Integral equations

Markus Q. Huber

ECT* Doctoral Training Program
"Hadron physics with functional methods"
Trento, Italy
May 4, 2022

What is an integral equation?

Equation where an unknown function appears under an integral.
Example:

$$
f(x)=\int_{a}^{b} K(x, t) g(t) d t
$$

$f(x)$: known function
$g(x)$: unknown function \rightarrow Solve for that.
$K(x, t)$: kernel

What is an integral equation?

Equation where an unknown function appears under an integral.
Example:

$$
f(x)=\int_{a}^{b} K(x, t) g(t) d t
$$

$f(x)$: known function
$g(x)$: unknown function \rightarrow Solve for that.
$K(x, t)$: kernel

Relation to differential equations.
Maxwell equations: Differential vs. integral form
Example:
$\vec{\nabla} \cdot \vec{B}=0$
$\int d \vec{A} \cdot \vec{B}=0$

Classification of integral equations I

$f(x)$ known function
$g(t)$ unknown function
Fredholm integral equations

$$
f(x)=\int_{a}^{b} K(x, t) g(t) d t
$$

integration boundaries constant

Volterra integral equations

$$
f(x)=\int_{a}^{x} K(x, t) g(t) d t
$$

integration boundaries depend on x

Classification of integral equations II

$f(x)$ known function
$g(x)$ unknown function

Integral equations of first kind

$$
f(x)=\int_{a}^{b} K(x, t) g(t) d t
$$

unknown function only in integrand

Integral equations of second kind

$$
g(x)=f(x)+\int_{a}^{b} K(x, t) g(t) d t
$$

unknown function appears outside of integrand

Classification of integral equations III

$f(x)$ known function
$g(x)$ unknown function
Homogeneous/inhomogeneous integral equations

$$
g(x)=f(x)+\int_{a}^{b} K(x, t) g(t) d t
$$

$f(x)=0 \rightarrow$ homogeneous, $f(x) \neq 0 \rightarrow$ inhomogenous

Linear integral equations
Unknown function appears linearly.

The propagator DSEs of QCD

Landau gauge

Most widely solved DSE: quark propagator DSE \rightarrow See lectures Fischer, Maris, project 1.

Ghost propagator DSE: Same structure, but no Dirac traces, only one dressing \rightarrow See project 5.

Gluon propagator DSE: One dressing, 2-loop diagrams, quadratic divergences \rightarrow See project 5 .

Renormalization

Most diagrams are UV divergent. \rightarrow Renormalization needed.

UV divergence in renormalizable theory:

- Regularize integrals, here UV cutoff.
- Include counter terms in action to remove UV divergences.
- Renormalization conditions required.

Renormalization

Most diagrams are UV divergent. \rightarrow Renormalization needed.
UV divergence in renormalizable theory:

- Regularize integrals, here UV cutoff.
- Include counter terms in action to remove UV divergences.
- Renormalization conditions required.

Particular renormalization scheme: MOM (momentum subtraction)

Ghost propagator DSE

$$
G^{-1}\left(p^{2}\right)=\tilde{Z}_{3}-\Sigma\left(p^{2}\right)
$$

Subtraction of DSE from itself at p_{G}^{2} :

$$
G^{-1}\left(p^{2}\right)=G^{-1}\left(p_{G}^{2}\right)-\Sigma\left(p^{2}\right)+\Sigma\left(p_{G}^{2}\right)
$$

Renormalization condition: $G\left(p_{G}^{2}\right)$

$$
\tilde{Z}_{3}=G^{-1}\left(p^{2}\right)+\Sigma\left(p^{2}\right)
$$

Renormalization of the quark propagator DSE

$$
S(p)^{-1}=i p A\left(p^{2}\right)+B\left(p^{2}\right)
$$

DSE:

Projection onto $A\left(p^{2}\right)$ and $B\left(p^{2}\right)$:

$$
\begin{aligned}
& A\left(p^{2}\right)=Z_{2}-\Sigma_{A}\left(p^{2}\right) \\
& B\left(p^{2}\right)=Z_{2} Z_{m} m-\Sigma_{B}\left(p^{2}\right)
\end{aligned}
$$

