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Introduction QCD bound states

Bound states in QCD

Mesons

Baryons

Pentaquarks First observations 2015 (LHCb)

Tetraquarks
Increasing number of confirmed
states. Bound state equations
perspective: [Eichmann, Fischer,
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Introduction Glueballs

Glueball observations

Experimental candidates, but situation not conclusive.

Scalar glueball: 0++, mixing with scalar isoscalar mesons

Candidate reaction: J/ψ → γ + 2g

Recent analysis of BESIII data [Sarantsev, Denisenko, Thoma, Klempt ’21]:

M = 1865± 25+10
−30 MeV,

Γ = 370± 50+30
−20 MeV

→ Talk Klempt
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Introduction Glueballs

Glueball calculations

Yang-Mills theory
“Isolated” problem: only gluons
Clean picture: well-established lattice results

QCD glueballs: mixing with quarks

Unquenching on the lattice [Gregory et al. ’12]:
Much higher statistics required (poor signal-to-noise ratio)
Continuum extrapolation and inclusion of fermionic operators still to be
done
Mixing with q̄q challenging
Tiny (e.g., 0++, 2++) to moderate unquenching effects (e.g., 0−+) found
mπ = 360 MeV
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Introduction Bound state equations

Hadrons from bound state equations

Example: Meson

Integral equation: Γ(q,P) =

∫
dk Γ(k ,P) S(k+) S(k−) K (k ,q,P)

Ingredients:

Quark propagator S

Nonperturbative diagram: full
momentum dependent dressings
→ numerical solution

Interaction kernel K
Constrained by symmetries

Bethe-Salpeter amplitude
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Introduction Bound state equations

Glueball BSE

Need and , solve for . → Mass

Not quite. . .
Gluons couple to ghosts→ Include ’ghostball’-part. (First step: no quarks

→ Yang-Mills theory)

Need , and 4× , solve for and . → Mass

Construction of kernel
Consistency with input: Apply same construction principle.

Previous BSE calculations for glueballs:
I [Meyers, Swanson ’13]
I [Sanchis-Alepuz, Fischer, Kellermann, von Smekal ’15]
I [Souza et al. ’20]
I [Kaptari, Kämpfer ’20]

⇒ Input is important for
quantitative predictive
power!
[MQH, Fischer, Sanchis-Alepuz ’20]
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Introduction Bound state equations

Kernel construction

From 3PI effective action truncated to three-loops:
[Fukuda ’87; McKay, Munczek ’89; Sanchis-Alepuz, Williams ’15; MQH, Fischer, Sanchis-Alepuz ’20]

= +

→ Need , , , .

Some diagrams vanish for certain quantum numbers.
Full QCD: Same for quarks→ Mixing with mesons.
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Correlation functions Equations

Equations of motion from 3-loop 3PI effective action

−1
=

−1 −

−1

=
−1

−1
2 −1

2
+ −1

6 −1
2

= + + + . . .
= −2 + +1

2 +1
2+1

2 + . . .

Gluon and ghost fields: Elementary fields of Yang-Mills theory in the Landau gauge

Review: [MQH ’18]

Self-contained system of equations with the scale as the only input.

Truncation?

4 coupled integral equations with full kinematic dependence.

Sufficient numerical accuracy required for renormalization.

One- and two-loop diagrams [Meyers, Swanson ’14; MQH ’17; Eichmann, Pawlowski,

Silva ’21].
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Correlation functions Results

Landau gauge propagators

Gluon dressing function:
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Family of solutions:
Nonperturbative completions of
Landau gauge [Maas ’10]?
Realized by condition on G(0)
[Fischer, Maas, Pawlowski ’08; Alkofer, MQH,

Schwenzer ’08]

Results here independent of G(0)

Ghost dressing function:
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Correlation functions Results

Concurrence of functional methods

Exemplified with three-gluon vertex.

3PI vs. 2-loop DSE:

3-loop 3PI EOM

3-loop 3PI EOM (SP)

2-loop DSE (SP)

0 1 2 3 4 5
-1

0

1

2

[Cucchieri, Maas, Mendes ’08; Sternbeck et al. ’17;
MQH ’20]

DSE vs. FRG:
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DSE decoupling

FRG scaling

FRG decoupling

Lattice

[Cucchieri, Maas, Mendes ’08; Sternbeck et al. ’17;
Cyrol et al. ’16; MQH ’20]

Beyond this truncation

Further dressings of three-gluon vertex [Eichmann, Williams, Alkofer, Vujinovic ’14]

Effects of four-point functions [MQH ’16, MQH ’17, Corell et al. ’18, MQH ’18]
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Glueballs BSE

Solving a BSE

=

Γ(p, P )
Γ(k, P )

S(k+)

S(k−)

K(k, p, P )

Consider the eigenvalue problem (Γ is
the BSE amplitude)

K · Γ(P) = λ(P) Γ(P).

λ(P2) = 1 is a solution to the BSE⇒ Glueball mass P2 = −M2

Calculation requires quantities for

k2
± = P2 + k2 ± 2

√
P2 k2 cos θ = −M2 + k2 ± 2 i M

√
k2 cos θ.

⇒ Complex momentum arguments.

Direct calculation from functional
methods possible, e.g., [Fischer, MQH ’20].

