Integral equations

Markus Q. Huber

ECT* Doctoral Training Program "Hadron physics with functional methods"

Trento, Italy

May 4, 2022

Markus Q. Huber (Giessen University)

Integral equations

What is an integral equation?

Equation where an unknown function appears under an integral.

Example:

$$f(x) = \int_a^b K(x,t)g(t)dt$$

f(x): known function g(x): unknown function \rightarrow Solve for that. K(x, t): kernel

What is an integral equation?

Equation where an unknown function appears under an integral.

Example:

$$f(x) = \int_a^b K(x,t)g(t)dt$$

f(x): known function g(x): unknown function \rightarrow Solve for that. K(x, t): kernel

Relation to differential equations.

Maxwell equations: Differential vs. integral form

Example:

$$\vec{\nabla}\cdot\vec{B}=0$$

$$\int d\vec{A}\cdot\vec{B}=0$$

Markus Q. Huber (Giessen University)

Classification of integral equations I

f(x) known function g(t) unknown function

Fredholm integral equations

$$f(x) = \int_a^b K(x,t)g(t)dt$$

integration boundaries constant

Volterra integral equations

$$f(x) = \int_a^x K(x,t)g(t)dt$$

integration boundaries depend on x

Markus Q. Huber (Giessen University)

Integral equations

Classification of integral equations II

f(x) known function g(x) unknown function

Integral equations of first kind

$$F(x) = \int_a^b K(x,t)g(t)dt$$

unknown function only in integrand

Integral equations of second kind

$$g(x) = f(x) + \int_a^b K(x,t)g(t)dt$$

unknown function appears outside of integrand

Markus Q. Huber (Giessen University)

Integral equations

Classification of integral equations III

f(x) known function g(x) unknown function

Homogeneous/inhomogeneous integral equations

$$g(x) = f(x) + \int_a^b K(x,t)g(t)dt$$

 $f(x) = 0 \rightarrow$ homogeneous, $f(x) \neq 0 \rightarrow$ inhomogenous

Linear integral equations

Unknown function appears linearly.

Markus Q. Huber (Giessen University)

Integral equations of QCD Equations of motions

The propagator DSEs of QCD

[MQH Phys. Rept. 879 (2020)]

Landau gauge Most widely solved DSE: quark propagator DSE \rightarrow See lectures Fischer, Maris, project 1.

Ghost propagator DSE: Same structure, but no Dirac traces, only one dressing \rightarrow See project 5.

Gluon propagator DSE: One dressing, 2-loop diagrams, quadratic divergences \rightarrow See project 5.

Renormalization

Most diagrams are UV divergent. \rightarrow Renormalization needed.

UV divergence in renormalizable theory:

- Regularize integrals, here UV cutoff.
- Include counter terms in action to remove UV divergences.
- Renormalization conditions required.

Renormalization

Most diagrams are UV divergent. \rightarrow Renormalization needed.

UV divergence in renormalizable theory:

- Regularize integrals, here UV cutoff.
- Include counter terms in action to remove UV divergences.
- Renormalization conditions required.

Particular renormalization scheme: MOM (momentum subtraction)

Ghost propagator DSE

$$G^{-1}(\rho^2)=\widetilde{Z}_3-\Sigma(\rho^2)$$

Subtraction of DSE from itself at p_G^2 :

$$G^{-1}(p^2) = G^{-1}(p_G^2) - \Sigma(p^2) + \Sigma(p_G^2)$$

Renormalization condition: $G(p_G^2)$

Renormalization of the quark propagator DSE

$$S(p)^{-1} = ipA(p^2) + B(p^2)$$

DSE:

Projection onto $A(p^2)$ and $B(p^2)$:

$$egin{aligned} A(p^2) &= Z_2 - \Sigma_A(p^2), \ B(p^2) &= Z_2 \, Z_m \, m - \Sigma_B(p^2) \end{aligned}$$

Renormalization conditions: $A(\mu^2) = 1, M(\mu^2) = B(\mu^2)/A(\mu^2) = m$

Markus Q. Huber (Giessen University)

Bethe-Salpeter equation I

[More details: Eichmann, Sanchis-Alepuz, Williams, Alkofer, Fischer, Prog. Part. Nucl. Phys. 1 (2016)]

Idea: Bound state of 2 particles is encoded as a pole in the 4-point function.

