On the glueball spectrum of Yang-Mills theory

FunQCD22 Valencia, Spain, June 13, 2022

DFG
JUSTUS-LIEBIG-
TUNIVERSITAT

- GIESSEN

Deutsche
Forschungsgemeinschaft

Markus Q. Huber
Institute of Theoretical Physics
Giessen University

In collaboration with
Christian S. Fischer, Hèlios Sanchis-Alepuz:
Eur.Phys.J.C 80, arXiv:2004.00415
Eur.Phys.J.C 80, arXiv:2110.09180
vConf21, arXiv:2111.10197
HADRON2021, arXiv:2201.05163

Bound states and multiplets

Bound states and multiplets

Quark model

Classification in terms of mesons or baryons \rightarrow multiplets

Outside this classification
\rightarrow exotics

Bound states and multiplets

Quark model

Classification in terms of mesons or baryons \rightarrow multiplets

Outside this classification
\rightarrow exotics

Bound states and multiplets

Quark model

Classification in terms of mesons or baryons \rightarrow multiplets

Outside this classification \rightarrow exotics

Classification not always easy, e.g., scalar sector $J^{P C}=0^{++}$:

Hybrid
 (4) ${ }^{\mathrm{d}}$

Glueballs from J / ψ decay

Coupled-channel analyses of exp. data (BESIII):

- +add. data, largest overlap with $f_{0}(1770)$
- largest overlap with $f_{0}(1710)$

[Sarantsev, Denisenko, Thoma, Klempt, Phys. Lett. B 816 (2021)]
[Rodas et al., Eur.Phys.J.C 82 (2022)]

Glueball calculations: Lattice

Lattice methods

Pure gauge theory:
No dynamic quarks.
\rightarrow "Pure" glueballs

- [Morningstar, Peardon, Phys. Rev. D60 (1999)]: standard reference
- [Athenodorou, Teper, JHEP11 (2020)]: improved statistics, more states

[Morningstar, Peardon, Phys. Rev. D60 (1999)]

Glueball calculations: Lattice

Lattice methods

Pure gauge theory:
No dynamic quarks.
\rightarrow "Pure" glueballs

- [Morningstar, Peardon, Phys. Rev. D60 (1989)]: standard reference
- [Athenodorou, Teper, JHEP11 (2020)]: improved statistics, more states
"Real QCD":
- [Gregory et al., JHEP10 (2012)]

Challenging:

- Much higher statistics required (poor signal-to-noise ratio)
- Continuum extrapolation and inclusion of fermionic operators still to be done
- Mixing with $\bar{q} q$ challenging
- $m_{\pi}=360 \mathrm{MeV}$
- Tiny (e.g., $0^{++}, 2^{++}$) to moderate unquenching effects (e.g., 0^{-+}) found

No quantitative results yet.

Functional spectrum calculations

Functional methods successful in describing many aspects of the hadron spectrum qualitatively and quantitatively!

[Fischer, Kubrak, Williams, Eur.Phys.J.A50 (2014)]

[Eichmann, Fischer, Sanchis-Alepuz, Phys.Rev.D94 (2016)]

Rainbow-ladder with Maris-Tandy (or similar) has been the workhorse for more than 20 years.
(Also results beyong rainbow-ladder, e.g., [Williams, Fischer, Heupel, Phys.Rev.D 93 (2016)].)

Functional glueball calculations

Functional methods successful in describing many aspects of the hadron spectrum qualitatively and quantitatively!

Glueballs? Rainbow-ladder?

Functional glueball calculations

Functional methods successful in describing many aspects of the hadron spectrum qualitatively and quantitatively!

Glueballs? Rainbow-ladder?
There is no rainbow for gluons!

Model based BSE calculations ($J=0$):

- [Meyers, Swanson, Phys.Rev.D87 (2013)]
- [Sanchis-Alepuz, Fischer, Kellermann, von Smekal, Phys.Rev.D92, (2015)]
- [Souza et al., Eur.Phys.J.A56 (2020)]
- [Kaptari, Kämpfer, Few Body Syst. 61 (2020)]

Functional glueball calculations

Functional methods successful in describing many aspects of the hadron spectrum qualitatively and quantitatively!

Glueballs? Rainbow-ladder?

There is no rainbow for gluons!

