Dyson-Schwinger studies of Yang-Mills vertices at zero and non-vanishing temperatures

Markus Q. Huber

Institute of Physics, University of Graz
Excited QCD 2015, Tatranska Lomnica
March 13, 2015

FШF

Der Wissenschaftsfonds.

Phases of QCD

Challenges at non-zero density:

- Lattice: complex phase problem \rightarrow complex Langevin (talk by B. Jäger), Lefschetz thimble, dual variables, ...
- Functional framework: truncations

Phases of QCD from Dyson-Schwinger equations

Phase diagram for $2+1$ quark flavors:

[Fischer, Lücker, Welzbacher '14]

Similar conclusions from functional renormalization group, e.g., [Herbst, Pawlowski, Schaefer '13]

Currently dependence on models (fixed at $\mu=0$).

Quantitative results

- Understanding of vacuum improved during the last few years.
- Push truncations to a similar level at $T, \mu>0$ to reduce/eliminate model dependence.

Outline

(1) Functional equations
(2) $T=0$: Recent developments and modern truncations
(3) $T>0$: Three-point functions

The family of functional equations

Coupled integro-differential/integral equations.

- Dyson-Schwinger equations: eqs. of motion for correlation functions

- Functional renormalization group: flow equations, RG scale k, regulator

- N-PI effective action

The family of functional equations

Coupled integro-differential/integral equations.

- Dyson-Schwinger equations: eqs. of motion for correlation functions

- Functional renormalization group: flow equations, RG scale k, regulator

- N-PI effective action

Non-perturbative in the sense:

- Exact equations.
- No small coupling required.

In reality they cannot be solved exactly (with a few exceptions).

From Green functions to 'observables'

Functional equations are expressed in terms of propagators and vertices/ Green functions/correlation functions/n-point functions $\Gamma_{i_{1} \ldots i_{n}}$.

The effective action is the generating functional of 1PI Green functions.

$$
\Gamma[\Phi]=\sum_{n=0}^{\infty} \frac{1}{n!} \Phi_{1} \ldots \Phi_{n} \Gamma_{i_{1} \ldots i_{n}}
$$

The set of all Green functions describes the theory completely.

$$
\begin{aligned}
\Gamma_{i j} & =\frac{\delta^{2} \Gamma[\Phi]}{\delta \Phi_{i} \delta \Phi_{j}}, \\
\Gamma_{i j k} & =\frac{\delta^{3} \Gamma[\Phi]}{\delta \Phi_{i} \delta \Phi_{j} \delta \Phi_{k}}, \ldots
\end{aligned}
$$

From Green functions to 'observables'

Functional equations are expressed in terms of propagators and vertices/ Green functions/correlation functions/n-point functions $\Gamma_{i_{1} \ldots i_{n}}$.

The effective action is the generating functional of 1PI Green functions.

$$
\Gamma[\Phi]=\sum_{n=0}^{\infty} \frac{1}{n!} \phi_{1} \ldots \Phi_{n} \Gamma_{i_{1} \ldots i_{n}}
$$

The set of all Green functions describes the theory completely.

$$
\begin{aligned}
\Gamma_{i j} & =\frac{\delta^{2} \Gamma[\Phi]}{\delta \Phi_{i} \delta \Phi_{j}}, \\
\Gamma_{i j k} & =\frac{\delta^{3} \Gamma[\Phi]}{\delta \Phi_{i} \delta \Phi_{j} \delta \Phi_{k}}, \ldots
\end{aligned}
$$

Green functions \rightarrow 'observables'?
Examples:

- Bound state equations \rightarrow masses and properties of hadrons (\rightarrow talks of G. Eichmann, V. Sauli)
- Analytic properties of Green functions \rightarrow confinement
- Phases and transitions: (Pseudo-)Order parameters

Landau gauge Yang-Mills theory

Gluonic sector of quantum chromodynamics: Yang-Mills theory

$$
\begin{aligned}
\mathcal{L} & =\frac{1}{2} F^{2}+\mathcal{L}_{g f}+\mathcal{L}_{g h} \\
F_{\mu \nu} & =\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}+i g\left[A_{\mu}, A_{\nu}\right]
\end{aligned}
$$

Landau gauge

- simplest one for functional equations
- $\partial_{\mu} A_{\mu}=0: \quad \mathcal{L}_{g f}=\frac{1}{2 \xi}\left(\partial_{\mu} A_{\mu}\right)^{2}, \quad \xi \rightarrow 0$
- requires ghost fields: $\quad \mathcal{L}_{g h}=\overline{\boldsymbol{c}}(-\square+g \boldsymbol{A} \times) \boldsymbol{c}$

The tower of DSEs

The tower of DSEs

 $+\underset{i}{i}$

Infinitely many equations. In QCD, every n-point function depends on ($n+1$)and possibly $(n+2)$-point functions.

