On truncation effects in Dyson-Schwinger equations

Markus Q. Huber

Institute of Physics, University of Graz

Functional Methods in Hadron and Nuclear Physics, Trento, Italy

Aug. 23, 2017

Markus Q. Huber

University of Graz

Where Yang-Mills theory matters

 Successful (functional) bottom-up approaches in QCD: Model the Yang-Mills part

Example: Maris-Tandy-like interaction for quark-gluon interaction incl. gluon propagator

$$= i g T^a \gamma_\mu \mathcal{G}(k^2)$$

- Self-contained calculations in QCD necessarily contain Yang-Mills part.
- Glueballs

Overview

- Where the Yang-Mills part enters
- Some details on the framework
- Testing truncations:
 - Hierarchy of diagrams (testing in 3 dimensions)
 - Extensions of truncations in 4 dimensions:
 - \rightarrow Two-loop terms
 - \rightarrow Non-primitively divergent correlation functions

Where Yang-Mills theory enters

Widely used truncation: Rainbow + ladder + variant of Maris-Tandy interaction

How to reduce model dependence

- Improve kernel K
- Use explicit gluon propagator + quark-gluon vertex

Where Yang-Mills theory enters

Widely used truncation: Rainbow + ladder + variant of Maris-Tandy interaction

How to reduce model dependence

- Improve kernel K
- Use explicit gluon propagator + quark-gluon vertex

- \longrightarrow We need full control over the gluonic sector.
 - Gluon propagator
 - Three-gluon vertex

```
...?
```

Markus Q. Huber

University of Graz

Landau gauge QCD

Landau gauge QCD

Landau gauge

• simplest one for functional equations

•
$$\partial_{\mu} \boldsymbol{A}_{\mu} = 0$$
: $\mathcal{L}_{gf} = \frac{1}{2\xi} (\partial_{\mu} \boldsymbol{A}_{\mu})^2, \quad \xi \to 0$

• requires ghost fields: $\mathcal{L}_{gh} = \bar{c} \left(-\Box + g \mathbf{A} \times \right) c$

Markus Q. Huber

University of Graz

and possibly (n + 2)-point functions.

University of Graz

Is it possible to find and solve a truncation with all relevant contributions?

k chank k $+\frac{1}{2}$ k $+\frac{1}{2}$ k $+\frac{1}{2}$ k $+\frac{1}{2}$ k $+\frac{1}{2}$ k $+\frac{1}{2}$ k $+\frac{1}{2}$

Markus Q. Huber

University of Graz

Questions about truncations

- Influence of higher correlation functions?
- Hierarchy of diagrams/correlation functions?
- Model dependence ↔ Self-contained truncation?
- How to realize resummation?
- Equivalence between different functional methods?

d = 3 Yang-Mills theory as testing ground

Advantages:

- UV finite: no renormalization, no anomalous running
- Spurious divergences easier to handle
- UV behavior 'easier': $\propto \frac{g^2}{p}$ instead of resummed logarithm
- \rightarrow Many complications from d = 4 absent.
- \rightarrow Disentanglement of UV easier.

 \Rightarrow 'Cleaner' system \rightarrow Focus on truncation effects.

d = 3 Yang-Mills theory as testing ground

Advantages:

- UV finite: no renormalization, no anomalous running
- Spurious divergences easier to handle
- UV behavior 'easier': $\propto \frac{g^2}{p}$ instead of resummed logarithm
- \rightarrow Many complications from d = 4 absent.
- \rightarrow Disentanglement of UV easier.

 \Rightarrow 'Cleaner' system \rightarrow Focus on truncation effects.

Historically interesting because cheaper on the lattice \rightarrow easier to reach the IR. Numerically not cheaper for functional equations of 2- and 3-point functions.

 Continuum results:
 • Coupled propagator DSEs: [Maas, Wambach, Grüter, Alkofer '04]

 • (R)GZ: [Dudal, Gracey, Sorella, Vandersickel, Verschelde '08]

 • DSEs of PT-BFM: [Aguilar, Binosi, Papavassiliou '10]

 • YM + mass term: [Tissier, Wschebor '10, '11]

 Markus Q. Huber
 University of Graz
 Aug. 23, 2017
 8/29

Dyson-Schwinger equations: Truncation

Gluon propagator: Single diagrams

Clear hierarchies identified:

- UV: as expected perturbatively
- non-perturbative: squint important, sunset small
 (d=4: [Mader Allefer '12: Mayor
 - (d=4: [Mader, Alkofer '13; Meyers,
 - Swanson '14])

Results: Propagators

Markus Q. Huber

University of Graz

Comparison of three-point functions with lattice results

Four-gluon vertex

Four-gluon vertex:

- Close to tree-level down to 1 GeV
- \rightarrow Corrections small individually?

Influence of four-gluon vertex on three-point functions

• Influence of four-gluon vertex small.

Cancellations in gluonic vertices

Three-gluon vertex:

- Individual contributions large.
- Sum is small!

Four-gluon vertex:

Markus Q. Huber

University of Graz

Cancellations in gluonic vertices

Three-gluon vertex:

Four-gluon vertex:

• Individual contributions large.