Model based BSE calculations $(J=0)$:

- [Meyers, Swanson, Phys.Rev.D87 (2013)]
- [Sanchis-Alepuz, Fischer, Kellermann, von Smekal, Phys.Rev.D92, (2015)]
- [Souza et al., Eur.Phys.J.A56 (2020)]
- [Kaptari, Kämpfer, Few Body Syst. 61 (2020)]

Alternative: Calculated input

- $J=0$: [MQH, Fischer, Sanchis-Alepuz, Eur.Phys.J.C80 (2020)]
- $J=0,2,3,4$: [MQH, Fischer, Sanchis-Alepuz, Eur.Phys.J.C81 (2021)]

Extreme sensitivity on input!

Bound state equations for QCD

- Require scattering kernel K and propagator.

Bound state equations for QCD

- Require scattering kernels K and propagators.
- Quantum numbers determine which amplitudes 「 couple.

Bound state equations for QCD

- Require scattering kernels K and propagators.
- Quantum numbers determine which amplitudes Γ couple.
- Ghosts from gauge fixing

One framework

- Natural description of mixing.
- Similar equations for hadrons with more than two constituents

Bound state equations for QCD

Focus on pure glueballs.

- Require scattering kernels K and propagators.
- Quantum numbers determine which amplitudes Γ couple.
- Ghosts from gauge fixing

One framework

- Natural description of mixing.
- Similar equations for hadrons with more than two constituents

Kernel construction

From 3PI effective action truncated to three-loops:
[Fukuda, Prog. Theor. Phys 78 (1987); McKay, Munczek, Phys. Rev. D 40 (1989); Sanchis-Alepuz, Williams, J. Phys: Conf. Ser. 631 (2015); MQH, Fischer, Sanchis-Alepuz, Eur.Phys.J.C80 (2020)]

$$
\Gamma^{31}\left[\Phi, D, \Gamma^{(3)}\right]=\Gamma^{0,31}\left[\Phi, D, \Gamma^{(3)}\right]+\Gamma^{\text {int }, 31}\left[\Phi, D, \Gamma^{(3)}\right]
$$

Kernels constructed by cutting two legs:
gluon/gluon,ghost/gluon, gluon/ghost, ghost/ghost

Kernels

Systematic derivation from 3PI effective action:

Self-consistent treatment of 3-point functions requires 3-loop expansion.

Correlation functions of quarks and gluons

Equations of motion: 3-loop 3PI effective action

 $\sim^{-1}=$ \qquad -1

- Conceptual and technical challenges: nonperturbative renormalization, two-loop diagrams, convergence, size of kernels, ...
- Self-contained: Only parameters are the strong coupling and the quark masses!

Correlation functions of quarks and gluons

Equations of motion: 3-loop 3PI effective action

- Conceptual and technical challenges: nonperturbative renormalization, two-loop diagrams, convergence, size of kernels, ...
- Self-contained: Only parameters are the strong coupling and the quark masses!

Landau gauge propagators

Self-contained: Only external input is the coupling!

Gluon dressing function:

Family of solutions [Aguilar, Binosi, Papavassiliou, Phys.Rev.D 78 (2008); Boucaud et al., JHEP06 (2008); Fischer, Maas, Pawlowski, Ann.Phys. 324 (2008);
Alkofer, MQH, Schwenzer, Phys. Rev. D 81 (2010)]:
Mass parameter $m_{A} \rightarrow$ talk by N. Wink
Nonperturbative completions of Landau gauge [Maas, Phys. Lett. B 689 (2010)]?

Gluon propagator:

Ghost dressing function:

Ghost-gluon vertex

Ghost-gluon vertex:

- Nontrivial kinematic dependence of ghost-gluon vertex
- Qualitative agreement with lattice results, though some quantitative differences (position of peak!).

Three-gluon vertex

[Cucchieri, Maas, Mendes, Phys. Rev. D 77 (2008); Sternbeck et al., 1702.00612; MQH, Phys. Rev. D 101 (2020)]

- Simple kinematic dependence of three-gluon vertex (only singlet variable of S_{3})

$$
\rightarrow \text { Talk F. de Soto }
$$

- Large cancellations between diagrams

Gauge invariance

Couplings can be extracted from each vertex.

- Slavnov-Taylor identities (gauge invariance): Agreement perturbatively (UV) necessary. [Cyrol et al., Phys.Rev.D 94 (2016)]
- Difficult to realize: Small deviations \rightarrow Couplings cross and do not agree.
- Here: Vertex couplings agree down to GeV regime (IR can be different).

Stability of the solution

- Agreement with lattice results.