Dealing with the equations

DoFun [Braun, MQH '11, http://tinyurl.com/dofun2]:

- Mathematica package for deriving functional equations
- Automatization!

CrasyDSE [Huber, Mitter '11, http://tinyurl.com/crasydse]:

- Automatic creation of kernels for $C++$
- $C++$ framework for DSEs
\rightarrow Allows to treat large systems in a modular way.

Taming the equations

Keep most important parts!

- Drop quantities
- Model quantities

Taming the equations

Keep most important parts! The art. .

- Drop quantities
- Model quantities

Most important parts

- UV leading (perturbation theory)
- IR leading (analytic, lattice)

A note on truncations

No small expansion parameter. \rightarrow Systematic expansion?

A note on truncations

No small expansion parameter. \rightarrow Systematic expansion?

A note on truncations

No small expansion parameter. \rightarrow Systematic expansion?

- Is nature so mean that the 17-, 42- and 128-point functions are important?

A note on truncations

No small expansion parameter. \rightarrow Systematic expansion?

- Is nature so mean that the 17 -, 42 - and 128 -point functions are important?

- Most likely not! Lattice has a finite number of points but can describe physics quantitatively. \Rightarrow There must be an N so that the n-point function with $n>N$ is no longer important.

A note on truncations

No small expansion parameter. \rightarrow Systematic expansion?

- Is nature so mean that the $17-$ - 42 - and 128 -point functions are important?

- Most likely not! Lattice has a finite number of points but can describe physics quantitatively. \Rightarrow There must be an N so that the n-point function with $n>N$ is no longer important.
- How large is N ? Calculation still feasible?
- No way known to determine N analytically.

A note on truncations

No small expansion parameter. \rightarrow Systematic expansion?

- Is nature so mean that the $17-$ - 42 - and 128 -point functions are important?

- Most likely not! Lattice has a finite number of points but can describe physics quantitatively. \Rightarrow There must be an N so that the n-point function with $n>N$ is no longer important.
- How large is N ? Calculation still feasible?
- No way known to determine N analytically.
\rightarrow Let's try numerically...

Effect of truncations: Propagators

\qquad j \qquad j \qquad -i \qquad i^{i}

Long-time standard truncation (1997-2012)

- No four-gluon vertex
- Ghost-gluon vertex: bare
- Three-gluon vertex: model

Effect of truncations: Propagators

\qquad j \qquad \sim^{i} \qquad $ـ^{i}$

Long-time standard truncation (1997-2012)

- No four-gluon vertex
- Ghost-gluon vertex: bare \rightarrow dressed (dynamic)
- Three-gluon vertex: model \rightarrow optimized model

[MQH, von Smekal '12; lattice; Sternbeck '06]
\rightarrow Role of three-gluon vertex?

\rightarrow Use as input in other calculations.

Effect of truncations: Propagators

Long-time standard truncation (1997-2012)

- No four-gluon vertex
- Ghost-gluon vertex: bare \rightarrow dressed (dynamic)

Missing strength in mid-momentum regime:
\rightarrow two-loop diagrams
[Blum, MQH, Mitter, von Smekal '14]

- Three-gluon vertex: model \rightarrow optimized model

[MQH, von Smekal '12; lattice; Sternbeck '06]
\rightarrow Role of three-gluon vertex?
\rightarrow Use as input in other calculations.

The three-gluon vertex

\rightarrow See talk of A. Blum.

[Blum, MQH, Mitter, von Smekal '14; lattice: Cucchieri, Maas, Mendes '08]
\rightarrow Truncation reliable. Neglected terms, incl. two-loop diagrams, suppressed.
See also results by [Eichmann, Williams, Alkofer, Vujinovic '14], esp. other dressings, and [Peláez, Tissier, Wschebor '13].