Renormalization conditions: $\boldsymbol{A}\left(\mu^{2}\right)=1, M\left(\mu^{2}\right)=\boldsymbol{B}\left(\mu^{2}\right) / \boldsymbol{A}\left(\mu^{2}\right)=m$

Bethe-Salpeter equation I

```
[More details: Eichmann, Sanchis-Alepuz, Williams, Alkofer, Fischer, Prog. Part. Nucl. Phys. 1 (2016)]
```

Idea: Bound state of 2 particles is encoded as a pole in the 4-point function.
Generic structure of a 4-point function G : trivial part + interacting part

$$
G=G_{0}+G_{0} T G_{0}
$$

G_{0} : product of two disconnected propagators
T : scattering matrix (amputated and connected part of G)
K : four-particle scattering kernel, two-particle irreducible

Bethe-Salpeter equation I

[More details: Eichmann, Sanchis-Alepuz, Williams, Alkofer, Fischer, Prog. Part. Nucl. Phys. 1 (2016)]

Idea: Bound state of 2 particles is encoded as a pole in the 4-point function.
Generic structure of a 4-point function G : trivial part + interacting part

$$
G=G_{0}+G_{0} T G_{0}
$$

G_{0} : product of two disconnected propagators
T : scattering matrix (amputated and connected part of G)
K : four-particle scattering kernel, two-particle irreducible
Dyson equation:

$$
G=G_{0}+G_{0} K G
$$

Resummation of

$$
G=G_{0}+G_{0} K G_{0}+G_{0} K G_{0} K G_{0}+\ldots
$$

Nonperturbative!

Bethe-Salpeter equation II

4-point functions at pole M^{2} :

$$
G \rightarrow \frac{\Psi \bar{\psi}}{P^{2}+M^{2}}
$$

Ψ : Wave function

Dyson equation at pole:

General, e.g., M^{2} could be complex \rightarrow resonances.

Bethe-Salpeter equation II

4-point functions at pole M^{2} :
Dyson equation at pole:

$$
G \rightarrow \frac{\Psi \bar{\psi}}{P^{2}+M^{2}}
$$

Ψ : Wave function

$$
\Psi=G_{0} K \Psi
$$

General, e.g., M^{2} could be complex \rightarrow resonances.
Same procedure for scattering matrix T :
「: Bethe-Salpeter amplitude

$$
\begin{gathered}
T \rightarrow \frac{\Gamma \bar{\Gamma}}{P^{2}+M^{2}}, \Rightarrow \Gamma=K G_{0} \Gamma \\
\left(\Psi=G_{0} \Gamma\right)
\end{gathered}
$$

How to solve DSEs and BSEs?

 $-1=$ \qquad -1

Fixed point iteration

We consider the general case where a numeric solution is necessary. (In some approximations exact solutions are possible.)

Self-consistent solution!

Fixed point iteration

We consider the general case where a numeric solution is necessary. (In some approximations exact solutions are possible.)

Self-consistent solution!

Simplest method: Fixed point iteration
(1) Choose a starting guess.
(2) Calculate the right-hand side: integrals, (renormalization)
(3) Use the right-hand side to determine a new solution.
(4) Go back to 2 until convergence is reached.

Fixed point iteration

We consider the general case where a numeric solution is necessary. (In some approximations exact solutions are possible.)

Self-consistent solution!

Simplest method: Fixed point iteration
(1) Choose a starting guess.
(2) Calculate the right-hand side: integrals, (renormalization)
(3) Use the right-hand side to determine a new solution.
(4) Go back to 2 until convergence is reached.

- Convergence: Stable solutions where nothing "changes" anymore, e.g.,

$$
\sum_{i}\left|A_{\text {new }}\left(x_{i}\right)-A_{\text {old }}\left(x_{i}\right)\right|<\epsilon
$$

- Relaxation: Mix old and new solutions. Can help with convergence.

Coupled equations

Meta-iteration: Fixed point iterations for single equations.