Stability of the solution

- Agreement with lattice results.
- Concurrence between functional methods: 3PI vs. 2-loop DSE:

Stability of the solution

- Agreement with lattice results.
- Concurrence between functional methods:

3PI vs. 2-loop DSE:
DSE vs. FRG:

[Cucchieri, Maas, Mendes, Phys.Rev.D77 (2008); Sternbeck et al., Proc.Sci. LATTICE2016 (2017); Cyrol et al., Phys.Rev.D 94 (2016); MQH, Phys.Ref.D101 (2020)]

Stability of the solution: Extensions

- Three-gluon vertex: Tree-level dressing dominant, others subleading [Eichmann, Williams, Alkofer, Vujinovic, Phys.Rev.D89 (2014)]

Stability of the solution: Extensions

- Three-gluon vertex: Tree-level dressing dominant, others subleading [Eichmann, Williams, Alkofer, Vujinovic, Phys.Rev.D89 (2014)]
- Four-gluon vertex: Influence on propagators tiny for $d=3$ [MQH, Phys.Rev.D93 (2016)]

Stability of the solution: Extensions

- Three-gluon vertex: Tree-level dressing dominant, others subleading [Eichmann, Williams, Alkofer, Vujinovic, Phys.Rev.D89 (2014)]
- Four-gluon vertex: Influence on propagators tiny for $d=3$ [MQH, Phys.Rev.D93 (2016)]
- Two-ghost-two-gluon vertex [MQH, Eur. Phys.J.C77 (2017)]:
(FRG: [Corell, SciPost Phys. 5 (2018)])

Solving a bound state equation

$$
\lambda(P) \Gamma(P)=\mathcal{K} \cdot \Gamma(P)
$$

\rightarrow Eigenvalue problem for $\Gamma(P)$:
(1) Solve for $\lambda(P)$.
(2) Find P with $\lambda(P)=1$.
$\Rightarrow M^{2}=-P^{2}$

Solving a bound state equation

$$
\lambda(P) \Gamma(P)=\mathcal{K} \cdot \Gamma(P)
$$

\rightarrow Eigenvalue problem for $\Gamma(P)$:
(1) Solve for $\lambda(P)$.
(2) Find P with $\lambda(P)=1$.
$\Rightarrow M^{2}=-P^{2}$
(pseudoscalar glueball)
However:
Propagators are probed at $\left(q \pm \frac{P}{2}\right)^{2}=\frac{P^{2}}{4}+q^{2} \pm \sqrt{P^{2} q^{2}} \cos \theta=-\frac{M^{2}}{4}+q^{2} \pm i M \sqrt{q^{2}} \cos \theta$ \rightarrow Complex for $P^{2}<0$!

Time-like quantities $\left(P^{2}<0\right) \rightarrow$ Correlation functions for complex arguments.

Correlation functions in the complex plane

Standard integration techniques fail. $\quad \int d^{4} q \rightarrow \int_{\Lambda_{\mathbb{R}}^{2}}^{\Lambda_{U V}^{2}} d q^{2} \int d \theta_{1}$

Correlation functions in the complex plane

Standard integration techniques fail. $\quad \int d^{4} q \rightarrow \int_{\Lambda_{\mathbb{R}}^{2}}^{\Lambda_{U V}^{2}} d q^{2} \int d \theta_{1}$

\rightarrow Adapted technique:

\rightarrow Talk by G. Eichmann

Contour deformation (QED: [Maris, Phys.Rev.D52, (1995)]).
Recent resurgence, e.g.: [Alkofer et al., Phys.Rev.D 70 (2004); Eichmann, Krassnigg, Schwinzerl, Alkofer, Ann.Phys. 323 (2008); Strauss, Fischer, Kellermann, Phys.Rev.Lett. 109 (2012); Windisch, MQH, Alkofer, Phys.Rev.D 87 (2013), Acta Phys.Polon.Supp. 6 (2013); Weil, Eichmann, Fischer, Williams, Phys.Rev.D 96 (2017); Williams, Phys.Lett.B 798 (2019); Miramontes, Sanchis-Alepuz, Eur.Phys.J.A 55 (2019); Eichmann, Duarte, Pena, Stadler, Phys.Rev.D 100 (2019); Fischer, MQH, Phys.Rev.D 102 (2020); Eichmann, Ferreira, Stadler, Phys.Rev.D 105 (2022); Miramontes, Sanchis-Alepuz, Phys.Rev.D 103 (2021); Miramontes, Alkofer, Fischer, Sanchis-Alepuz, '22; . . .]

