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Functional equations T=0 T>0

Phases of QCD

Challenges at non-zero density:

Lattice: complex phase problem → complex Langevin (talk by B. Jäger),
Lefschetz thimble, dual variables, . . .

Functional framework: truncations
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Functional equations T=0 T>0

Phases of QCD from Dyson-Schwinger equations

Phase diagram for 2+1 quark �avors:
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Lattice: curvature range κ=0.0066-0.0180

DSE: chiral crossover

DSE: critical end point

DSE: chiral first order

DSE: deconfinement crossover

µ
B
/T=2

µ
B
/T=3

Similar conclusions from
functional renormalization group,
e.g., [Herbst, Pawlowski, Schaefer '13]

Currently dependence on models
(�xed at µ = 0).

[Fischer, Lücker, Welzbacher '14]

Quantitative results

Understanding of vacuum improved during the last few years.

Push truncations to a similar level at T , µ > 0 to reduce/eliminate model
dependence.
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Outline

1 Functional equations

2 T = 0: Recent developments and modern truncations

3 T > 0: Three-point functions
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Functional equations T=0 T>0

The family of functional equations

Coupled integro-di�erential/integral equations.

Dyson-Schwinger equations: eqs. of motion for correlation functions

Functional renormalization group: �ow equations, RG scale k, regulator

k ∂
∂k

= + 1
2

−1

N-PI e�ective action
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Functional equations T=0 T>0

The family of functional equations

Coupled integro-di�erential/integral equations.

Dyson-Schwinger equations: eqs. of motion for correlation functions

Functional renormalization group: �ow equations, RG scale k, regulator

k ∂
∂k

= + 1
2

−1

N-PI e�ective action

Non-perturbative in the sense:

Exact equations.

No small coupling required.

In reality they cannot be solved exactly (with a few exceptions).
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Functional equations T=0 T>0

From Green functions to 'observables'

Functional equations are expressed in terms of propagators and vertices/
Green functions/correlation functions/n-point functions Γi1...in .

The e�ective action is the generating
functional of 1PI Green functions.

Γ[Φ] =
∞∑
n=0

1

n!
Φ1 . . .ΦnΓi1...in

←→

The set of all Green functions
describes the theory completely.

Γij =
δ2Γ[Φ]

δΦiδΦj

,

Γijk =
δ3Γ[Φ]

δΦiδΦjδΦk

, . . .

Green functions → 'observables'?

Examples:

Bound state equations → masses and properties of hadrons
(→ talks of G. Eichmann, V. Sauli)
Analytic properties of Green functions → con�nement
Phases and transitions: (Pseudo-)Order parameters
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Functional equations T=0 T>0

Landau gauge Yang-Mills theory

Gluonic sector of quantum chromodynamics: Yang-Mills theory

L =
1

2
F 2 + Lgf + Lgh

Fµν = ∂µAν − ∂νAµ + i g [Aµ,Aν ]

Landau gauge

simplest one for functional equations

∂µAµ = 0: Lgf =
1

2ξ
(∂µAµ)2, ξ → 0

requires ghost �elds: Lgh = c̄ (−2 + g A×) c
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Functional equations T=0 T>0

The tower of DSEs

gluon propagator

ghost propagator
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In�nitely many equations. In QCD, every n-point function depends on (n + 1)-
and possibly (n + 2)-point functions.
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The tower of DSEs

gluon propagator

ghost propagator
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Self-consistence!
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Functional equations T=0 T>0

Dealing with the equations

DoFun [Braun, MQH '11, http://tinyurl.com/dofun2]:

Mathematica package for deriving functional equations

Automatization!

CrasyDSE [Huber, Mitter '11, http://tinyurl.com/crasydse]:

Automatic creation of kernels for C++

C++ framework for DSEs

→ Allows to treat large systems in a modular way.
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Functional equations T=0 T>0

Taming the equations

Keep most important parts!

Drop quantities

Model quantities
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Most important parts

UV leading (perturbation theory)

IR leading (analytic, lattice)
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Functional equations T=0 T>0

A note on truncations

No small expansion parameter. → Systematic expansion?

/

Is nature so mean that the 17-, 42- and 128-point functions are important?

Most likely not!
Lattice has a �nite number of points but can describe physics quantitatively.
⇒ There must be an N so that the n-point function with n > N is no
longer important.

How large is N? Calculation still feasible?

No way known to determine N analytically.

→ Let's try numerically. . .
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Functional equations T=0 T>0

E�ect of truncations: Propagators
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1
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Long-time standard truncation (1997 - 2012)

No four-gluon vertex

Ghost-gluon vertex: bare

Three-gluon vertex: model
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[MQH, von Smekal '12; lattice; Sternbeck '06]

→ Role of three-gluon vertex? → Use as input in other calculations.
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E�ect of truncations: Propagators
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Long-time standard truncation (1997 - 2012)

No four-gluon vertex

Ghost-gluon vertex: bare → dressed (dynamic)

Three-gluon vertex: model → optimized model

Missing strength in
mid-momentum regime:
→ two-loop diagrams
[Blum, MQH, Mitter, von Smekal '14]
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Functional equations T=0 T>0

The three-gluon vertex

→ See talk of A. Blum.
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[Blum, MQH, Mitter, von Smekal '14; lattice: Cucchieri, Maas, Mendes '08]

→ Truncation reliable. Neglected terms, incl. two-loop diagrams, suppressed.