Four-gluon vertex

- 20 one-loop, 39 two-loop diagrams

Four-gluon vertex

- 20 one-loop, 39 two-loop diagrams
- Keep UV leading diagrams
$\rightarrow 16$ diagrams

(

Four-gluon vertex

- 20 one-loop, 39 two-loop diagrams
- Keep UV leading diagrams
$\rightarrow 16$ diagrams
$\rightarrow 6$ diagrams

Four-gluon vertex

- 20 one-loop, 39 two-loop diagrams
- Keep UV leading diagrams
$\rightarrow 16$ diagrams
$\rightarrow 6$ diagrams

No model dependence! \rightarrow 'Truncation closes.'

Four-gluon vertex: Results

	ghost and gluon propagators	four-gluon vertex
ext. variables:	1	6
int. variables:	2	4

Four-gluon vertex: Results

	ghost and gluon propagators	four-gluon vertex
ext. variables:	1	6
int. variables:	2	4
numeric effort	$O\left(N^{3}\right)$	$O\left(N^{10}\right)$
	\rightarrow laptop	$\rightarrow>100$ cores on cluster

Four-gluon vertex: Results

	ghost and gluon propagators	four-gluon vertex
ext. variables:	1	6
int. variables:	2	4
numeric effort	$O\left(N^{3}\right)$	$O\left(N^{10}\right)$
	\rightarrow laptop	$\rightarrow>100$ cores on cluster

[Cyrol, MQH, von Smekal '14]
2-parameter fit:

$$
D_{\text {model }}^{4 \mathrm{~g}, \text { dec }}(p, q, r, s)=\left(a \tanh \left(b / \bar{p}^{2}\right)+1\right) D_{\mathrm{RG}}^{4 \mathrm{~g}}(p, q, r, s)
$$

Beyond Landau gauge: Coulomb gauge

- Variational approach, trial ansatz for vacuum wave functional
- Gaussian: qualitative picture (IR regime, perimeter law for 't Hooft loop, dual superconductor picture of confinement, deconfinement transition, ...) [Reinhardt et al. '04-'13]
- Non-Gaussian ansatz: quantitative corrections in mid-momentum regime [Campagnari, Reinhardt '10]

Beyond Landau gauge: Coulomb gauge

- Variational approach, trial ansatz for vacuum wave functional
- Gaussian: qualitative picture (IR regime, perimeter law for 't Hooft loop, dual superconductor picture of confinement, deconfinement transition, ...) [Reinhardt et al. '04-'13]
- Non-Gaussian ansatz: quantitative corrections in mid-momentum regime [Campagnari, Reinhardt '10]

[MQH, Campagnari, Reinhardt '14]

Three-gluon vertex:

- Zero crossing
- IR divergent like p^{-3}

Ghost-gluon vertex:

- Different truncations quite similar

Beyond Landau gauge: Linear covariant gauges

- Gaussian distribution $e^{-\frac{1}{2 \xi}(\partial A)^{2}}$ around Landau gauge in path integral
- Test of gauge (in)dependence of observables possible.
- Well-known Landau gauge is endpoint: $\xi=0$
- Special choices convenient perturbatively, e.g., Feynman gauge $\xi=1$; non-perturbatively no advantage

Beyond Landau gauge: Linear covariant gauges

- Gaussian distribution $e^{-\frac{1}{2 \xi}(\partial A)^{2}}$ around Landau gauge in path integral
- Test of gauge (in)dependence of observables possible.
- Well-known Landau gauge is endpoint: $\xi=0$
- Special choices convenient perturbatively, e.g., Feynman gauge $\xi=1$; non-perturbatively no advantage

[MQH '15]
- Ghost vanishes logarithmically in IR, see also [Aguilar, Binosi, Papavassiliou '15].
- Gluon propagator IR finite.