Landau gauge propagators in the complex plane

Simpler truncation:

Landau gauge propagators in the complex plane

Simpler truncation:

Ray technique for self-consistent solution of a DSE:

- Current truncation leads to a pole-like structure in the gluon propagator.
- Analyticity up to 'pole' confirmed by various tests (Cauchy-Riemann, Schlessinger, reconstruction)
\rightarrow Talky by J. Horak

Extrapolation of $\lambda\left(P^{2}\right)$

Extrapolation method

- Extrapolation to time-like P^{2} using Schlessinger's continued fraction method (proven superior to default Padé approximants) [Schlessinger, Phys.Rev. 167 (1968)]
- Average over extrapolations using subsets of points for error estimate

$$
f(x)=\frac{f\left(x_{1}\right)}{1+\frac{a_{1}\left(x-x_{1}\right)}{1+\frac{a_{2}\left(x-x_{2}\right)}{1+\frac{a_{3}\left(x-x_{3}\right)}{\cdots}}}}
$$

Coefficients a_{i} can determined such that $f(x)$ exact at x_{i}.

Extrapolation of $\lambda\left(P^{2}\right)$

Extrapolation method

- Extrapolation to time-like P^{2} using Schlessinger's continued fraction method (proven superior to default Padé approximants) [Schlessinger, Phys.Rev. 167 (1968)]
- Average over extrapolations using subsets of points for error estimate

Test extrapolation for solvable system:
Heavy meson [MQH, Sanchis-Alepuz, Fischer, Eur.Phys.J.C 80 (2020)]

$$
f(x)=\frac{f\left(x_{1}\right)}{1+\frac{a_{1}\left(x-x_{1}\right)}{1+\frac{a_{2}\left(x-x_{2}\right)}{1+\frac{\partial_{3}\left(x-x_{3}\right)}{\cdots}}}}
$$

Coefficients a_{i} can determined such that $f(x)$ exact at x_{i}.

Glueball results J=0

Family of solutions:

Glueball results $\mathrm{J}=0$

Family of solutions:

Unique physical spectrum:

Spectrum independent of $m_{A}!\rightarrow$ Family of solutions yields the same physics.

Higher order diagrams

One-loop diagrams only:
[MQH, Fischer, Sanchis-Alepuz, Eur.Phys.J.C80 (2020); MQH,
Fischer, Sanchis-Alepuz, Eur.Phys.J.C81 (2021)]

Two-loop diagrams: subleading effects

- O^{-+}: none [MQH, Fischer, Sanchis-Alepuz, EPJ Web Conf. 258 (2022)]
- $\mathrm{O}^{++}:<2 \%[\mathrm{MQH}$, Fischer, Sanchis-Alepuz, HADRON2021, arXiv:2201.05163]

Amplitudes

Information about significance of single parts.

Ground state scalar glueball:
Amplitudes 0^{++}

Excited scalar glueball:
Amplitudes 0^{*++}

\rightarrow Amplitudes have different behavior for ground state and excited state. Useful guide for future developments.
\rightarrow Meson/glueball amplitudes: Information about mixing.

Glueball amplitudes for spin J

$$
\Gamma_{\mu \nu \rho \sigma \ldots}\left(p_{1}, p_{2}\right)=\sum \tau_{\mu \nu \rho \sigma \ldots}^{i}\left(p_{1}, p_{2}\right) h_{i}\left(p_{1}, p_{2}\right)
$$

Numbers of tensors:

J	$\mathrm{P}=+$	$\mathrm{P}=-$
0	2	1
1	4	3
>2	5	4

Glueball results

[MQH, Fischer, Sanchis-Alepuz, Eur.Phys.J.C81 (2021)]
*: identification with some uncertainty
${ }^{\dagger}$: conjecture based on irred. rep of octahedral group

- Agreement with lattice results
- (New states: $0^{* *++}, 0^{* *-+}, 3^{-+}, 4^{-+}$)

Summary and outlook

- Alternative to models in functional equations: Direct calculation of input for bound state equations.
- Large system of equations may be necessary.
- Independent tests:
- Agreement with other methods: lattice + continuum
- Extensions

Spectrum from first principles for pure glueballs.

Summary and outlook

- Alternative to models in functional equations: Direct calculation of input for bound state equations.
- Large system of equations may be necessary.
- Independent tests:
- Agreement with other methods: lattice + continuum
- Extensions

Spectrum from first principles for pure glueballs.

Extensions:

- Real QCD
- Beyond Landau gauge: Linear covariant gauges [Napetschnig, Alkofer, MQH, Pawlowski, Phys.Rev.D 104 (2021)]

Summary and outlook

- Alternative to models in functional equations: Direct calculation of input for bound state equations.
- Large system of equations may be necessary.
- Independent tests:
- Agreement with other methods: lattice + continuum
- Extensions

Spectrum from first principles for pure glueballs.

