With functional methods from propagators and vertices to glueballs

Markus Q. Huber
Institute of Theoretical Physics, Giessen
University

MQH, Phys.Rev.D 101, arXiv:2003.13703
MQH, Fischer, Sanchis-Alepuz, Eur.Phys.J.C 80,
arXiv:2004.00415

FunQCD, Valencia, Spain

March 29, 2021

Hadrons from bound state equations

Example: Meson

Integral equation: $\Gamma(q, P)=\int d k \Gamma(k, P) S\left(k_{+}\right) S\left(k_{-}\right) K(k, q, P)$

Hadrons from bound state equations

Bethe-Salpeter amplitude

Example: Meson

Ingredients:

- Quark propagator S

Nonperturbative diagram: full momentum dependent dressings
\rightarrow numerical solution

Glueball BSE

Need $\varrho \infty$ and

Glueball BSE

Need $O \infty$ and 1 , solve for \rightarrow Mass
Not quite...

Glueball BSE

Gluons couple to ghosts \rightarrow Include 'ghostball'-part. (First step: no quarks \rightarrow Yang-Mills theory)

Glueball BSE

Gluons couple to ghosts \rightarrow Include 'ghostball'-part. (First step: no quarks \rightarrow Yang-Mills theory)

Need $\Omega \infty, \rightarrow$ and $4 \times$, solve for ${ }^{\circ} \rightarrow$ Mass

Construction of kernel
Consistency with input: Apply same construction principle.

Glueball BSE

Gluons couple to ghosts \rightarrow Include 'ghostball'-part. (First step: no quarks \rightarrow Yang-Mills theory)

Need $\circlearrowleft 0, \rightarrow$ and $4 \times$, solve for \rightarrow and \rightarrow Mass

Construction of kernel
Consistency with input: Apply same construction principle.

Previous BSE calculations for glueballs:

- [Meyers, Swanson '13]
- [Sanchis-Alepuz, Fischer, Kellermann, von Smekal '15]
- [Souza et al. '20]
- [Kaptari, Kämpfer '20]
\Rightarrow Input is important for quantitative predictive power!
[MQH, Fischer, Sanchis-Alepuz '20]

Kernel construction

From 3PI effective action truncated to three-loops:
[Fukuda '87; McKay, Munczek '89; Sanchis-Alepuz, Williams '15; MQH, Fischer, Sanchis-Alepuz '20]

\rightarrow Need $\Omega 0, \rightarrow-{ }^{-\cdots+\cdots}{ }^{\circ}$,

- Some diagrams vanish for certain quantum numbers.
- Full QCD: Same for quarks \rightarrow Mixing with mesons.

Equations of motion from 3-loop 3PI effective action

Gluon and ghost fields: Elementary fields of Yang-Mills theory in the Landau gauge

Self-contained system of equations with the scale as the only input.
Truncation?

Equations of motion from 3-loop 3PI effective action

Gluon and ghost fields: Elementary fields of Yang-Mills theory in the Landau gauge

Self-contained system of equations with the scale as the only input.
Truncation \rightarrow 3-loop expansion of 3PI effective action [Berges '04]

- 4 coupled integral equations with full kinematic dependence.
- Sufficient numerical accuracy required for renormalization.
- One- and two-loop diagrams [Meyers, Swanson '14; MQH' '17].

Landau gauge propagators

Gluon dressing function:

- Family of solutions: Nonperturbative completions of Landau gauge [Maas '10]
- Realized by condition on $G(0)$
[Fischer, Maas, Pawlowski '08; Alkofer, Huber, Schwenzer '08]

Gluon propagator:

Ghost dressing function:

[Sternbeck '06; MQH '20]

Some properties of the Landau gauge solution

[MQH '20]

- Slavnov-Taylor identities (gauge invariance): Vertex couplings agree down to GeV regime

Some properties of the Landau gauge solution

[MQH '20]

- Slavnov-Taylor identities (gauge invariance): Vertex couplings agree down to GeV regime
- Renormalization: First parameter-free subtraction of quadratic divergences
\Rightarrow One unique free parameter (family of solutions)

Concurrence of functional methods

Exemplified with three-gluon vertex.

3PI vs. 2-loop DSE:

[Cucchieri, Maas, Mendes '08; Sternbeck et al. '17;
MQH '20]

Concurrence of functional methods

Exemplified with three-gluon vertex.

3PI vs. 2-loop DSE:

[Cucchieri, Maas, Mendes '08; Sternbeck et al. '17; MQH '20]

DSE vs. FRG:

[Cucchieri, Maas, Mendes '08; Sternbeck et al. '17;
Cyrol et al. '16; MQH '20]

Concurrence of functional methods

Exemplified with three-gluon vertex.

