-gluon vertex
- Four-gluon vertex from solution

Four-gluon vertex:

Three-gluon vertex:

Markus Q. Huber

versity

Aug. 6, 2021

[MQH '20]

More details..

Some properties of the Landau gauge solution

 Slavnov-Taylor identities (gauge invariance): Vertex couplings agree down to GeV regime

[MQH '20]

More details..

Some properties of the Landau gauge solution

 Slavnov-Taylor identities (gauge invariance): Vertex couplings agree down to GeV regime

 Renormalization: First parameter-free subtraction of quadratic divergences
 ⇒ One unique free parameter (family of solutions)

