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Some generalities

What is an integral equation?

Equation where an unknown function appears under an integral.

Example:

f (x) =

∫ b

a
K (x , t)g(t)dt

f (x): known function
g(x): unknown function→ Solve for that.
K (x , t): kernel

Relation to differential equations.

Maxwell equations: Differential vs. integral form

Example: ~∇ · ~B = 0
∫

d~A · ~B = 0
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Some generalities

Classification of integral equations I

f (x) known function
g(t) unknown function

Fredholm integral equations

f (x) =

∫ b

a
K (x , t)g(t)dt

integration boundaries constant

Volterra integral equations

f (x) =

∫ x

a
K (x , t)g(t)dt

integration boundaries depend on x
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Some generalities

Classification of integral equations II

f (x) known function
g(x) unknown function

Integral equations of first kind

f (x) =

∫ b

a
K (x , t)g(t)dt

unknown function only in integrand

Integral equations of second kind

g(x) = f (x) +

∫ b

a
K (x , t)g(t)dt

unknown function appears outside of integrand
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Some generalities

Classification of integral equations III

f (x) known function
g(x) unknown function

Homogeneous/inhomogeneous integral equations

g(x) = f (x) +

∫ b

a
K (x , t)g(t)dt

f (x) = 0→ homogeneous, f (x) 6= 0→ inhomogenous

Linear integral equations

Unknown function appears linearly.
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Integral equations of QCD Equations of motions

The propagator DSEs of QCD

[MQH Phys. Rept. 879 (2020)]

Landau gauge
Most widely solved DSE: quark propagator DSE→ See lectures Fischer, Maris, project 1.

−1 =
−1−

Ghost propagator DSE: Same structure, but no Dirac traces, only one dressing→ See project 5.

−1 =
−1−

Gluon propagator DSE: One dressing, 2-loop diagrams, quadratic divergences→ See project 5.

−1
=

−1−1
2 −1

2

+ −1
6

−1
2

+

Markus Q. Huber (Giessen University) Integral equations May 4, 2022 6 / 22



Integral equations of QCD Equations of motions

Renormalization

Most diagrams are UV divergent. → Renormalization needed.

UV divergence in renormalizable theory:
Regularize integrals, here UV cutoff.

Include counter terms in action to remove UV divergences.

Renormalization conditions required.

Particular renormalization scheme: MOM (momentum subtraction)

Ghost propagator DSE

G−1(p2) = Z̃3 − Σ(p2)

Subtraction of DSE from itself at p2
G:

G−1(p2) = G−1(p2
G)− Σ(p2) + Σ(p2

G)

Renormalization condition: G(p2
G) Z̃3 = G−1(p2) + Σ(p2)
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Integral equations of QCD Equations of motions

Renormalization of the quark propagator DSE

S(p)−1 = i/pA(p2) + B(p2)

DSE:

−1 =
−1−

Projection onto A(p2) and B(p2):

A(p2) = Z2 − ΣA(p2),

B(p2) = Z2 Zm m − ΣB(p2)

Renormalization conditions: A(µ2) = 1,M(µ2) = B(µ2)/A(µ2) = m
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Integral equations of QCD Bethe-Salpeter equation

Bethe-Salpeter equation I

[More details: Eichmann, Sanchis-Alepuz, Williams, Alkofer, Fischer, Prog. Part. Nucl. Phys. 1 (2016)]

Idea: Bound state of 2 particles is encoded as a pole in the 4-point function.

Generic structure of a 4-point function G: trivial part + interacting part

G = G0 + G0TG0

G0: product of two disconnected propagators
T : scattering matrix (amputated and connected part of G)
K : four-particle scattering kernel, two-particle irreducible

Dyson equation:

G = G0 + G0KG

= +G K G

Resummation of
G = G0 + G0KG0 + G0KG0KG0 + . . .

Nonperturbative!
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Integral equations of QCD Bethe-Salpeter equation

Bethe-Salpeter equation II

4-point functions at pole M2:

G→ Ψ Ψ̄

P2 + M2

Ψ: Wave function

→G Ψ Ψ

Dyson equation at pole:

= +G K G → =Ψ K Ψ

Ψ = G0K Ψ

General, e.g., M2 could be complex→ resonances.

Same procedure for scattering matrix T :

T → Γ Γ

P2 + M2 , ⇒ Γ = KG0Γ

(Ψ = G0Γ)

Γ: Bethe-Salpeter amplitude

=Γ ΓK
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Solution methods

How to solve DSEs and BSEs?
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K Γ

+ ΓK + ΓK

+K Γ K Γ K Γ
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Solution methods Fixed point iteration

Fixed point iteration

We consider the general case where a numeric solution is necessary.
(In some approximations exact solutions are possible.)

Self-consistent solution!

Simplest method: Fixed point iteration
1 Choose a starting guess.
2 Calculate the right-hand side: integrals, (renormalization)
3 Use the right-hand side to determine a new solution.
4 Go back to 2 until convergence is reached.

Convergence: Stable solutions where nothing “changes” anymore, e.g.,∑
i

|Anew(xi )− Aold(xi )| < ε

Relaxation: Mix old and new solutions. Can help with convergence.
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Solution methods Fixed point iteration

Coupled equations

Meta-iteration: Fixed point iterations for single equations.