Generic structure of a 4-point function G: trivial part + interacting part

 $G=G_0+G_0TG_0$

 G_0 : product of two disconnected propagators T: scattering matrix (amputated and connected part of G) K: four-particle scattering kernel, two-particle irreducible

Bethe-Salpeter equation I

[More details: Eichmann, Sanchis-Alepuz, Williams, Alkofer, Fischer, Prog. Part. Nucl. Phys. 1 (2016)]

Idea: Bound state of 2 particles is encoded as a pole in the 4-point function.

Generic structure of a 4-point function G: trivial part + interacting part

 $G=G_0+G_0\,TG_0$

 G_0 : product of two disconnected propagators T: scattering matrix (amputated and connected part of G) K: four-particle scattering kernel, two-particle irreducible

Dyson equation:

 $G = G_0 + G_0 KG$

Resummation of $G = G_0 + G_0 K G_0 + G_0 K G_0 K G_0 + \dots$

Nonperturbative!

Markus Q. Huber (Giessen University)

Integral equations

Integral equations of QCD Bethe-Salpeter equation

Bethe-Salpeter equation II

4-point functions at pole M^2 :

Dyson equation at pole:

General, e.g., M^2 could be complex \rightarrow resonances.

Integral equations of QCD Bethe-Salpeter equation

Bethe-Salpeter equation II

4-point functions at pole M^2 :

Dyson equation at pole:

General, e.g., M^2 could be complex \rightarrow resonances.

Same procedure for scattering matrix T:

$$egin{array}{ll} T
ightarrow rac{\Gamma \, \overline{\Gamma}}{P^2 + M^2}, & \Rightarrow & \Gamma = K G_0 \Gamma \ (\Psi = G_0 \Gamma) \end{array}$$

Markus Q. Huber (Giessen University)

Integral equations

Γ: Bethe-Salpeter amplitude

Solution methods

How to solve DSEs and BSEs?

Fixed point iteration

We consider the general case where a numeric solution is necessary. (In some approximations exact solutions are possible.)

Self-consistent solution!

Fixed point iteration

We consider the general case where a numeric solution is necessary. (In some approximations exact solutions are possible.)

Self-consistent solution!

Simplest method: Fixed point iteration

- Choose a starting guess.
- ② Calculate the right-hand side: integrals, (renormalization)
- Use the right-hand side to determine a new solution.
- ④ Go back to 2 until convergence is reached.

Fixed point iteration

We consider the general case where a numeric solution is necessary. (In some approximations exact solutions are possible.)

Self-consistent solution!

Simplest method: Fixed point iteration

- Choose a starting guess.
- ② Calculate the right-hand side: integrals, (renormalization)
- ③ Use the right-hand side to determine a new solution.
- ④ Go back to 2 until convergence is reached.
- Convergence: Stable solutions where nothing "changes" anymore, e.g., $\sum_{i} |A_{new}(x_i) A_{old}(x_i)| < \epsilon$
- Relaxation: Mix old and new solutions. Can help with convergence.

Coupled equations

Meta-iteration: Fixed point iterations for single equations.

Coupled equations

Meta-iteration: Fixed point iterations for single equations.

Example: Equations A, B, C, D

- Super-meta-iteration:
 - Iterate eq. A five times (or until converged).
 - Meta-iteration of subsystem B, C:
 - Iterate eq. B until converged.
 - Iterate eq. C once.
 - Check convergence of B, C.
 - Iterate eq. D until converged.
 - Check overall convergence for A, B, C, D.

