Dyson-Schwinger studies of Yang-Mills vertices at zero and non-vanishing temperatures

Markus Q. Huber

Institute of Physics, University of Graz

Excited QCD 2015, Tatranska Lomnica

March 13, 2015

Der Wissenschaftsfonds.

Markus Q. Huber

University of Graz

Phases of QCD

Challenges at non-zero density:

- Lattice: complex phase problem \rightarrow complex Langevin (talk by B. Jäger), Lefschetz thimble, dual variables, ...
- Functional framework: truncations

Markus Q. Huber

University of Graz

Phases of QCD from Dyson-Schwinger equations

Similar conclusions from functional renormalization group, e.g., [Herbst, Pawlowski, Schaefer '13]

Currently dependence on models (fixed at $\mu = 0$).

Quantitative results

- Understanding of vacuum improved during the last few years.
- Push truncations to a similar level at $T, \mu > 0$ to reduce/eliminate model dependence.

Outline

- Functional equations
- (2) T = 0: Recent developments and modern truncations
- **3** T > 0: Three-point functions

Functional equations

T=0

The family of functional equations

Coupled integro-differential/integral equations.

• Dyson-Schwinger equations: eqs. of motion for correlation functions

• Functional renormalization group: flow equations, RG scale k, regulator

N-PI effective action

Functional equations

The family of functional equations

Coupled integro-differential/integral equations.

• Dyson-Schwinger equations: eqs. of motion for correlation functions

• Functional renormalization group: flow equations, RG scale k, regulator

N-PI effective action

Non-perturbative in the sense:

- Exact equations.
- No small coupling required.

In reality they cannot be solved exactly (with a few exceptions).

Markus Q. Huber

University of Graz

From Green functions to 'observables'

(

Functional equations are expressed in terms of propagators and vertices/ Green functions/correlation functions/n-point functions $\Gamma_{i_1...i_n}$.

The effective action is the generating functional of 1PI Green functions.

$$\Gamma[\Phi] = \sum_{n=0}^{\infty} \frac{1}{n!} \Phi_1 \dots \Phi_n \Gamma_{i_1 \dots i_n}$$

The set of **all** Green functions describes the theory completely.

$$\rightarrow \qquad \Gamma_{ij} = \frac{\delta^2 \Gamma[\Phi]}{\delta \Phi_i \delta \Phi_j}, \\ \Gamma_{ijk} = \frac{\delta^3 \Gamma[\Phi]}{\delta \Phi_i \delta \Phi_j \delta \Phi_k}, \quad \dots$$

From Green functions to 'observables'

 \leftarrow

Functional equations are expressed in terms of propagators and vertices/ Green functions/correlation functions/n-point functions $\Gamma_{i_1...i_n}$.

The effective action is the generating functional of 1PI Green functions.

$$\Gamma[\Phi] = \sum_{n=0}^{\infty} \frac{1}{n!} \Phi_1 \dots \Phi_n \Gamma_{i_1 \dots i_n}$$

The set of **all** Green functions describes the theory completely.

$$\rightarrow \qquad \Gamma_{ij} = \frac{\delta^2 \Gamma[\Phi]}{\delta \Phi_i \delta \Phi_j}, \\ \Gamma_{ijk} = \frac{\delta^3 \Gamma[\Phi]}{\delta \Phi_i \delta \Phi_j \delta \Phi_k}, \quad \dots$$

Green functions \rightarrow 'observables'?

Examples:

- Bound state equations → masses and properties of hadrons (→ talks of G. Eichmann, V. Sauli)
- ullet Analytic properties of Green functions o confinement
- Phases and transitions: (Pseudo-)Order parameters

Markus Q. Huber

University of Graz

March 13, 2015

6/25

Landau gauge Yang-Mills theory

Gluonic sector of quantum chromodynamics: Yang-Mills theory

$$\mathcal{L} = \frac{1}{2}F^2 + \mathcal{L}_{gf} + \mathcal{L}_{gh}$$
$$F_{\mu\nu} = \partial_{\mu}\mathbf{A}_{\nu} - \partial_{\nu}\mathbf{A}_{\mu} + i g [\mathbf{A}_{\mu}, \mathbf{A}_{\nu}]$$

Landau gauge

• simplest one for functional equations • $\partial_{\mu} \mathbf{A}_{\mu} = 0$: $\mathcal{L}_{gf} = \frac{1}{2\xi} (\partial_{\mu} \mathbf{A}_{\mu})^2$, $\xi \to 0$ • requires ghost fields: $\mathcal{L}_{gh} = \bar{\mathbf{c}} (-\Box + g \mathbf{A} \times) \mathbf{c}$

The tower of DSEs

Infinitely many equations. In QCD, every *n*-point function depends on (n + 1)-and possibly (n + 2)-point functions.

Markus Q. Huber

University of Graz

Dealing with the equations

DoFun [Braun, MQH '11, http://tinyurl.com/dofun2]:

- Mathematica package for deriving functional equations
- Automatization!

