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Why use DSEs?

Methods for investigating QCD:
e UV: perturbation series
o IR: effective theories and models
o Lattice: IR- and UV-cutoffs

And functional approaches (DSEs, ERGEs, nPls, ..

e Valid in all momentum regions

o Arbitrary low momenta
o Arbitrary high momenta
e Mid-momentum region

@ Only one formalism

)?
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Overview of Functional Approaches

Advantages

@ Non-perturbative methods

o Effects that are not included in perturbation theory
o IR: study of confinement and chiral symmetry breaking

@ UV: coincide with perturbation series

e Continuum methods (no IR- and UV-cutoffs as on the lattice)
— Supplement lattice techniques

Disadvantages
@ Infinitely many equations — Truncations (restrictions) needed

@ Gauge dependent — different equations for every gauge
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Overview of Dyson-Schwinger Equations

History
@ Basic works by F.J. Dyson (1949) and J.S. Schwinger (1951)

@ In the course of time DSEs gave different pictures of QCD
depending on level of truncation (more later)

@ During the last ten years growing community

@ Equations of motion of a quantum field theory

@ System of (infinitely many) coupled integral equations
— "tower of DSEs"
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Constituents of DSEs

Basic quantities: n-point functions

6/23



Introduction
000e00000

Constituents of DSEs

Basic quantities: n-point functions
Gluon propagator DSE:
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winger Equations

Constituents of DSEs

Basic quantities: n-point functions

Gluon propagator DSE:

— Often diagrams are used for representation.

Summar:
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Constituents of DSEs

n-point functions

connected propagators =

vertices: 3-,4-,5-point
1PI propagators

functions and more

gluon s

—> o> quark w w

@ ghost

c

N

w



Introduction
000008000

Ghosts

e Can appear in quantization procedure (Faddeev-Popov)
e Virtual particles (never occur in results for observables)

@ Violate spin-statistics relation:
spin 0, but anticommuting, "fermions"

Some gauges feature ghosts: Landau gauge, maximal Abelian gauge

Ghost-free: e.g. Laplacian gauge
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Example: Quark Propagator DSE

A DSE describes how particles propagate/interact.

Example: Quark propagator DSE, known as gap equation of QCD

= -1 &
- & - -

Dynamical chiral symmetry breaking:

constituent quark mass is higher than current quark mass
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Example: Quark Propagator DSE

A DSE describes how particles propagate/interact.

Example: Quark propagator DSE, known as gap equation of QCD

Dynamical chiral symmetry breaking:

constituent quark mass is higher than current quark mass
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The Tower of DSEs

More interactions — more involved equations

. - W\%w w/\/Ovm
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The Tower of DSEs

More interactions — more involved equations
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ERRAVAV VYV VYoV VR | ] + +
+1/2 wé:EWA +1/2 %w -3 W\%




Introduction
000000080

The Tower of DSEs

More interactions — more involved equations
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>n-Schwinger Equations Summar

The Tower of DSEs

More interactions — more involved equations
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Structure

DSEs for a primitively divergent n-point function always have the
following form:

@ The n-point function itself appears bare and 1PI.
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Structure

DSEs for a primitively divergent n-point function always have the
following form:

@ The n-point function itself appears bare and 1PI.

@ All other diagrams contain exactly one bare vertex.

A Actofiedchot



Introduction
00000000e

Structure

DSEs for a primitively divergent n-point function always have the
following form:

@ The n-point function itself appears bare and 1PI.
@ All other diagrams contain exactly one bare vertex.

@ There are always m-point functions with m > n.

A Actoledchch
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Generating Functionals

Generate the n-point functions of a theory by differentiation:
full, connected, one-particle irreducible (1P1)

8 Relations:
ZU =%, 160 m O 20] = &)
m C) :/D[A]e—S+A;J;

I’[A] = —W[J] + A J;

Wi =Y, 5GIm 8 O)

rAl =3, L GnA™ 8 ) e
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The Total Derivative

Integral of a total derivative vanishes
(given appropriate boundary conditions):
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Summary
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Ultraviolet

Iteration of DSEs gives perturbation series.

Example: 3-gluon vertex up to one-loop
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Truncations

Infinite tower of equations — Truncations needed
Neglect higher n-point functions

Better: make an ansatz that respects symmetries
(Ward-Takahashi, Slavnov-Taylor)

System can react very sensitive to truncations
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Truncations

@ Infinite tower of equations — Truncations needed
@ Neglect higher n-point functions

o Better: make an ansatz that respects symmetries
(Ward-Takahashi, Slavnov-Taylor)

@ System can react very sensitive to truncations

Example: Mandelstam approximation (1979)
Neglect all quark and ghost contributions:

IR-divergent gluon propagator — linear rising quark potential
— confinement of quarks but WRONG picture UNI




000000000

ummar

Dyson-Schwinger Equations

A More Complicated Example?
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@ Neglect quarks
@ Neglect four-gluon vertices

@ Restrain three-point vertices by
Slavnov-Taylor identities
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Infrared Behavior of Yang-Mills Theory
Gluon and ghost propagators:

5 2 G 2
Dy (P?) = (5uu - P;;f ) ZL'Z )> Dg(p®) = — LI; :

Analytic results in the IR for the dressing functions:
Z®(p*) ~ (p*)*", G"R(p?) ~ ()"

k=059... — gluon vanishing: ~ (p?)°2
ghost divergent: ~ (p?)~1®

Gluons cannot propagate over long distances — gluons confined

Renormalization group: confirms this behavior
Lattice: agreement except finite volume effects?