• Sum is small!

 \Downarrow

Higher contributions:

- Higher vertices close to 'tree-level'? \rightarrow Small.
- If pattern changes (higher vertices large): cancellations required.

University of Graz

Solution from the 3PI effective action

Different set of functional equations:

equations of motion from 3PI effective action (at three-loop level)

Solution from the 3PI effective action

Different set of functional equations:

equations of motion from 3PI effective action (at three-loop level)

Summary about three dimensions

- Hierarchy of correlation functions and diagrams
- Cancellations
- Some degree of stability (but no complete list of checks done) when
 - varying *system* of equations.
 - varying *equations* of system.
- Discrepancies with lattice results:
 - Nonperturbative gauge fixing?
 - Incomplete tensor bases for some vertices?
 - Missing diagrams for vertices?
 - Lattice systematics?

UV behavior of the gluon propagator

Resummed one-loop order: anomalous dimension $\gamma = -13/22$ One-loop truncation:

UV behavior of the gluon propagator

Resummed one-loop order: anomalous dimension $\gamma = -13/22$ One-loop truncation:

Self-consistent solution puts constraints on UV behavior of vertices $[{\sf von Smekal}, {\sf Hauck}, {\sf Alkofer '97}]$:

- Ghost-gluon vertex: $\sim const. \rightarrow \checkmark$
- Three-gluon vertex: $\propto (\log p)^{17/22}$ Anomalous dimension $\gamma_{3g} = 17/44 \rightarrow \odot$ Solutions: $Z_1 \rightarrow Z_1(p^2) \leftrightarrow$ modified three-gluon vertex model [von Smekal, Hauck, Alkofer '97; Fischer, Alkofer '02]

Truncation artifact!

Resummed behavior

 Resolving the UV behavior within this truncation leads to an additional parameter dependence → part of the model Extreme example:

- Study for three-gluon vertex: [Eichmann, Williams, Alkofer, Vujinovic '14]
- However, correct UV behavior is required for self-consistency.

One-loop resummation

One-loop anomalous dimension

Origin in resummation of higher order diagrams.

$$\left(1 + \frac{\alpha(s)11N_c}{12\pi}\ln\frac{p^2}{s}\right)^{\gamma} = 1 + c_1 g^2 \ln p^2 + c_2 g^4 \ln^2 p^2 + \mathcal{O}(g^6)$$

- $\mathcal{O}(g^2)$: One-loop diagrams
- $\mathcal{O}(g^4)$: Iterated one-loop diagrams, squint (not sunset)

Resummed behavior

Minimal requirements to obtain one-loop resummed behavior:

- Squint diagram
- Proper models for three-point functions (with correct anom. dimensions)
- Correct renormalization

Resummed behavior

Minimal requirements to obtain one-loop resummed behavior:

- Squint diagram
- Proper models for three-point functions (with correct anom. dimensions)
- Correct renormalization

[propagator eqs. full, 3-point models, bare 4-gluon vertex]

• Resummed behavior is recovered.

Four-gluon vertex

Full calculation with fixed input: [Cyrol, MQH, von Smekal '14]

Computationally expensive!

Four-gluon vertex

Markus Q. Huber

University of Graz

Effect of four-gluon vertex

In three-gluon vertex DSE:

Important for convergence within current truncations in d = 4[Blum, MQH, Mitter, von Smekal '14; Eichmann, Williams, Alkofer, Vujinovic '14] \rightarrow Related to renormalization.

Effect of four-gluon vertex

In three-gluon vertex DSE:

Important for convergence within current truncations in d = 4[Blum, MQH, Mitter, von Smekal '14; Eichmann, Williams, Alkofer, Vujinovic '14] \rightarrow Related to renormalization.

In gluon propagator: Via sunset diagram, small contribution of tree-level dressing; model studies: [Mader, Alkofer '13; Meyers, Swanson '14]

Extending truncations of three-point functions

Extend truncations of three-point functions:

Extending truncations of three-point functions

Extend truncations of three-point functions:

 \Rightarrow Requires the two-ghost-two-gluon vertex.

Extending truncations

Conclusions and outlook

Extending truncations of three-point functions

Extend truncations of three-point functions:

 \Rightarrow Requires the two-ghost-two-gluon vertex.

Four-ghost vertex:

In alternative ghost-gluon vertex DSE and in four-point functions.