3PI vs. 2-loop DSE:

[Cucchieri, Maas, Mendes '08; Sternbeck et al. '17; MQH '20]

DSE vs. FRG:

[Cucchieri, Maas, Mendes '08; Sternbeck et al. '17;
Cyrol et al. '16; MQH '20]

Beyond this truncation

- Further dressings of three-gluon vertex [Eichmann, Williams, Alkofer, Vujinovic ' 14]
- Effects of four-point functions [MQH '16, MQH '17, Corell et al. '18, MQH '18]

Solving a BSE

Solving a BSE

Consider the eigenvalue problem (Γ is the BSE amplitude)

$$
\mathcal{K} \cdot \Gamma(P)=\lambda(P) \Gamma(P)
$$

$\lambda\left(P^{2}\right)=1$ is a solution to the BSE \Rightarrow Glueball mass $P^{2}=-M^{2}$

Solving a BSE

Consider the eigenvalue problem (Γ is the BSE amplitude)

$$
\mathcal{K} \cdot \Gamma(P)=\lambda(P) \Gamma(P) .
$$

$\lambda\left(P^{2}\right)=1$ is a solution to the BSE \Rightarrow Glueball mass $P^{2}=-M^{2}$
Calculation requires quantities for

$$
k_{ \pm}^{2}=P^{2}+k^{2} \pm 2 \sqrt{P^{2} k^{2}} \cos \theta=-M^{2}+k^{2} \pm 2 i M \sqrt{k^{2}} \cos \theta .
$$

\Rightarrow Complex momentum arguments.

Landau gauge propagators in the complex plane

Technique to resp. analyticity (avoid branch cuts in integrand): Contour deformation
Simpler truncation:

Landau gauge propagators in the complex plane

Technique to resp. analyticity (avoid branch cuts in integrand): Contour deformation
Simpler truncation:

Polar coordinates: $p^{2}=\tilde{p}^{2} e^{i \theta}$

- Current truncation leads to a pole-like structure in the gluon propagator.
- Analyticity up to 'pole' confirmed by various tests (Cauchy-Riemann, Schlessinger, reconstruction)
- No proof of existence of complex conjugate poles due to simple truncation.
[Fischer, MQH '20]

Input for glueballs

Low quality results in complex plane

VS.
Quantitative results for real momenta

Input for glueballs

Low quality results in complex plane

VS.

\Rightarrow Solve eigenvalue problem for $P^{2}>0$ and extrapolate $\lambda\left(P^{2}\right)$ to glueball mass.

Extrapolation of $\lambda\left(P^{2}\right)$

Extrapolation method

- Extrapolation to time-like P^{2} using Schlessinger's continued fraction method (proven superior to default Padé approximants) [Schlessinger '68]
- Average over extrapolations using subsets of points for error estimate

Extrapolation of $\lambda\left(P^{2}\right)$

Extrapolation method

- Extrapolation to time-like P^{2} using Schlessinger's continued fraction method (proven superior to default Padé approximants) [Schlessinger '68]
- Average over extrapolations using subsets of points for error estimate

Test extrapolation for solvable system: Heavy meson

[MQH, Sanchis-Alepuz, Fischer '20]

Glueballs masses for $0^{ \pm+}$

Spin-0 glueballs

All results for $r_{0}=1 / 418(5) \mathrm{MeV}$.

Lattice $0^{* *++}$:
Conjectured based on irred. rep. of octahedral group
[MQH, Fischer, Sanchis-Alepuz '20]

Glueballs masses for $0^{ \pm+}$

Spin-0 glueballs

All results for $r_{0}=1 / 418(5) \mathrm{MeV}$.

Lattice $0^{* *++}$:
Conjectured based on irred. rep. of octahedral group
[MQH, Fischer, Sanchis-Alepuz '20]

Under conjecture that choice of solution is a gauge choice: Explicit test of gauge independence!

Tested that results are independent of family of solutions.

Glueball masses for $J^{ \pm+}$

Lattice:
*: identification with some uncertainty
${ }^{\dagger}$: conjecture based on irred. rep of octahedral group
[MQH, Fischer, Sanchis-Alepuz, in preparation]

Summary

Parameter-free determination of glueball masses from functional methods.

Summary

Parameter-free determination of glueball masses from functional methods.

- Quantitatively reliable correlation functions (Euclidean) from functional equations

Summary

Parameter-free determination of glueball masses from functional methods.

- Quantitatively reliable correlation functions (Euclidean) from functional equations
- Comparison with lattice results

Summary

Parameter-free determination of glueball masses from functional methods.

- Quantitatively reliable correlation functions (Euclidean) from functional equations
- Comparison with lattice results
- Concurrence of different functional methods

Summary

Parameter-free determination of glueball masses from functional methods.