Gribov-Zwanziger and Kugo-Ojima scenarios

Summary
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Propagators

@ IR behavior can be determined from the ghost DSE:
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Propagators

@ IR behavior can be determined from the ghost DSE:

@ Use bare ghost-gluon vertex
@ Power law ansatze for dressing functions in the IR
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Propagators
@ IR behavior can be determined from the ghost DSE:F\
777777 P S SRR A
@ Use bare ghost-gluon vertex

@ Power law ansatze for dressing functions in the IR

B - (p?)? IN/ d'q , A-(¢*)*B-((p—a)°)’
p? (2m)* " g2 (p—q)?
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Propagators
@ IR behavior can be determined from the ghost DSE:F\
777777 P S SRR A
@ Use bare ghost-gluon vertex

@ Power law ansatze for dressing functions in the IR

B - (p?)? IN/ d'q , A-(¢*)*B-((p—a)°)’
p? (2m)* " g2 (p—q)?

Only one momentum scale
— simple power counting is possible

1—-0=24a—-1+0—-1+ -+ - -28=«
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Power Counting

convention: 3 = —k, IR exponent of ghost propagator

K is determined from consistency relations between the gluon and
ghost DSEs

Infrared exponents:

determine the IR behavior of the
e gluon propagator: (p?)*~

@ ghost propagator: (p?) "

@ Vertices: extract one momentum scale

2 2 2 218 P% P§
(p17p27p37"')_>(p1) (2727-'-;5>
Pr P1

c
=

19 /23



Introduction Dyson-Schwinger Equations Summary
000000000 [e]e]
000000800

Skeleton Expansion

i

Ghost-triangle (three-gluon vertex) )
Kly kel

e 1)aglid 3.
(p2)3( 1)+23+5 _ (Pz) 3 1/3__)_1_:21/2
_K-
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Skeleton Expansion

Ghost-triangle (three-gluon vertex) )
Kly kel

— Kk — l Q — K /
(p2)3( 1)+23+5 _ (Pz) 3 1/2‘56__*_1__\21/2
_K-

What about unknown vertices?
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Skeleton Expansion

. 12
Ghost-triangle (three-gluon vertex) /%\

e 1)aolad 3k
(p?)* e FTe = (p7) 0

Employ skeleton expansion
~ loop expansion with dressed quantities

: 3
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Skeleton Expansion

@ All orders have the same IR exponent.

@ Power counting for arbitrary number of internal vertices and
propagators possible.

@ IR exponent for vertices
with 2n external ghosts and m gluons in d dimensions:

. d
donm=(n—m)r+(1— n)(§ -2)
Employ skeleton expansion

~ loop expansion with dressed quantities

§ 3 :

PERN VAR 4N
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Skeleton Expansion

@ All orders have the same IR exponent.

@ Power counting for arbitrary number of internal vertices and
propagators possible.

@ IR exponent for vertices
with 2n external ghosts and m gluons in d dimensions:

52n,m = (n — m)i{ —+ (]_ — n)(g _ 2)

Using the skeleton expansion
the IR behavior is determined without truncations.

Summary

20 /23
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Quarks and Ghosts

No quark-ghost vertex in action, so how do ghosts interact with
quarks?
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Quarks and Ghosts

No quark-ghost vertex in action, so how do ghosts interact with
quarks?
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Quarks and Ghosts

No quark-ghost vertex in action, so how do ghosts interact with
quarks?

Y
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Quarks and Ghosts

No quark-ghost vertex in action, so how do ghosts interact with
quarks?

o

— influence of ghosts in the
quark-gluon DSE
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Applications
QCD:

@ Renormalizability
@ Non-perturbative effects
o IR behavior of propagators and vertex functions — confinement
e Dynamical chiral symmetry breaking
e Study of hadrons as composites of dressed quarks and gluons:
Mass spectra, decay constants, electromagnetic form factors
— talks by Gernot Eichmann and Klaus Lichtenegger
° ...

Otbher field theories:

@ Top quark condensate

o Condensed matter physics

@ Calculation of the anomalous magnetic moment of the photon
(Selym Villalba-Chavez)

c
=

N
N
N
w
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Summary

@ Non-perturbative continuum method

@ Technically involved

@ DSEs describe important aspects of
QCD and hadron physics

23/23
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