Coupled equations

Meta-iteration: Fixed point iterations for single equations.

Example: Equations A, B, C, D

- Super-meta-iteration:
 - Iterate eq. A five times (or until converged).
 - Meta-iteration of subsystem B, C:
 - Iterate eq. B until converged.
 - Iterate eq. C once.
 - Check convergence of B, C.
 - Iterate eq. D until converged.
 - Check overall convergence for A, B, C, D.
- Simple to realize.
- Easy to monitor progress.
- If we are lucky, it works. (We are lucky often.)

Solution methods

Homogeneous BSE

Ingredients of a BSE I

P: total momentum, center of mass momentum p: relative momentum

Kernel K(P, p, q)

2-particle irreducible with respect to constituents, viz., does not contain diagrams generated by iteration.

Expression chosen by you. \leftrightarrow Truncation.

Solution methods

Homogeneous BSE

Ingredients of a BSE II

Decomposition of Bethe-Salpeter amplitude into Lorentz-invariant functions $f_i(p^2, p \cdot P, P^2)$:

$$\Gamma(\boldsymbol{P};\boldsymbol{p}) = \sum_{i} f_{i}(\boldsymbol{p}^{2},\boldsymbol{p}\cdot\boldsymbol{P},\boldsymbol{P}^{2})\boldsymbol{\tau}_{i}(\boldsymbol{p},\boldsymbol{P}).$$

Choice of τ_i is problem dependent, e.g., $\tau_i \in \gamma_5 \cdot \{1, \mathcal{P}, \mathcal{P}, [\mathcal{P}, \mathcal{P}]\}$ for pion. Equation needs to be projected onto the τ_i , see project 2.

• Expansion of angle of $f_i(p^2, p \cdot P, P^2)$ in Chebyshev polynomials of the second kind:

$$f_i(p^2, p \cdot P, P^2) = \sum_{j=0}^N d_{i,j}(p^2, P^2) \frac{U_j(\cos \theta)}{U_j(\cos \theta)}$$

Markus Q, Huber (Giessen University)

Integral equations

Solution methods Homogeneous BSE

Solving a homogeneous BSE

Rewrite as eigenvalue problem

$$\boldsymbol{\lambda(P)}\,\boldsymbol{\Gamma(P)}=\mathcal{K}\cdot\boldsymbol{\Gamma(P)}.$$

 \mathcal{K} is a matrix (discrete points) $\lambda(P^2) = 1$ is a solution to the BSE \Rightarrow mass $M^2 = -P^2$

 \rightarrow Vary P^2 , find $\lambda(P^2) = 1$, have mass $M^2 = -P^2$.

Solution methods Homogeneous BSE

Solving a homogeneous BSE

Rewrite as eigenvalue problem

$$\boldsymbol{\lambda(P)}\,\boldsymbol{\Gamma(P)}=\mathcal{K}\cdot\boldsymbol{\Gamma(P)}.$$

 \mathcal{K} is a matrix (discrete points) $\lambda(P^2) = 1$ is a solution to the BSE \Rightarrow mass $M^2 = -P^2$

 \rightarrow Vary P^2 , find $\lambda(P^2) = 1$, have mass $M^2 = -P^2$.

Calculation requires propagators for complex arguments:

$$\left(q \pm \frac{P}{2}\right)^2 = \frac{P^2}{4} + q^2 \pm \sqrt{P^2 q^2} \cos \theta$$
$$= -\frac{M^2}{4} + q^2 \pm \mathbf{i} M \sqrt{q^2} \cos \theta$$

Markus Q. Huber (Giessen University)

Minimization

Sometimes fixed point iteration just does not work...

Minimization

Sometimes fixed point iteration just does not work...

Idea: Expand dressings in some functions, e.g., Chebyshev polynomials, and find coefficients that solve the equation self-consistently:

$$Z(p^2) = exp\left(\sum_{i}^{N-1} c_i T_i(t(p^2))
ight)$$

Minimization

Sometimes fixed point iteration just does not work...

