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Infrared Behavior of Yang-Mills Green Functions
In the Maximally Abelian Gauge
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Infrared scaling solutions

The Green functions of Yang-Mills theory have been integlgistudied during the last
few years using functional approaches such as Dyson-Sgewaguations (DSEs) and
Functional Renormalization Group equations (RGEs). Lamgguge (LG) Is the best
studied gauge using these techniques, anidRtscaling solution [1, 2], I.e. all dressing

functions are characterized by power laws with so-callédmed exponents (IRE), can
explain gluon [3] as well as quark confinement [2]. A possHii@tegy to learn about

gauge-independent aspects is to investigate also othgegaWe present here a method

to assess the IR behavior of gauges based on the informditamed in LG and show
the results for the maximally Abelian gauge.

The maximally Abelian gauge (MAG)

For the MAG we decompose the gauge fields as
A, = AZTZ' + B, 1",

whereT" are the diagonal generators of the gréiip(N) andT* the off-diagonal ones.
Consequently thel’ field is called the diagonal field and” the off-diagonal one. The
notion of this gauge goes back to the idea of Abelian domieandhe IR [4], which
means that the diagonal field components dominate. This eaclineved by fixing the
gauge such that the norm of tloéf-diagonal components is minimized with respect
to gauge transformations. Also the ghost fieldsplit. Usually the remaining gauge
freedom of the diagonal fields is fixed to the LG condition.

A further complication in MAG is the necessity of additionairms including ayuartic
ghost interaction to guarantee renormalizability. One simplification is thetfthat the
diagonal ghosts decouple from the system. In total the nuwfaateractions is consid-
erably larger than that of LG and depends on the gauge grobg.table below shows
the possible interactions for SU(2) and the additional doeSU(3).

Three-PointFour-Point
SU(2) ABB, Acc 'AABB, AAcc, BBBB, cccc, BBcc
SU(3) + Bcc, BBB + ABcc, ABBB

The right-hand sides of the DSEs for the diagonal gluon (rged off-diagonal gluon
(magenta) and the off-diagonal ghost (green) propagaters a
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General approach

Assuming power laws for all dressing functions one can wdde/n thel RE 0, of an
arbitrary diagram v. We denote the set of fields by;, which is{A, B, ¢} for MAG.
Using topological relations this expression can be reamiguch that it does no longer
depend on the number of internal propagators but on the nuaflbegsm*i, the num-
ver of dressed and bare verticgs'** andn; ', respectively, and the IRES;, of
propagators anoly, x, of vertices.kﬁé'“X’ﬂ denotes the number of times the fied ap-
pears Iin the verteX; . .. X;. The resulting expression is valid for generic diagranas, I.
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Including those of DSEs and RGEs:
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For the remaining analysis Important input comes from can#ls given by the

DSEs and RGEs In the IR. For example one can immediately vall the IRE

of off-diagonal fields Is non-negative, which Is due to thdloiwing graphs:
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Constraints from the RGEs are stronger, since the DSEs ala@ytain one bare ver-
tex. For example using the following diagrams and genexatmns for other vertex
functions one can conclude that the coefficients0f ** andn; '+ are non-negative:

0AABB < 20448+ 0B+ 04

04BB < 304pB + 205+ 04

1
:>§5A+5B‘|‘5ABBZO o4+ 0p+0aa > 0

The same conclusion can be drawn from the assumption of aderngent skeleton
expansion, an argument employed In ref. [5] for LG. Therefimemaximally IR di-
ver gent solution does not depend on any kind of vertex and is given by

5/0 — _% ZmXZéXz'

All constraints together restrict the system sufficiendlgletermine the leading diagrams
of every DSE.

General resultsof the IR analysis:

¢ Self-interacting fields have a non-negative IRE.
e The maximally IR divergent solution depends solely on thenbers of external legs

m ..

7

e The IREs of individual diagrams in the maximally IR divergjsalution are determined
by their bare vertices, i.e. all diagrams of an RGE have theed&®E.

¢ A negative IRE for a propagator is only possible if the treeel term is subtracted in
the renormalization process, I.e. by imposing approphatendary conditions.

IR scaling solution for the MAG

The solution for the propagator IRES is unique:
0>04=—0=—0.

Theleading diagramsin the propagator DSEs are thensets with four-point interac-
tions containing two diagonal gluons and possibly the corresponding squint diagrams.
Whether those scale equally as the sunsets Is still to bendieed and depends on the
IR behavior of three-point and higher n-point functionsr e former there exists be-
sides the maximally IR divergent solution a second one. Uadtative solution for the
propagators is in accordance with the Abelian dominancetingsis.

All DSEs and diagrams of this poster were produced using DoDSE[6].
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