CrasyDSE [Huber, Mitter '11, http://tinyurl.com/crasydse]:

- Automatic creation of kernels for C++
- C++ framework for DSEs

ightarrow Allows to treat large systems in a modular way.

Taming the equations

Keep most important parts!

- Drop quantities
- Model quantities

Taming the equations

Keep most important parts! The art...

- Drop quantities
- Model quantities

Most important parts

- UV leading (perturbation theory)
- IR leading (analytic, lattice)

No small expansion parameter. \rightarrow Systematic expansion?

No small expansion parameter. \rightarrow Systematic expansion? $\ensuremath{\textcircled{\sc s}}$

No small expansion parameter. \rightarrow Systematic expansion? \circledast

• Is nature so mean that the 17-, 42- and 128-point functions are important?

No small expansion parameter. \rightarrow Systematic expansion? $\ensuremath{\textcircled{\sc s}}$

• Is nature so mean that the 17-, 42- and 128-point functions are important?

Most likely not!

Lattice has a finite number of points but can describe physics quantitatively. \Rightarrow There must be an N so that the n-point function with n > N is no longer important.

No small expansion parameter. \rightarrow Systematic expansion? \circledast

• Is nature so mean that the 17-, 42- and 128-point functions are important?

Most likely not!

Lattice has a finite number of points but can describe physics quantitatively. \Rightarrow There must be an N so that the n-point function with n > N is no longer important.

- How large is N? Calculation still feasible?
- No way known to determine N analytically.

No small expansion parameter. \rightarrow Systematic expansion? \circledast

• Is nature so mean that the 17-, 42- and 128-point functions are important?

Most likely not!

Lattice has a finite number of points but can describe physics quantitatively. \Rightarrow There must be an N so that the n-point function with n > N is no longer important.

- How large is N? Calculation still feasible?
- No way known to determine N analytically.

```
ightarrow Let's try numerically . .
```

Markus Q. Huber

University of Graz

المنهية المناقبة المنتقبة المنتقبة المنتقبة

Long-time standard truncation (1997 - 2012)

- No four-gluon vertex
- Ghost-gluon vertex: bare
- Three-gluon vertex: model

Effect of truncations: Propagators

Long-time standard truncation (1997 - 2012)

- No four-gluon vertex
- Ghost-gluon vertex: bare \rightarrow dressed (dynamic)
- Three-gluon vertex: model ightarrow optimized model

Markus Q. Huber

University of Graz

March 13, 2015

Effect of truncations: Propagators

Long-time standard truncation (1997 - 2012)

- No four-gluon vertex
- Ghost-gluon vertex: bare \rightarrow dressed (dynamic)
- Three-gluon vertex: model ightarrow optimized model

Missing strength in mid-momentum regime: → two-loop diagrams [Blum, MQH, Mitter, von Smekal '14]

Markus Q. Huber

 \rightarrow Truncation reliable. Neglected terms, incl. two-loop diagrams, suppressed.

See also results by [Eichmann, Williams, Alkofer, Vujinovic '14], esp. other dressings, and [Peláez, Tissier, Wschebor '13].

Markus Q. Huber

University of Graz

• 20 one-loop, 39 two-loop diagrams

- 20 one-loop, 39 two-loop diagrams
- Keep UV leading diagrams

ightarrow 16 diagrams

- 20 one-loop, 39 two-loop diagrams
- Keep UV leading diagrams
- Calculate **full** momentum dependence.
 - \rightarrow Access to all permutations of this diagram.

ightarrow 6 diagrams

- 20 one-loop, 39 two-loop diagrams
- Keep UV leading diagrams

+ 3

- Calculate **full** momentum dependence.
 - \rightarrow Access to all permutations of this diagram.

 $+\frac{3}{2}$

+ 3

ightarrow 6 diagrams

+ 3

Τ>0

Four-gluon vertex: Results

	ghost and gluon propagators	four-gluon vertex
ext. variables:	1	6
int. variables:	2	4

Four-gluon vertex: Results

	ghost and gluon propagators	four-gluon vertex
ext variables:	1	6
int variables:	2	4
numeric effort	O(N ³)	$O(N^{10})$
	\rightarrow laptop	ightarrow > 100 cores on cluster

Four-gluon vertex: Results

[Cyrol, MQH, von Smekal '14] 2-parameter fit:

$$D^{4\mathrm{g},\;\mathrm{dec}}_{\mathsf{model}}(
ho,\;q,\;r,\;s) = \left(\mathsf{atanh}\left(b/ar{
ho}^2
ight)+1
ight)D^{4\mathrm{g}}_{\mathsf{RG}}(
ho,\;q,\;r,\;s)$$