Coupled equations

Meta-iteration: Fixed point iterations for single equations.
Example: Equations A, B, C, D

- Super-meta-iteration:
- Iterate eq. A five times (or until converged).
- Meta-iteration of subsystem B, C:
- Iterate eq. B until converged.
- Iterate eq. C once.
- Check convergence of B, C.
- Iterate eq. D until converged.
- Check overall convergence for A, B, C, D.

Coupled equations

Meta-iteration: Fixed point iterations for single equations.
Example: Equations A, B, C, D

- Super-meta-iteration:
- Iterate eq. A five times (or until converged).
- Meta-iteration of subsystem B, C:
- Iterate eq. B until converged.
- Iterate eq. C once.
- Check convergence of B, C.
- Iterate eq. D until converged.
- Check overall convergence for A, B, C, D.
- Simple to realize.
- Easy to monitor progress.
- If we are lucky, it works. (We are lucky often.)

Ingredients of a BSE I

P : total momentum, center of mass momentum
p : relative momentum

Kernel $K(P, p, q)$
2-particle irreducible with respect to constituents, viz., does not contain diagrams generated by iteration.

Expression chosen by you. \leftrightarrow Truncation.

Ingredients of a BSE II

- Decomposition of Bethe-Salpeter amplitude into Lorentz-invariant functions $f_{i}\left(p^{2}, p \cdot P, P^{2}\right)$:

$$
\Gamma(P ; p)=\sum_{i} f_{i}\left(p^{2}, p \cdot P, P^{2}\right) \tau_{i}(p, P) .
$$

Choice of τ_{i} is problem dependent, e.g., $\tau_{i} \in \gamma_{5} \cdot\{\mathbb{1}, \not \mathbb{P}, \not \subset,[\mathscr{P}, \notin]\}$ for pion.
Equation needs to be projected onto the τ_{i}, see project 2.

- Expansion of angle of $f_{i}\left(p^{2}, p \cdot P, P^{2}\right)$ in Chebyshev polynomials of the second kind:

$$
f_{i}\left(p^{2}, p \cdot P, P^{2}\right)=\sum_{j=0}^{N} d_{i, j}\left(p^{2}, P^{2}\right) U_{j}(\cos \theta)
$$

Solving a homogeneous BSE

Rewrite as eigenvalue problem

$$
\lambda(P) \Gamma(P)=\mathcal{K} \cdot \Gamma(P) .
$$

$$
\lambda(P)
$$

\mathcal{K} is a matrix (discrete points)
$\lambda\left(P^{2}\right)=1$ is a solution to the BSE \Rightarrow mass $M^{2}=-P^{2}$
\rightarrow Vary P^{2}, find $\lambda\left(P^{2}\right)=1$, have mass $M^{2}=-P^{2}$.

Solving a homogeneous BSE

Rewrite as eigenvalue problem

$$
\lambda(P) \Gamma(P)=\mathcal{K} \cdot \Gamma(P) .
$$

$$
\lambda(P)
$$

\mathcal{K} is a matrix (discrete points)
$\lambda\left(P^{2}\right)=1$ is a solution to the BSE \Rightarrow mass $M^{2}=-P^{2}$
\rightarrow Vary P^{2}, find $\lambda\left(P^{2}\right)=1$, have mass $M^{2}=-P^{2}$.
Calculation requires propagators for complex arguments:

$$
\begin{aligned}
\left(q \pm \frac{P}{2}\right)^{2} & =\frac{P^{2}}{4}+q^{2} \pm \sqrt{P^{2} q^{2}} \cos \theta \\
& =-\frac{M^{2}}{4}+q^{2} \pm i M \sqrt{q^{2}} \cos \theta
\end{aligned}
$$

Minimization

Sometimes fixed point iteration just does not work...

Example: Gluon propagator (depending on truncation)

Minimization

Sometimes fixed point iteration just does not work...

Example: Gluon propagator (depending on truncation)

Idea: Expand dressings in some functions, e.g., Chebyshev
polynomials, and find coefficients that solve the equation self-consistently:

$$
Z\left(p^{2}\right)=\exp \left(\sum_{i}^{N-1} c_{i} T_{i}\left(t\left(p^{2}\right)\right)\right)
$$

Minimization

Sometimes fixed point iteration just does not work...