- Quantitatively reliable correlation functions (Euclidean) from functional equations
- Comparison with lattice results
- Concurrence of different functional methods
- Connection to observables: Glueballs

Summary

Parameter-free determination of glueball masses from functional methods.

- Quantitatively reliable correlation functions (Euclidean) from functional equations
- Comparison with lattice results
- Concurrence of different functional methods
- Connection to observables: Glueballs
- Systematic improvements (now) possible

Summary

Parameter-free determination of glueball masses from functional methods.

- Quantitatively reliable correlation functions (Euclidean) from functional equations
- Comparison with lattice results
- Concurrence of different functional methods
- Connection to observables: Glueballs
- Systematic improvements (now) possible
- Direct access to analytic structure

Summary

Parameter-free determination of glueball masses from functional methods.

- Quantitatively reliable correlation functions (Euclidean) from functional equations
- Comparison with lattice results
- Concurrence of different functional methods
- Connection to observables: Glueballs
- Systematic improvements (now) possible
- Direct access to analytic structure

> Thank your for your attention.

Glueballs as bound states

Hadron masses from correlation functions of color singlet operators.

Glueballs as bound states

Hadron masses from correlation functions of color singlet operators.
Example: For $J^{P C}=0^{++}$glueball take $O(x)=F_{\mu \nu}(x) F^{\mu \nu}(x)$:

$$
D(x-y)=\langle O(x) O(y)\rangle
$$

- Lattice: Mass from this correlator by exponential Euclidean time decay.
- Complicated object in a diagrammatic language: 2-, 3- and 4-gluon contributions

Glueballs as bound states

Hadron masses from correlation functions of color singlet operators.
Example: For $J^{P C}=0^{++}$glueball take $O(x)=F_{\mu \nu}(x) F^{\mu \nu}(x)$:

$$
D(x-y)=\langle O(x) O(y)\rangle
$$

- \rightarrow Lattice: Mass from this correlator by exponential Euclidean time decay.
- Complicated object in a diagrammatic language: 2-, 3- and 4-gluon contributions

Put total momentum on-shell and consider individual 2-, 3- and 4-gluon contributions. \rightarrow Each can have a pole at the glueball mass.
A^{4}-part of $D(x-y)$, total momentum on-shell:

Landau gauge vertices

Ghost-gluon vertex:

Three-gluon vertex:
 [Cucchieri, Maas, Mendes '08; Sternbeck et al. '17; MQH '20]

Four-gluon vertex:

Landau gauge propagators in the complex plane

Propagators for complex momenta

- Reconstruction from Euclidean results: mathematically ill-defined, bias in solution
[talk by Oliveira]
- Direct calculation from functional methods possible, e.g., contour deformation or spectral DSEs [Horak, Pawlowski, Wink '20; \rightarrow talk by Horak]

Landau gauge propagators in the complex plane

Propagators for complex momenta

- Reconstruction from Euclidean results: mathematically ill-defined, bias in solution
[talk by Oliveira]
- Direct calculation from functional methods possible, e.g., contour deformation or spectral DSEs [Horak, Pawlowski, Wink '20; \rightarrow talk by Horak]

Contour deformation: Special technique to respect analyticity (avoid branch cuts in the integrand)

- QED3
[Maris '95 (QED)]
- Quark propagator
[Alkofer, Fischer, Detmold, Maris '04]
- Self-consistent solution: Ray technique, YM propagators
[Strauss, Fischer, Kellermann '12; Fischer, MQH '20]
- Glueball correlators [Windisch, Alkofer, Haase, Liebmann '13; Windisch, MQH, Alkofer '13]
- Meson decays [Weil, Eichmann, Fischer, Williams '17; Williams '18]
- Spectral functions at $T>0$ [Pawlowski, Strodthoff, Wink '18]
- Quark-photon vertex
[Miramontes, Sanchis-Alepuz '19]
- Scalar scattering amplitude

Landau gauge propagators in the complex plane

Appearance of branch cuts for complex momenta forbids integration directly to cutoff.

Deformation of integration contour necessary [Maris '95]. Recent resurgence:
[Alkofer et al. '04; Windisch, MQH, Alkofer, '13; Williams '19; Miramontes, Sanchis-Alepuz '19; Eichmann et al. '19], ...

Ray technique for self-consistent solution of a DSE: [Strauss, Fischer, Kellermann; Fischer, MQH '20].

Extrapolation of $\lambda\left(P^{2}\right)$ for glueballs

Higher eigenvalues: Excited states.

Extrapolation of $\lambda\left(P^{2}\right)$ for glueballs

Higher eigenvalues: Excited states.

Physical solutions for $\lambda\left(P^{2}\right)=1$.