Idea: Expand dressings in some functions, e.g., Chebyshev polynomials, and find coefficients that solve the equation self-consistently:

$$Z(p^2) = exp\left(\sum_{i}^{N-1} c_i T_i(t(p^2))
ight)$$

E(

Minimization problem

Example:

$$B(p^2) = m - \Sigma_B(p^2)$$

 \rightarrow

$$(p^2) = m - \Sigma_B(p^2) - B(p^2) \stackrel{!}{=} 0$$

Newton method

Minimize:

$$E^i = -Z^i(\{c\}) + DSE^i(\{c\})$$

 Z^i : dressing function for external point x_i {c}: coefficients of expansion of Z^i

Newton method

Minimize:

$$E^i = -Z^i(\{c\}) + DSE^i(\{c\})$$

 Z^i : dressing function for external point x_i {c}: coefficients of expansion of Z^i

Newton method d = 1: Find zero of f(x):

$$x_{\text{new}} = x_{\text{old}} - rac{f(x_{\text{old}})}{f'(x_{ ext{old}})}$$

Newton method

Minimize:

$$E^{i} = -Z^{i}(\lbrace c \rbrace) + DSE^{i}(\lbrace c \rbrace)$$

 Z^i : dressing function for external point x_i {c}: coefficients of expansion of Z^i

Newton method d = 1: Find zero of f(x):

$$x_{\mathsf{new}} = x_{\mathsf{old}} - rac{f(x_{\mathsf{old}})}{f'(x_{\mathsf{old}})}$$

Generalized Newton method: $x \rightarrow c, f \rightarrow E, f' \rightarrow J$

$$m{c}_{\sf new}^i = m{c}_{\sf old}^i - \lambda \sum_k (m{J}^{-1})^{ik} m{E}^k$$

Jacobian $J^{ik} = \frac{\partial E^k}{\partial c^i}$

 λ : Backtracking parameter to adjust step size.

Markus Q. Huber (Giessen University)

Integral equations

Calculation of Jacobian

Could calculate derivative exactly, but approximation is sufficient: Broyden's method

Calculation of Jacobian

Could calculate derivative exactly, but approximation is sufficient: Broyden's method

Forward derivative:

$$J^{ik} = \frac{E^k(c^i + h) - E^k(c^i)}{h}$$

→ Calculate *E* once with the given coefficients ($E^k(c^i)$) and then vary each coefficient by $h(E^k(c^i + h))$.

E.g. $h = 10^{-3}$

Coupled system of equations

Example: Gluon and ghost propagators in Yang-Mills theory

Both equations depend on each other: $E^i \to E^{(i,a)}$, where *a* labels the DSE.

 \rightarrow Jacobian has block-diagonal form.

Markus Q. Huber (Giessen University)

Remarks on Newton method

Stopping criterion

Minimize $E^i \rightarrow$ Iterate and monitor |E|.

- Stop when defined threshold is reached.
- Converges quadratically fast close to the minimum.
- Can see if one gets stuck in local minimum, |E| > 0.

Remarks on Newton method

Stopping criterion

Minimize $E^i \rightarrow$ Iterate and monitor |E|.

- Stop when defined threshold is reached.
- Converges quadratically fast close to the minimum.
- Can see if one gets stuck in local minimum, |E| > 0.
- Starting point can be important.
- Black box-like.
- Computationally more costly (calculation of *J*).
- Stable and reliable, once it works.
- Alternative to fixed point iteration when that fails.

Use Newton when fixed point iteration fails.

Markus Q. Huber (Giessen University)

Integral equations

Summary

Summary

• Eigenvalue problem: Homogeneous BSE

Fixed point iteration: Simplest available method.
 Also for inhomogeneous BSE, see project 3, and equ. of motion of nPI effective actions.

• Minimization (Newton method): More powerful, more complicated.