Example: Gluon propagator (depending on truncation)

Idea: Expand dressings in some functions, e.g., Chebyshev polynomials, and find coefficients that solve the equation self-consistently:

$$
Z\left(p^{2}\right)=\exp \left(\sum_{i}^{N-1} c_{i} T_{i}\left(t\left(p^{2}\right)\right)\right)
$$

Minimization problem

Example:
$B\left(p^{2}\right)=m-\Sigma_{B}\left(p^{2}\right)$
\rightarrow
$E\left(p^{2}\right)=m-\Sigma_{B}\left(p^{2}\right)-B\left(p^{2}\right) \stackrel{!}{=} 0$

Newton method

Minimize:

$$
E^{i}=-Z^{i}(\{c\})+D S E^{i}(\{c\})
$$

Z^{i} : dressing function for external point x_{i}
$\{c\}$: coefficients of expansion of Z^{i}

Newton method

Minimize:

$$
E^{i}=-Z^{i}(\{c\})+D S E^{i}(\{c\})
$$

Z^{i} : dressing function for external point x_{i}
$\{c\}$: coefficients of expansion of Z^{i}
Newton method $d=1$: Find zero of $f(x)$:

$$
x_{\text {new }}=x_{\text {old }}-\frac{f\left(x_{\text {old }}\right)}{f^{\prime}\left(x_{\text {old }}\right)}
$$

Newton method

Minimize:

$$
E^{i}=-Z^{i}(\{c\})+D S E^{i}(\{c\})
$$

Z^{i} : dressing function for external point x_{i}
$\{c\}$: coefficients of expansion of Z^{i}
Newton method $d=1$: Find zero of $f(x)$:

$$
x_{\text {new }}=x_{\text {old }}-\frac{f\left(x_{\text {old }}\right)}{f^{\prime}\left(x_{\text {old }}\right)}
$$

Generalized Newton method: $x \rightarrow c, f \rightarrow E, f^{\prime} \rightarrow J$

$$
c_{\text {new }}^{i}=c_{\text {old }}^{i}-\lambda \sum_{k}\left(J^{-1}\right)^{i k} E^{k}
$$

Jacobian $J^{j k}=\frac{\partial E^{k}}{\partial c^{i}}$
λ : Backtracking parameter to adjust step size.

Calculation of Jacobian

Could calculate derivative exactly, but approximation is sufficient: Broyden's method

Calculation of Jacobian

Could calculate derivative exactly, but approximation is sufficient: Broyden's method
Forward derivative:

$$
J^{j k}=\frac{E^{k}\left(c^{i}+h\right)-E^{k}\left(c^{i}\right)}{h}
$$

\rightarrow Calculate E once with the given coefficients $\left(E^{k}\left(c^{i}\right)\right.$) and then vary each coefficient by $h\left(E^{k}\left(c^{i}+h\right)\right)$.
E.g. $h=10^{-3}$

Coupled system of equations

Example: Gluon and ghost propagators in Yang-Mills theory

Both equations depend on each other: $E^{i} \rightarrow E^{(i, a)}$, where a labels the DSE.
\rightarrow Jacobian has block-diagonal form.

Remarks on Newton method

Stopping criterion

Minimize $E^{i} \rightarrow$ Iterate and monitor $|E|$.

- Stop when defined threshold is reached.
- Converges quadratically fast close to the minimum.
- Can see if one gets stuck in local minimum, $|E|>0$.

Remarks on Newton method

Stopping criterion

Minimize $E^{i} \rightarrow$ Iterate and monitor $|E|$.

- Stop when defined threshold is reached.
- Converges quadratically fast close to the minimum.
- Can see if one gets stuck in local minimum, $|E|>0$.
- Starting point can be important.
- Black box-like.
- Computationally more costly (calculation of J).
- Stable and reliable, once it works.
- Alternative to fixed point iteration when that fails.

Use Newton when fixed point iteration fails.

Summary

- Eigenvalue problem: Homogeneous BSE

- Fixed point iteration: Simplest available method.

Also for inhomogeneous BSE, see project 3, and equ. of motion of $n \mathrm{PI}$ effective actions.

- Minimization (Newton method): More powerful, more complicated.