$T>0$

Gluon propagators

Chromomagnetic and -electric gluons from the lattice [Fischer, Maas, Müller '10]:

Lattice data:

Gluon propagators

Chromomagnetic and -electric gluons from the lattice [Fischer, Maas, Müller '10]:
Fits:

Input for DSEs to calculate quantities difficult for lattice

- Gluon DSE inconveniently difficult: spurious divergences, two-loop diagrams
- No truncation effects for input!
- Lattice artifacts? \rightarrow [Cucchieri, Mendes '11]

Simple test: Ghost propagator

Ghost dressing $G\left(p^{2}\right)$ from DSE [MQH, von Smekal '13]:

Lattice: [Fischer, Maas, Müller '10, Cucchieri, Mendes '11, Silva, Oliveira, Bicudo, Cardoso '13] FRG: [Fister, Pawlowski '11]
Massive Yang-Mills: [Reinosa, Serreau, Tissier, Wschebor '13]

Three-point warm-up: Ghost-gluon vertex

DSE calculation: self-consistent solution of truncated DSE, zeroth Matsubara frequency only

- Vertices quite expensive on lattice.
- Full momentum dependence from functional equations.

Vertex from FRG: [Fister, Pawlowski '11]

Ghost-gluon vertex: Continuum and lattice

Lattice: [Fister, Maas '14]

Three-gluon vertex: Continuum and lattice
$D^{\text {AAA }}\left(p^{2}, p^{2}, 2 \pi / 3\right) \quad \mathrm{T}=0.52 \mathrm{Tc}$

$D^{\mathrm{AAA}}\left(p^{2}, p^{2}, 2 \pi / 3\right) \quad \mathrm{T}=0.94 \mathrm{Tc}$

$D^{\mathrm{AAA}}\left(p^{2}, p^{2}, 2 \pi / 3\right) \quad \mathrm{T}=1.08 \mathrm{Tc}$

Lattice [Fister, Maas '14]: No zero crossing around T_{c} ?

Three-gluon vertex: Continuum and lattice
$D^{\mathrm{AAA}}\left(p^{2}, p^{2}, 2 \pi / 3\right) \quad \mathrm{T}=0.52 \mathrm{Tc}$

$D^{\mathrm{AAA}}\left(p^{2}, p^{2}, 2 \pi / 3\right) \quad \mathrm{T}=0.98 \mathrm{Tc}$

$D^{\mathrm{AAA}}\left(p^{2}, p^{2}, 2 \pi / 3\right) \quad \mathrm{T}=0.94 \mathrm{Tc}$

$D^{\mathrm{AAA}}\left(p^{2}, p^{2}, 2 \pi / 3\right) \quad \mathrm{T}=1.08 \mathrm{Tc}$

Lattice [Fister, Maas '14]: No zero crossing around T_{c} ?
Lattice volume artifacts inherited from lattice gluon propagators in functional calculation!

Three-gluon vertex

DSE calculation: semi-perturbative approximation (first iteration only)

Summary

Ultimately functional equations provide an approach to QCD from first principles.

Intermediately: model dependence
Technical challenges!

Summary

Ultimately functional equations provide an approach to QCD from first principles.

Intermediately: model dependence
Technical challenges!
Truncation at $T=0$:

- 2-, 3- and 4-point functions calculated
- Truncation effects understood (after more than 30 years!), e.g., effect of two-loop terms.
- System of DSEs closes with proposed truncation.
- self-contained \checkmark
- conjecture: quantitative description

Summary

Ultimately functional equations provide an approach to QCD from first principles.

Intermediately: model dependence
Technical challenges!
Truncation at $T=0$:

- 2-, 3- and 4-point functions calculated
- Truncation effects understood (after more than 30 years!), e.g., effect of two-loop terms.
- System of DSEs closes with proposed truncation.
- self-contained \checkmark
- conjecture: quantitative description

Extension to $T>0$:

- First results for three-point functions
- Basis for model building
- Effects of dressed vertices, e.g., in Polyakov loop potential?
- Basis for extension to QCD and $\mu>0$

Summary

Ultimately functional equations provide an approach to QCD from first principles.

Intermediately: model dependence
Technical challenges!
Truncation at $T=0$:

- 2-, 3- and 4-point functions calculated
- Truncation effects understood (after more than 30 years!), e.g., effect of two-loop terms.
- System of DSEs closes with proposed truncation.
- self-contained \checkmark
- conjecture: quantitative description

Extension to $T>0$:

- First results for three-point functions
- Basis for model building
- Effects of dressed vertices, e.g., in Polyakov loop potential?
- Basis for extension to QCD and $\mu>0$

Thank you for your attention.