Extensions:

- Real QCD
- Beyond Landau gauge: Linear covariant gauges [Napetschnig, Alkofer, MQH, Pawlowski, Phys.Rev.D 104 (2021)]

Thank you for your attention.

$J=1$ glueballs

Landau-Yang theorem

Two-photon states cannot couple to $J^{P}=1^{ \pm}$or $(2 n+1)^{-}$
[Landau, Dokl.Akad.Nauk SSSR 60 (1948); Yang, Phys. Rev. 77 (1950)].
(\rightarrow Exclusion of $J=1$ for Higgs because of $h \rightarrow \gamma \gamma$.)

Applicable to glueballs?
\rightarrow Not in this framework, since gluons are not on-shell.
\rightarrow Presence of $J=1$ states is a dynamical question.
$J=1$ not found here.

Glueballs as bound states

Hadron masses from correlation functions of color singlet operators.

Glueballs as bound states

Hadron masses from correlation functions of color singlet operators.
Example: For $J^{P C}=0^{++}$glueball take $O(x)=F_{\mu \nu}(x) F^{\mu \nu}(x)$:

$$
D(x-y)=\langle O(x) O(y)\rangle
$$

Glueballs as bound states

Hadron masses from correlation functions of color singlet operators.
Example: For $J^{P C}=0^{++}$glueball take $O(x)=F_{\mu \nu}(x) F^{\mu \nu}(x)$:

$$
D(x-y)=\langle O(x) O(y)\rangle
$$

Lattice: Mass exponential Euclidean time decay:

$$
\lim _{t \rightarrow \infty}\langle O(x) O(0)\rangle \sim e^{-t M}
$$

Glueballs as bound states

Hadron masses from correlation functions of color singlet operators.
Example: For $J^{P C}=0^{++}$glueball take $O(x)=F_{\mu \nu}(x) F^{\mu \nu}(x)$:

$$
D(x-y)=\langle O(x) O(y)\rangle
$$

Functional approach: Complicated object in a diagrammatic language, 2-, 3- and 4-gluon contributions [MQH, Cyrol, Pawlowski, Comput.Phys.Commun. 248 (2020)]

+3-loop diagrams
Leading order:
[Windisch, MQH, Alkofer, Phys.Rev.D87 (2013)]

Glueballs as bound states

Hadron masses from correlation functions of color singlet operators.
Example: For $J^{P C}=0^{++}$glueball take $O(x)=F_{\mu \nu}(x) F^{\mu \nu}(x)$:

$$
D(x-y)=\langle O(x) O(y)\rangle
$$

Put total momentum on-shell and consider individual 2-, 3- and 4-gluon contributions. \rightarrow Each can have a pole at the glueball mass.
A^{4}-part of $D(x-y)$, total momentum on-shell:

Landau gauge propagators in the complex plane

Simpler truncation:

Landau gauge propagators in the complex plane

Simpler truncation:

\rightarrow Opening at $q^{2}=p^{2}$.

Landau gauge propagators in the complex plane

Simpler truncation:

\rightarrow Opening at $q^{2}=p^{2}$.
Appearance of branch cuts for complex momenta forbids integration directly to cutoff.

Ghost propagator

[Napetschnig, Alkofer, MQH, Pawlowski, Phys.Rev.D 104 (2021)]

- Logarithmic IR suppression for $\xi>0$
[Aguilar, Binosi, J. Papavassiliou, Phys.Rev. D91 (2015); MQH, Phys. Rev. D91 (2015)]
- Otherwise effects small for low ξ.

Ghost propagator

[Napetschnig, Alkofer, MQH, Pawlowski, Phys.Rev.D 104 (2021)]

[Cucchieri et al. '18]

Ghost propagator

[Napetschnig, Alkofer, MQH, Pawlowski, Phys.Rev.D 104 (2021)]

Gluon propagator

[Napetschnig, Alkofer, MQH,
Pawlowski, Phys.Rev.D 104 (2021)]

Gluon propagator

Markus Q. Huber (Giessen University)

[Napetschnig, Alkofer, MQH,
Pawlowski, Phys.Rev.D 104 (2021)]
[Bicudo et al., Phys. Rev. D92 (2015)]

Gluon propagator

Ratios from Nielsen identities:
$\xi=0.1$:

- 0 GeV: 0.98
$\xi=0.5:$
- 0 GeV: 0.92
- $1 \mathrm{GeV}: 0.98$
- $1 \mathrm{GeV}: 0.93$

[Napetschnig, Alkofer, MQH,
Pawlowski, Phys.Rev.D 104 (2021)]
[Bicudo et al., Phys. Rev. D92 (2015)]

