With functional methods from propagators and vertices to glueballs

Markus Q. Huber

Institute of Theoretical Physics, Giessen University

MQH, Phys.Rev.D 101, arXiv:2003.13703 MQH, Fischer, Sanchis-Alepuz, Eur.Phys.J.C 80, arXiv:2004.00415

FunQCD, Valencia, Spain

March 29, 2021

Markus Q. Huber

a

March 29, 2021

Bound states

Hadrons from bound state equations

Integral equation: $\Gamma(q, P) = \int dk \, \Gamma(k, P) \, S(k_{+}) \, S(k_{-}) \, K(k, q, P)$

Bound states

Hadrons from bound state equations

 \rightarrow numerical solution

Bound states

Glueball BSE

Need \ldots and solve for \rightarrow . \rightarrow Mass

Bound states

Glueball BSE

Need \mathfrak{Q} and solve for \mathfrak{P} . \rightarrow Mass Not quite...

Bound states

Glueball BSE

Gluons couple to ghosts \rightarrow Include 'ghostball'-part. (First step: no quarks \rightarrow Yang-Mills theory)

Bound states

Glueball BSE

Need $(\mathfrak{M}, \rightarrow)$ and $4\times$, solve for \rightarrow and \rightarrow . \rightarrow Mass

Construction of kernel

Consistency with input: Apply same construction principle.

Bound states

Glueball BSE

Need $(\mathfrak{M}, - - -)$ and $4 \times \mathbb{I}$, solve for $\rightarrow -$ and $\rightarrow -$. \rightarrow Mass

Construction of kernel

Consistency with input: Apply same construction principle.

Previous BSE calculations for glueballs:

- [Meyers, Swanson '13]
- [Sanchis-Alepuz, Fischer, Kellermann, von Smekal '15]
- [Souza et al. '20]
- [Kaptari, Kämpfer '20]

```
⇒ Input is important for 
quantitative predictive 
power!
```

[MQH, Fischer, Sanchis-Alepuz '20]

March 29, 2021

Bound states

Kernel construction

From 3PI effective action truncated to three-loops:

[Fukuda '87; McKay, Munczek '89; Sanchis-Alepuz, Williams '15; MQH, Fischer, Sanchis-Alepuz '20]

- Some diagrams vanish for certain quantum numbers.
- Full QCD: Same for quarks \rightarrow Mixing with mesons.

Equations of motion from 3-loop 3PI effective action

Gluon and ghost fields: Elementary fields of Yang-Mills theory in the Landau gauge

Self-contained system of equations with the scale as the only input.

Truncation?

Equations

Equations of motion from 3-loop 3PI effective action

Gluon and ghost fields: Elementary fields of Yang-Mills theory in the Landau gauge

Self-contained system of equations with the scale as the only input.

Truncation \rightarrow 3-loop expansion of 3PI effective action [Berges '04]

- 4 coupled integral equations with full kinematic dependence.
- Sufficient numerical accuracy required for renormalization.
- One- and two-loop diagrams [Meyers, Swanson '14; MQH '17].

Results

Landau gauge propagators

Gluon dressing function:

- Family of solutions: Nonperturbative completions of Landau gauge [Maas '10]
- Realized by condition on G(0) [Fischer, Maas, Pawlowski '08; Alkofer, Huber, Schwenzer '08]

Gluon propagator:

Ghost dressing function:

March 29, 2021

Results

Some properties of the Landau gauge solution

• Slavnov-Taylor identities (gauge invariance): Vertex couplings agree down to GeV regime

Markus Q. Huber

[MQH '20]

Results

Some properties of the Landau gauge solution

 Slavnov-Taylor identities (gauge invariance): Vertex couplings agree down to GeV regime

 Renormalization: First parameter-free subtraction of quadratic divergences
 ⇒ One unique free parameter (family of solutions)

[MQH '20]

orrelation functions

Results

Concurrence of functional methods

Exemplified with three-gluon vertex.

3PI vs. 2-loop DSE:

[Cucchieri, Maas, Mendes '08; Sternbeck et al. '17; MQH '20]

orrelation functions

Results

Concurrence of functional methods

Exemplified with three-gluon vertex.

3PI vs. 2-loop DSE:

[Cucchieri, Maas, Mendes '08; Sternbeck et al. '17; MQH '20]

DSE vs. FRG:

[Cucchieri, Maas, Mendes '08; Sternbeck et al. '17; Cyrol et al. '16; MQH '20]

orrelation functions

Results

DSE vs. FRG:

Concurrence of functional methods

Exemplified with three-gluon vertex.