See also results by [Eichmann, Williams, Alkofer, Vujinovic '14], esp. other dressings,
and [Peláez, Tissier, Wschebor '13].
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Four-gluon vertex

20 one-loop, 39 two-loop diagrams

Keep UV leading diagrams → 16 diagrams

Calculate full momentum dependence.
→ Access to all permutations of this diagram. → 6 diagrams
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Four-gluon vertex

20 one-loop, 39 two-loop diagrams

Keep UV leading diagrams → 16 diagrams

Calculate full momentum dependence.
→ Access to all permutations of this diagram. → 6 diagrams
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Four-gluon vertex

20 one-loop, 39 two-loop diagrams
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→ Access to all permutations of this diagram. → 6 diagrams

i

j k

l

=
+

i

j k

l

+
3
2

i

j

k

l

+ 3

i

j

k

l

+ 3

i

j

k

l

+ 3

i

j

k

l

-6

ij

k l

+ symmetrization

Markus Q. Huber University of Graz March 13, 2015 14/25



Functional equations T=0 T>0

Four-gluon vertex
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No model dependence! → 'Truncation closes.'
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Four-gluon vertex: Results

ghost and gluon propagators four-gluon vertex
ext. variables: 1 6
int. variables: 2 4

numeric e�ort O(N3) O(N10)
→laptop → > 100 cores on cluster
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numeric e�ort O(N3) O(N10)

→laptop → > 100 cores on cluster
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[Cyrol, MQH, von Smekal '14]

2-parameter �t:

D
4g, dec
model (p, q, r , s) =
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a tanh
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Markus Q. Huber University of Graz March 13, 2015 15/25



Functional equations T=0 T>0

Beyond Landau gauge: Coulomb gauge

Variational approach, trial ansatz for vacuum wave functional

Gaussian: qualitative picture (IR regime, perimeter law for 't Hooft loop,
dual superconductor picture of con�nement, decon�nement transition, . . . )
[Reinhardt et al. '04-'13]

Non-Gaussian ansatz: quantitative corrections in mid-momentum regime
[Campagnari, Reinhardt '10]

[MQH, Campagnari, Reinhardt '14]

Three-gluon vertex:

Zero crossing

IR divergent like p−3

Ghost-gluon vertex:

Di�erent truncations quite similar
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Functional equations T=0 T>0

Beyond Landau gauge: Linear covariant gauges

Gaussian distribution e−
1
2ξ (∂A)

2

around Landau gauge in path integral

Test of gauge (in)dependence of observables possible.

Well-known Landau gauge is endpoint: ξ = 0

Special choices convenient perturbatively, e.g., Feynman gauge ξ = 1;
non-perturbatively no advantage

ξ=0
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[MQH '15]

Ghost vanishes logarithmically in IR, see also [Aguilar, Binosi, Papavassiliou '15].
Gluon propagator IR �nite.
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Functional equations T=0 T>0

T > 0
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Functional equations T=0 T>0

Gluon propagators

Chromomagnetic and -electric gluons from the lattice [Fischer, Maas, Müller '10]:

Lattice data:

Input for DSEs to calculate quantities di�cult for lattice

Gluon DSE inconveniently di�cult: spurious divergences, two-loop diagrams

No truncation e�ects for input!

Lattice artifacts? → [Cucchieri, Mendes '11]
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Gluon propagators

Chromomagnetic and -electric gluons from the lattice [Fischer, Maas, Müller '10]:
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Input for DSEs to calculate quantities di�cult for lattice

Gluon DSE inconveniently di�cult: spurious divergences, two-loop diagrams
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Functional equations T=0 T>0

Simple test: Ghost propagator

Ghost dressing G (p2) from DSE [MQH, von Smekal '13]:

i1 i2
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[Fischer, Maas, Müller '10]

Propagators from other sources:
Lattice: [Fischer, Maas, Müller '10, Cucchieri, Mendes '11, Silva, Oliveira, Bicudo, Cardoso '13]

FRG: [Fister, Pawlowski '11]
Massive Yang-Mills: [Reinosa, Serreau, Tissier, Wschebor '13]
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Functional equations T=0 T>0

Three-point warm-up: Ghost-gluon vertex

DSE calculation: self-consistent solution of truncated DSE, zeroth Matsubara
frequency only

Vertices quite expensive on lattice.

Full momentum dependence from
functional equations.

Vertex from FRG: [Fister, Pawlowski '11]
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Functional equations T=0 T>0

Ghost-gluon vertex: Continuum and lattice
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Lattice: [Fister, Maas '14]
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Functional equations T=0 T>0

Three-gluon vertex: Continuum and lattice
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Lattice [Fister, Maas '14]: No zero crossing around Tc?

Lattice volume artifacts inherited from lattice gluon propagators in functional
calculation!
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Functional equations T=0 T>0

Three-gluon vertex

DSE calculation: semi-perturbative approximation (�rst iteration only)
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Functional equations T=0 T>0

Summary

Ultimately functional equations provide an
approach to QCD from �rst principles.

Intermediately: model dependence
Technical challenges!

Truncation at T = 0:

2-, 3- and 4-point functions calculated
Truncation e�ects understood (after more than 30 years!), e.g., e�ect of
two-loop terms.
System of DSEs closes with proposed truncation.

self-contained X
conjecture: quantitative description

Extension to T > 0:

First results for three-point functions
Basis for model building
E�ects of dressed vertices, e.g., in Polyakov loop potential?
Basis for extension to QCD and µ > 0

Thank you for your attention.
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