Markus Q. Huber

University of Graz

The two-ghost-two-gluon vertex

Non-primitively divergent correlation function $(\rightarrow$ no guide from tree-level tensor) appearing in three-point and higher DSEs.

$$\Gamma^{AA\bar{c}c,abcd}_{\mu\nu}(p,q;r,s) = \mathbf{g}^{4} \sum_{k=1}^{25} \rho^{k,abcd}_{\mu\nu} D^{AA\bar{c}c}_{k}(p,q;r,s) \qquad \text{with } \rho^{abcd}_{\mu\nu} = \tau^{abcd} \otimes \sigma_{\mu\nu}$$

Color basis: 8 tensors. Neglect symmetric $d^{abc} \rightarrow 5$ tensors.

$$\begin{split} \tau_1^{abcd} &= -2f^{acd}f^{bde} + f^{abd}f^{cde}, \qquad \tau_2^{abcd} = \delta^{ab}\delta^{cd}, \qquad \tau_3^{abcd} = \delta^{ad}\delta^{bc} + \delta^{ac}\delta^{bd}, \\ \tau_4^{abcd} &= -\delta^{ad}\delta^{bc} + \delta^{ac}\delta^{bd}, \qquad \tau_5^{abcd} = f^{abe}f^{cde}. \end{split}$$

Lorentz basis transverse wrt gluon legs \rightarrow 5 tensors.

$$\begin{aligned} \sigma^{1}_{\mu\nu}(p,q;r,s) &= t_{\mu\nu}(p,q), & \sigma^{2}_{\mu\nu}(p,q;r,s) = t_{\mu\alpha}(p,p)t_{\alpha\nu}(r,q) + t_{\mu\alpha}(p,r)t_{\alpha\nu}(q,q), \\ \sigma^{4}_{\mu\nu}(p,q;r,s) &= t_{\mu\alpha}(p,p)t_{\alpha\nu}(q,q), & \sigma^{3}_{\mu\nu}(p,q;r,s) = t_{\mu\alpha}(p,p)t_{\alpha\nu}(r,q) - t_{\mu\alpha}(p,r)t_{\alpha\nu}(q,q), \\ \sigma^{5}_{\mu\nu}(p,q;r,s) &= t_{\mu\alpha}(p,r)t_{\alpha\nu}(r,q), & \text{with } t_{\mu\nu}(p,q) = g_{\mu\nu}p \cdot q - p_{\mu}q_{\nu}. \end{aligned}$$

Markus Q. Huber

University of Graz

The two-ghost-two-gluon vertex DSE

2 DSEs, choose the one with the ghost leg attached to the bare vertex \rightarrow Truncation discards only one diagram.

University of Graz

Conclusions and outlook

The two-ghost-two-gluon vertex DSE

2 DSEs, choose the one with the ghost leg attached to the bare vertex \rightarrow Truncation discards only one diagram.

Results for the two-ghost-two-gluon vertex

Kinematic approximation: one-momentum configuration

 \rightarrow Two classes of dressings: 13 very small, 12 not small

Markus Q. Huber

University of Graz

Influence of two-ghost-two-gluon vertex

Coupled system of ghost-gluon, three-gluon and four-gluon vertices with and without two-ghost-two-gluon vertex in three-point functions:

Influence of two-ghost-two-gluon vertex

Coupled system of ghost-gluon, three-gluon and four-gluon vertices with and without two-ghost-two-gluon vertex in three-point functions:

- Small influence on ghost-gluon vertex (< 1.7%)
- Negligible influence on three-gluon vertex

Influence of two-ghost-two-gluon vertex

Coupled system of ghost-gluon, three-gluon and four-gluon vertices with and without two-ghost-two-gluon vertex in three-point functions:

Markus Q. Huber

University of Graz

Summary and conclusions

Based on

- tests in d = 3 including comparison with 3PI calculations
- analysis of one-loop resummation
- testing a non-primitively divergent correlation function

a non-perturbative hierarchy of correlations functions and diagrams can be identified.

Three- and four-gluon vertices:

- Cancellations between diagrams
- 2 Negligible diagrams

Two-loop diagrams in propagators:

Required quantitatively and for self-consistency.

Summary and conclusions

Based on

- tests in d = 3 including comparison with 3PI calculations
- analysis of one-loop resummation
- testing a non-primitively divergent correlation function

a non-perturbative hierarchy of correlations functions and diagrams can be identified.

Three- and four-gluon vertices:

- Cancellations between diagrams
- 2 Negligible diagrams

Two-loop diagrams in propagators:

Required quantitatively and for self-consistency.

Outlook:

- Two-ghost-two-gluon vertex impact on four-gluon vertex.
- Combine vertex and propagator calculations.

Summary and conclusions

Based on

- tests in d = 3 including comparison with 3PI calculations
- analysis of one-loop resummation
- testing a non-primitively divergent correlation function

a non-perturbative hierarchy of correlations functions and diagrams can be identified.

Three- and four-gluon vertices:

- Cancellations between diagrams
- 2 Negligible diagrams

Two-loop diagrams in propagators:

Required quantitatively and for self-consistency.

Outlook:

- Two-ghost-two-gluon vertex impact on four-gluon vertex.
- Combine vertex and propagator calculations.

Thank you for your attention!

Markus Q. Huber

University of Graz

Family of solutions in three dimensions

Cf. FRG results: Bare mass parameter from modified STIs [Cyrol, Fister, Mitter, Pawlowski, Strodthoff '16].

DSEs: Enforce family of solutions by fixing the gluon propagator at $p^2 = 0$.

Simple toy system with bare vertices [MQH, 1606.02068]:

 \Rightarrow Possibility of family of solutions.

NB: Effect overestimated here since vertices are fixed.

Markus Q. Huber

University of Graz