3PI vs. 2-loop DSE:

Beyond this truncation

- Further dressings of three-gluon vertex [Eichmann, Williams, Alkofer, Vujinovic '14]
- Effects of four-point functions [MQH '16, MQH '17, Corell et al. '18, MQH '18]

ueballs

BSE

Solving a BSE

ueballs |

BSE

Solving a BSE

Consider the eigenvalue problem (Γ is the BSE amplitude)

$$\mathcal{K} \cdot \Gamma(\mathbf{P}) = \lambda(\mathbf{P}) \Gamma(\mathbf{P}).$$

 $\lambda(P^2) = 1$ is a solution to the BSE \Rightarrow Glueball mass $P^2 = -M^2$

ueballs |

BSE

Solving a BSE

Consider the eigenvalue problem (Γ is the BSE amplitude)

$$\mathcal{K} \cdot \Gamma(\mathbf{P}) = \lambda(\mathbf{P}) \Gamma(\mathbf{P}).$$

 $\lambda(P^2) = 1$ is a solution to the BSE \Rightarrow Glueball mass $P^2 = -M^2$

Calculation requires quantities for

$$k_{\pm}^2 = P^2 + k^2 \pm 2\sqrt{P^2 k^2} \cos \theta = -M^2 + k^2 \pm 2 i M \sqrt{k^2} \cos \theta.$$

 \Rightarrow Complex momentum arguments.

Landau gauge propagators in the complex plane

Technique to resp. analyticity (avoid branch cuts in integrand): Contour deformation

Simpler truncation:

Landau gauge propagators in the complex plane

Technique to resp. analyticity (avoid branch cuts in integrand): Contour deformation

- Current truncation leads to a pole-like structure in the gluon propagator.
- Analyticity up to 'pole' confirmed by various tests (Cauchy-Riemann, Schlessinger, reconstruction)
- No proof of existence of complex conjugate poles due to simple truncation.

[Fischer, MQH '20]

March 29, 2021

Glueballs

vs.

Method

Input for glueballs

Low quality results in complex plane

Quantitative results for real momenta

Glueballs

VS.

Method

Input for glueballs

Low quality results in complex plane

Quantitative results for real momenta

 \Rightarrow Solve eigenvalue problem for $P^2>0$ and extrapolate $\lambda(P^2)$ to glueball mass.

Extrapolation method

- Extrapolation to time-like P² using Schlessinger's continued fraction method (proven superior to default Padé approximants) [Schlessinger '68]
- Average over extrapolations using subsets of points for error estimate

Extrapolation method

- Extrapolation to time-like P² using Schlessinger's continued fraction method (proven superior to default Padé approximants) [Schlessinger '68]
- Average over extrapolations using subsets of points for error estimate

Test extrapolation for solvable system: Heavy meson

[MQH, Sanchis-Alepuz, Fischer '20]

lueballs Results

Glueballs masses for $0^{\pm+}$

All results for $r_0 = 1/418(5)$ MeV.

[MQH, Fischer, Sanchis-Alepuz '20]

lueballs R

Results

Glueballs masses for $0^{\pm+}$

All results for $r_0 = 1/418(5)$ MeV.

[MQH, Fischer, Sanchis-Alepuz '20]

Under conjecture that choice of solution is a gauge choice: Explicit test of gauge independence!

Tested that results are independent of family of solutions.

Markus Q. Huber

Giessen Universit

March 29, 2021

Glueballs

Results

Glueball masses for $J^{\pm+}$

Lattice:

*: identification with some uncertainty

[†]: conjecture based on irred. rep of octahedral group

[MQH, Fischer, Sanchis-Alepuz, in preparation]

March 29, 2021

• Quantitatively reliable correlation functions (Euclidean) from functional equations

- Quantitatively reliable correlation functions (Euclidean) from functional equations
 - Comparison with lattice results

- Quantitatively reliable correlation functions (Euclidean) from functional equations
 - Comparison with lattice results
 - Concurrence of different functional methods

- Quantitatively reliable correlation functions (Euclidean) from functional equations
 - Comparison with lattice results
 - Concurrence of different functional methods
- Connection to observables: Glueballs

- Quantitatively reliable correlation functions (Euclidean) from functional equations
 - Comparison with lattice results
 - Concurrence of different functional methods
- Connection to observables: Glueballs
- Systematic improvements (now) possible

- Quantitatively reliable correlation functions (Euclidean) from functional equations
 - Comparison with lattice results
 - Concurrence of different functional methods
- Connection to observables: Glueballs
- Systematic improvements (now) possible
- Direct access to analytic structure

- Quantitatively reliable correlation functions (Euclidean) from functional equations
 - Comparison with lattice results
 - Concurrence of different functional methods
- Connection to observables: Glueballs
- Systematic improvements (now) possible
- Direct access to analytic structure

Thank your for your attention.