Example: Equations A, B, C, D

Super-meta-iteration:
Iterate eq. A five times (or until converged).
Meta-iteration of subsystem B, C:

Iterate eq. B until converged.
Iterate eq. C once.
Check convergence of B, C.

Iterate eq. D until converged.
Check overall convergence for A, B, C, D.

Simple to realize.
Easy to monitor progress.
If we are lucky, it works. (We are lucky often.)
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Solution methods Homogeneous BSE

Ingredients of a BSE I

=Γ

P

p

q − P
2

q + P
2

K
(P

,p
,q
)

Γq

Γ(P; p) =

∫
d4q

(2π)4 K (P,p,q)G0(P; q)Γ(P; q)

P: total momentum, center of mass momentum
p: relative momentum

Kernel K (P,p,q)

2-particle irreducible with respect to constituents, viz., does not contain diagrams generated by
iteration.

Expression chosen by you. ↔ Truncation.
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Solution methods Homogeneous BSE

Ingredients of a BSE II

=Γ

P

p

q − P
2

q + P
2

K
(P

,p
,q
)

Γq

Decomposition of Bethe-Salpeter amplitude into Lorentz-invariant functions fi (p2,p · P,P2):

Γ(P; p) =
∑

i

fi (p2,p · P,P2)τi (p,P) .

Choice of τi is problem dependent, e.g., τi ∈ γ5 · {1, /P, /p, [/p, /P]} for pion.
Equation needs to be projected onto the τi , see project 2.

Expansion of angle of fi (p2,p · P,P2) in Chebyshev polynomials of the second kind:

fi (p2,p · P,P2) =
N∑

j=0

di,j (p2,P2)Uj (cos θ)
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Solution methods Homogeneous BSE

Solving a homogeneous BSE

Rewrite as eigenvalue problem

λ(P) Γ(P) = K · Γ(P).
λ(P) =Γ

P

p

q − P
2

q + P
2

K
(P

,p
,q
)

Γq

K is a matrix (discrete points)
λ(P2) = 1 is a solution to the BSE⇒ mass M2 = −P2

→ Vary P2, find λ(P2) = 1, have mass M2 = −P2.

Calculation requires propagators for
complex arguments:(

q ± P
2

)2

=
P2

4
+ q2 ±

√
P2 q2 cos θ

= −M2

4
+ q2 ± i M

√
q2 cos θ.

Re(p2)

Im(p2)

ⅈ
M2

2

-ⅈ
M2

2

-
M2

4
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Solution methods Newton method

Minimization

Sometimes fixed point iteration just does not work...

Example: Gluon propagator
(depending on truncation)

−1
=

−1−1
2 −1

2

+ −1
6

−1
2

+

Idea: Expand dressings in some
functions, e.g., Chebyshev
polynomials, and find coefficients that
solve the equation self-consistently:

Z (p2) = exp

(
N−1∑

i

ciTi (t(p2))

)

Minimization problem

Example: B(p2) = m − ΣB(p2) → E(p2) = m − ΣB(p2)− B(p2)
!

= 0
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Solution methods Newton method

Newton method

Minimize:
E i = −Z i ({c}) + DSE i ({c})

Z i : dressing function for external point xi
{c}: coefficients of expansion of Z i

Newton method d = 1: Find zero of f (x):

xnew = xold −
f (xold)

f ′(xold)

Generalized Newton method: x → c, f → E , f ′ → J

c i
new = c i

old − λ
∑

k

(J−1)ik Ek

Jacobian J ik =
∂Ek

∂c i
λ: Backtracking parameter to adjust step size.
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Solution methods Newton method

Calculation of Jacobian

Could calculate derivative exactly, but approximation is sufficient: Broyden’s method

Forward derivative:

J ik =
Ek (c i + h)− Ek (c i )

h

→ Calculate E once with the given coefficients (Ek (c i ))
and then vary each coefficient by h (Ek (c i + h)). E.g. h = 10−3
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Solution methods Newton method

Coupled system of equations

Example: Gluon and ghost propagators in Yang-Mills theory

−1 =
−1−

−1
=

−1−1
2 −1

2

+ −1
6

−1
2

Both equations depend on each other: E i → E (i,a), where a labels the DSE.

→ Jacobian has block-diagonal form.
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Solution methods Newton method

Remarks on Newton method

Stopping criterion

Minimize E i → Iterate and monitor |E |.
Stop when defined threshold is reached.
Converges quadratically fast close to the minimum.
Can see if one gets stuck in local minimum, |E | > 0.

Starting point can be important.
Black box-like.
Computationally more costly (calculation of J).
Stable and reliable, once it works.
Alternative to fixed point iteration when that fails.

Use Newton when fixed point iteration fails.
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Summary

Summary

Eigenvalue problem: Homogeneous BSE

=Γ ΓK

Fixed point iteration: Simplest available method.
Also for inhomogeneous BSE, see project 3, and equ. of motion of nPI effective actions.

Minimization (Newton method): More powerful, more complicated.

−1
=

−1−1
2 −1

2

+ −1
6

−1
2

Markus Q. Huber (Giessen University) Integral equations May 4, 2022 22 / 22


	Some generalities
	Integral equations of QCD
	Equations of motions
	Bethe-Salpeter equation

	Solution methods
	Fixed point iteration
	Homogeneous BSE
	Newton method

	Summary