→ talk by Windisch

Alternative
Extrapolate λ from P2 > 0.
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Glueballs Method

Extrapolation of λ(P2)

Extrapolation method

Extrapolation to time-like P2 using Schlessinger’s continued fraction
method (proven superior to default Padé approximants) [Schlessinger ’68]

Average over extrapolations using subsets of points for error estimate

f (x) =
f (x1)

1 + a1(x−x1)

1+ a2(x−x2)

1+
a3(x−x3)

...

Coefficients ai can
determined such that
f (x) exact at xi .

Test extrapolation for solvable system:
Heavy meson [MQH, Sanchis-Alepuz, Fischer ’20]
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Glueballs Method

Extrapolation of λ(P2) for glueballs

Higher eigenvalues: Excited states.
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Physical solutions for λ(P2) = 1.
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Glueballs Results

Glueballs masses for 0±+

BSE

lattice [Morningstar, Peardon, 1999]

lattice [Athenodorou, Teper, 2020]

0

1

2

3

4

Spin-0 glueballs

Lattice 0
∗∗++:

Conjectured based on
irred. rep. of octahedral
group

All results for r0 = 1/418(5)MeV. [MQH, Fischer, Sanchis-Alepuz ’20]
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Glueballs Results

Two-loop diagrams

Results from [MQH, Fischer, Sanchis-Alepuz ’20] were from one-loop terms only:

= +

Fully self-consistent DSE/BSE truncation
→ two-loop terms (complete 3-loop truncated 3PI effective action)

Drastic increase in computational resources, hence lower precision used.

Preliminary result for 0++, 0−+: No effect on mass.
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Glueballs Results

Glueball masses for J±+

For higher spin, larger tensor bases: more tensors, more indices
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prelim
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Lattice:
*: identification with some
uncertainty
†: conjecture based on
irred. rep of octahedral
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[MQH, Fischer, Sanchis-Alepuz, in preparation]
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Summary

Summary

Parameter-free determination of glueball masses from functional methods.

Quantitatively reliable correlation functions (Euclidean) from functional
equations

I Comparison with lattice results
I Concurrence of different functional methods

Connection to observables: Glueballs

Systematic improvements (now) possible
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Summary

Summary

Parameter-free determination of glueball masses from functional methods.

Quantitatively reliable correlation functions (Euclidean) from functional
equations
I Comparison with lattice results
I Concurrence of different functional methods

Connection to observables: Glueballs

Systematic improvements (now) possible

Thank you for your attention.
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More details. . .

Glueballs as bound states

Hadron masses from correlation functions of color singlet operators.

Example: For JPC = 0++ glueball take O(x) = Fµν(x)Fµν(x):

D(x − y) = 〈O(x)O(y)〉

→ Lattice: Mass from this correlator by exponential Euclidean time
decay.
Complicated object in a diagrammatic language: 2-, 3- and 4-gluon
contributions

Put total momentum on-shell and consider individual 2-, 3- and 4-gluon
contributions. → Each can have a pole at the glueball mass.

A4-part of D(x − y), total momentum on-shell:

P 2 → −M 2
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More details. . .

Charge parity

Transformation of gluon field under charge conjugation:

Aa
µ → −η(a)Aa

µ

where

η(a) =

{
+1 a = 1,3,4,6,8
−1 a = 2,5,7

Color neutral operator with two gluon fields:

Aa
µAa

ν → η(a)2Aa
µAa

ν = Aa
µAa

ν .

⇒ C = +1

Negative charge parity, e.g.:

dabcAa
µAb

νAc
ρ →− dabcη(a)η(b)η(c)Aa

µAb
νAc

ρ =

− dabcAa
µAb

νAc
ρ.

Only nonvanishing elements of the symmetric structure constant dabc : zero or two indices equal to 2, 5 or 7.
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More details. . .

Landau gauge propagators in the complex plane

Simpler truncation:
−1

=
−1 −1

2 +

→ Opening at q2 = p2.

Appearance of branch cuts for complex momenta forbids integration directly to cutoff.

Deformation of integration contour necessary [Maris ’95]. Recent resurgence: [Alkofer et al.

’04; Windisch, MQH, Alkofer, ’13; Williams ’19; Miramontes, Sanchis-Alepuz ’19; Eichmann et al. ’19, . . . ]
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More details. . .

Landau gauge propagators in the complex plane

Ray technique for self-consistent solution of a DSE:
[Strauss, Fischer, Kellermann; Fischer, MQH ’20].

Polar coordinates: p2 = p̃2ei θ

Current truncation leads to a pole-like structure in the gluon propagator.

Analyticity up to ’pole’ confirmed by various tests (Cauchy-Riemann, Schlessinger,
reconstruction)

No proof of existence of complex conjugate poles due to simple truncation.

[Fischer, MQH ’20]
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More details. . .

Landau gauge vertices

Ghost-gluon vertex:

10
-2

10
-1

10
0

10
1

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

Three-gluon vertex:
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Sternbeck et al., 2017

Cucchieri et al., 2008

[Maas ’19; MQH ’20] [Cucchieri, Maas, Mendes ’08; Sternbeck et al. ’17; MQH ’20]

Nontrivial kinematic dependence
of ghost-gluon vertex
Simple kinematic dependence of
three-gluon vertex
Four-gluon vertex from solution

Four-gluon vertex:
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[MQH ’20]
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More details. . .

Some properties of the Landau gauge solution

[MQH ’20]

Slavnov-Taylor identities (gauge
invariance): Vertex couplings
agree down to GeV regime
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⇒ One unique free parameter
(family of solutions)
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