More details...

Glueballs as bound states

Hadron masses from correlation functions of color singlet operators.

Glueballs as bound states

Hadron masses from correlation functions of color singlet operators. Example: For $J^{PC} = 0^{++}$ glueball take $O(x) = F_{\mu\nu}(x)F^{\mu\nu}(x)$:

 $D(x - y) = \langle O(x)O(y) \rangle$

- $\bullet \rightarrow$ Lattice: Mass from this correlator by exponential Euclidean time decay.
- Complicated object in a diagrammatic language: 2-, 3- and 4-gluon contributions

Glueballs as bound states

Hadron masses from correlation functions of color singlet operators.

Example: For $J^{PC} = 0^{++}$ glueball take $O(x) = F_{\mu\nu}(x)F^{\mu\nu}(x)$:

 $D(x - y) = \langle O(x)O(y) \rangle$

- $\bullet \rightarrow$ Lattice: Mass from this correlator by exponential Euclidean time decay.
- Complicated object in a diagrammatic language: 2-, 3- and 4-gluon contributions

Put total momentum on-shell and consider individual 2-, 3- and 4-gluon contributions. \rightarrow Each can have a pole at the glueball mass.

 A^4 -part of D(x - y), total momentum on-shell:

More details. .

Landau gauge vertices

- Nontrivial kinematic dependence of ghost-gluon vertex
- Simple kinematic dependence of three-gluon vertex
- Four-gluon vertex from solution

Four-gluon vertex:

Three-gluon vertex:

Giessen Univer

More details..

Landau gauge propagators in the complex plane

Propagators for complex momenta

- Reconstruction from Euclidean results: mathematically ill-defined, bias in solution
 [talk by Oliveira]
- Direct calculation from functional methods possible, e.g., contour deformation or spectral DSEs [Horak, Pawlowski, Wink '20; → talk by Horak]

More details.

Landau gauge propagators in the complex plane

Propagators for complex momenta

- Reconstruction from Euclidean results: mathematically ill-defined, bias in solution
 [talk by Oliveira]
- Direct calculation from functional methods possible, e.g., contour deformation or spectral DSEs [Horak, Pawlowski, Wink '20; → talk by Horak]

Contour deformation: Special technique to respect analyticity (avoid branch cuts in the integrand)

	[Maris '95 (QED)]
	[Alkofer, Fischer, Detmold, Maris '04]
Self-consistent solution: Ray technique, YM propagators	
	[Strauss, Fischer, Kellermann '12; Fischer, MQH '20]
[Windisch, Alkof	er, Haase, Liebmann '13; Windisch, MQH, Alkofer '13]
	[Weil, Eichmann, Fischer, Williams '17; Williams '18]
T > 0	[Pawlowski, Strodthoff, Wink '18]
	[Miramontes, Sanchis-Alepuz '19]
plitude	[Eichmann, Duarte, Pena, Stadler '19]
	on: Ray techniqu [Windisch, Alkofe T > 0 plitude

March 29, 2021

More details..

Landau gauge propagators in the complex plane

Appearance of branch cuts for complex momenta forbids integration directly to cutoff.

Deformation of integration contour necessary [Maris '95]. Recent resurgence: [Alkofer et al. '04; Windisch, MQH, Alkofer, '13; Williams '19; Miramontes, Sanchis-Alepuz '19; Eichmann et al. '19], ...

Ray technique for self-consistent solution of a DSE: [Strauss, Fischer, Kellermann; Fischer, MQH '20].

Markus Q. Huber

More details...

Extrapolation of $\lambda(P^2)$ for glueballs

Higher eigenvalues: Excited states.

More details..

Extrapolation of $\lambda(P^2)$ for glueballs

Higher eigenvalues: Excited states.

Physical solutions for $\lambda(P^2) = 1$.