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Infrared scaling solutions

The Green functions of Yang-Mills theory have been intensively studied during the last
few years using functional approaches such as Dyson-Schwinger equations (DSEs) and
Functional Renormalization Group equations (RGEs). Landau gauge (LG) is the best
studied gauge using these techniques, and itsIR scaling solution [1, 2], i.e. all dressing
functions are characterized by power laws with so-called infrared exponents (IRE), can
explain gluon [3] as well as quark confinement [2]. A possiblestrategy to learn about
gauge-independent aspects is to investigate also other gauges. We present here a method
to assess the IR behavior of gauges based on the information obtained in LG and show
the results for the maximally Abelian gauge.

The maximally Abelian gauge (MAG)

For the MAG we decompose the gauge fields as

Aµ = Ai
µT

i + Ba
µT

a,

whereT i are the diagonal generators of the groupSU(N) andT a the off-diagonal ones.
Consequently theAi field is called the diagonal field andBa the off-diagonal one. The
notion of this gauge goes back to the idea of Abelian dominance in the IR [4], which
means that the diagonal field components dominate. This can be achieved by fixing the
gauge such that the norm of theoff-diagonal components is minimized with respect
to gauge transformations. Also the ghost fieldsc split. Usually the remaining gauge
freedom of the diagonal fields is fixed to the LG condition.
A further complication in MAG is the necessity of additionalterms including aquartic
ghost interaction to guarantee renormalizability. One simplification is the fact that the
diagonal ghosts decouple from the system. In total the number of interactions is consid-
erably larger than that of LG and depends on the gauge group. The table below shows
the possible interactions for SU(2) and the additional onesfor SU(3).

Three-PointFour-Point
SU(2) ABB, Acc AABB, AAcc, BBBB, cccc, BBcc
SU(3) + Bcc, BBB + ABcc, ABBB

The right-hand sides of the DSEs for the diagonal gluon (red), the off-diagonal gluon
(magenta) and the off-diagonal ghost (green) propagators are:
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General approach

Assuming power laws for all dressing functions one can writedown theIRE δv of an
arbitrary diagram v. We denote the set of fields byXi, which is{A,B, c} for MAG.
Using topological relations this expression can be rewritten such that it does no longer
depend on the number of internal propagators but on the number of legsmXi, the num-
ber of dressed and bare verticesnX1...Xk

d andnX1...Xk

b , respectively, and the IREsδXi
of

propagators andδX1...Xk
of vertices.kX1...Xk

Xi
denotes the number of times the fieldXi ap-

pears in the vertexX1 . . . Xk. The resulting expression is valid for generic diagrams, i.e.

including those of DSEs and RGEs:

δv = −
1

2

∑

i

mXiδXi
+

∑

vertices,k≥3

nX1...Xk

b

∑

i

1

2
kX1...Xk

Xi
δXi

+

+
∑
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nX1...Xk

d



δX1...Xk
+

1

2
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i

kX1...Xk

Xi
δXi



 .

For the remaining analysis important input comes from constraints given by the
DSEs and RGEs in the IR. For example one can immediately tell that the IRE
of off-diagonal fields is non-negative, which is due to the following graphs:
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δABB ≤ δABB + 2δB ⇒ δB ≥ 0 δAcc ≤ δAcc + 2δc ⇒ δc ≥ 0

Constraints from the RGEs are stronger, since the DSEs always contain one bare ver-
tex. For example using the following diagrams and generalizations for other vertex
functions one can conclude that the coefficients ofnX1...Xk

b andnX1...Xk

b are non-negative:
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The same conclusion can be drawn from the assumption of a non-divergent skeleton
expansion, an argument employed in ref. [5] for LG. Therefore themaximally IR di-
vergent solution does not depend on any kind of vertex and is given by

δv = −1
2

∑

i m
XiδXi

.

All constraints together restrict the system sufficiently to determine the leading diagrams
of every DSE.

General results of the IR analysis:

•Self-interacting fields have a non-negative IRE.

•The maximally IR divergent solution depends solely on the numbers of external legs
mXi

.

•The IREs of individual diagrams in the maximally IR divergent solution are determined
by their bare vertices, i.e. all diagrams of an RGE have the same IRE.

•A negative IRE for a propagator is only possible if the tree-level term is subtracted in
the renormalization process, i.e. by imposing appropriateboundary conditions.

IR scaling solution for the MAG

The solution for the propagator IREs is unique:

0 ≥ δA = −δB = −δc.

Theleading diagrams in the propagator DSEs are thesunsets with four-point interac-
tions containing two diagonal gluons and possibly the corresponding squint diagrams.
Whether those scale equally as the sunsets is still to be determined and depends on the
IR behavior of three-point and higher n-point functions. For the former there exists be-
sides the maximally IR divergent solution a second one. The qualitative solution for the
propagators is in accordance with the Abelian dominance hypothesis.

All DSEs and diagrams of this poster were produced using DoDSE[6].
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