Markus Q. Huber

University of Graz

Beyond Landau gauge: Coulomb gauge

- Variational approach, trial ansatz for vacuum wave functional
 - Gaussian: qualitative picture (IR regime, perimeter law for 't Hooft loop, dual superconductor picture of confinement, deconfinement transition, ...) [Reinhardt et al. '04-'13]
 - Non-Gaussian ansatz: quantitative corrections in mid-momentum regime [Campagnari, Reinhardt '10]

Beyond Landau gauge: Coulomb gauge

- Variational approach, trial ansatz for vacuum wave functional
 - Gaussian: qualitative picture (IR regime, perimeter law for 't Hooft loop, dual superconductor picture of confinement, deconfinement transition, ...) [Reinhardt et al. '04-'13]
 - Non-Gaussian ansatz: quantitative corrections in mid-momentum regime [Campagnari, Reinhardt '10]

Three-gluon vertex:

- Zero crossing
- IR divergent like p^{-3}

Ghost-gluon vertex:

• Different truncations quite similar

Beyond Landau gauge: Linear covariant gauges

- Gaussian distribution $e^{-\frac{1}{2\xi}(\partial A)^2}$ around Landau gauge in path integral
- Test of gauge (in)dependence of observables possible.
- Well-known Landau gauge is endpoint: $\xi = 0$
- Special choices convenient perturbatively, e.g., Feynman gauge $\xi=1;$ non-perturbatively no advantage

Beyond Landau gauge: Linear covariant gauges

- Gaussian distribution $e^{-\frac{1}{2\xi}(\partial A)^2}$ around Landau gauge in path integral
- Test of gauge (in)dependence of observables possible.
- Well-known Landau gauge is endpoint: $\xi = 0$
- Special choices convenient perturbatively, e.g., Feynman gauge $\xi=1;$ non-perturbatively no advantage

- Ghost vanishes logarithmically in IR, see also [Aguilar, Binosi, Papavassiliou '15].
- Gluon propagator IR finite.

T > 0

Gluon propagators

Chromomagnetic and -electric gluons from the lattice [Fischer, Maas, Müller '10]:

Lattice data:

Т>0

Gluon propagators

Chromomagnetic and -electric gluons from the lattice [Fischer, Maas, Müller '10]:

Input for DSEs to calculate quantities difficult for lattice

- Gluon DSE inconveniently difficult: spurious divergences, two-loop diagrams
- No truncation effects for input!
- Lattice artifacts? \rightarrow [Cucchieri, Mendes '11]

Functional equations

T=0

Simple test: Ghost propagator

Ghost dressing $G(p^2)$ from DSE [MQH, von Smekal '13]:

Markus Q. Huber

University of Graz

DSE calculation: self-consistent solution of truncated DSE, zeroth Matsubara frequency only

- Vertices quite expensive on lattice.
- Full momentum dependence from functional equations.

Vertex from FRG: [Fister, Pawlowski '11]

Ghost-gluon vertex: Continuum and lattice

Lattice [Fister, Maas '14]: No zero crossing around T_c ?

Lattice volume artifacts inherited from lattice gluon propagators in functional calculation!

Markus Q. Huber

Т>0

Three-gluon vertex

DSE calculation: semi-perturbative approximation (first iteration only)

Ultimately functional equations provide an approach to QCD from first principles.

Technical challenges!

Intermediately: model dependence

Ultimately functional equations provide an approach to QCD from first principles.

Intermediately: model dependence

Technical challenges!

Truncation at T = 0:

- 2-, 3- and 4-point functions calculated
- Truncation effects understood (after more than 30 years!), e.g., effect of two-loop terms.
- System of DSEs closes with proposed truncation.
 - o self-contained ✓
 - conjecture: quantitative description

Ultimately functional equations provide an approach to QCD from first principles.

Intermediately: model dependence

Technical challenges!

Truncation at T = 0:

- 2-, 3- and 4-point functions calculated
- Truncation effects understood (after more than 30 years!), e.g., effect of two-loop terms.
- System of DSEs closes with proposed truncation.
 - ${\scriptstyle \circ }$ self-contained \checkmark
 - conjecture: quantitative description

Extension to T > 0:

- First results for three-point functions
- Basis for model building
- Effects of dressed vertices, e.g., in Polyakov loop potential?
- ullet Basis for extension to QCD and $\mu>0$

Ultimately functional equations provide an approach to QCD from first principles.

Intermediately: model dependence

Technical challenges!

Truncation at T = 0:

- 2-, 3- and 4-point functions calculated
- Truncation effects understood (after more than 30 years!), e.g., effect of two-loop terms.
- System of DSEs closes with proposed truncation.
 - ${\scriptstyle \circ }$ self-contained \checkmark
 - conjecture: quantitative description

Extension to T > 0:

- First results for three-point functions
- Basis for model building
- Effects of dressed vertices, e.g., in Polyakov loop potential?
- ullet Basis for extension to QCD and $\mu>0$

Thank you for your attention.

Markus Q. Huber

University of Graz